1
|
Okyere AD, Song J, Patwa V, Carter RL, Enjamuri N, Lucchese AM, Ibetti J, de Lucia C, Schumacher SM, Koch WJ, Cheung JY, Benovic JL, Tilley DG. Pepducin ICL1-9-Mediated β2-Adrenergic Receptor-Dependent Cardiomyocyte Contractility Occurs in a G i Protein/ROCK/PKD-Sensitive Manner. Cardiovasc Drugs Ther 2023; 37:245-256. [PMID: 34997361 PMCID: PMC9262991 DOI: 10.1007/s10557-021-07299-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE β-Adrenergic receptors (βAR) are essential targets for the treatment of heart failure (HF); however, chronic use of βAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of β2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a β-arrestin (βarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9. METHODS We measured adult mouse cardiomyocyte contractility in response to ICL1-9 or isoproterenol (ISO, as a positive control) alone or in the presence of inhibitors of various potential components of βarr- or RhoA-dependent signaling. We also assessed the contractile effects of ICL1-9 on cardiomyocytes lacking G protein-coupled receptor (GPCR) kinase 2 (GRK2) or 5 (GRK5). RESULTS Consistent with RhoA activation by ICL1-9, both Rho-associated protein kinase (ROCK) and protein kinase D (PKD) inhibition were able to attenuate ICL1-9-mediated contractility, as was inhibition of myosin light chain kinase (MLCK). While neither GRK2 nor GRK5 deletion impacted ICL1-9-mediated contractility, pertussis toxin attenuated the response, suggesting that ICL1-9 promotes downstream RhoA-dependent signaling in a Gi protein-dependent manner. CONCLUSION Altogether, our study highlights a novel signaling modality that may offer a new approach to the promotion, or preservation, of cardiac contractility during HF via the allosteric regulation of β2AR to promote Gi protein/βarr-dependent activation of RhoA/ROCK/PKD signaling.
Collapse
Affiliation(s)
- Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Viren Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Nitya Enjamuri
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Claudio de Lucia
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
- Instituti Clinici Scientifici Maugeri di Telese Terme, Telese Terme, Italy
| | - Sarah M Schumacher
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Xu H, Tilley DG. Pepducin-mediated G Protein-Coupled Receptor Signaling in the Cardiovascular System. J Cardiovasc Pharmacol 2022; 80:378-385. [PMID: 35170495 PMCID: PMC9365886 DOI: 10.1097/fjc.0000000000001236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/29/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Pepducins are small-lipidated peptides designed from the intracellular loops of G protein-coupled receptors (GPCRs) that act in an allosteric manner to modulate the activity of GPCRs. Over the past 2 decades, pepducins have progressed initially from pharmacologic tools used to manipulate GPCR activity in an orthosteric site-independent manner to compounds with therapeutic potential that have even been used safely in phase 1 and 2 clinical trials in human subjects. The effect of pepducins at their cognate receptors has been shown to vary between antagonist, partial agonist, and biased agonist outcomes in various primary and clonal cell systems, with even small changes in amino acid sequence altering these properties and their receptor selectivity. To date, pepducins designed from numerous GPCRs have been studied for their impact on pathologic conditions, including cardiovascular diseases such as thrombosis, myocardial infarction, and atherosclerosis. This review will focus in particular on pepducins designed from protease-activated receptors, C-X-C motif chemokine receptors, formyl peptide receptors, and the β2-adrenergic receptor. We will discuss the historic context of pepducin development for each receptor, as well as the structural, signaling, pathophysiologic consequences, and therapeutic potential for each pepducin class.
Collapse
Affiliation(s)
- Heli Xu
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | |
Collapse
|