1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Cavatão FG, Pinto ÉSM, Krause MJ, Alho CS, Dorn M. Molecular Basis of MC1R Activation: Mutation-Induced Alterations in Structural Dynamics. Proteins 2024; 92:1297-1307. [PMID: 38923677 DOI: 10.1002/prot.26722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The MC1R protein is a receptor found in melanocytes that plays a role in melanin synthesis. Mutations in this protein can impact hair color, skin tone, tanning ability, and increase the risk of skin cancer. The MC1R protein is activated by the alpha-melanocyte-stimulating hormone (α-MSH). Previous studies have shown that mutations affect the interaction between MC1R and α-MSH; however, the mechanism behind this process is poorly understood. Our study aims to shed light on this mechanism using molecular dynamics (MD) simulations to analyze the Asp84Glu and Asp294His variants. We simulated both the wild-type (WT) protein and the mutants with and without ligand. Our results reveal that mutations induce unique conformations during state transitions, hindering the switch between active and inactive states and decreasing cellular levels of cAMP. Interestingly, Asp294His showed increased ligand affinity but decreased protein activity, highlighting that tighter binding does not always lead to increased activation. Our study provides insights into the molecular mechanisms underlying the impact of MC1R mutations on protein activity.
Collapse
Affiliation(s)
- Fernando Guimarães Cavatão
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Mathias J Krause
- Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
| | - Clarice Sampaio Alho
- Forensic Science, National Institute of Science and Technology, Porto Alegre, Rio Grande do Sul, Brazil
- PPG Patologia, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcio Dorn
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Forensic Science, National Institute of Science and Technology, Porto Alegre, Rio Grande do Sul, Brazil
- Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Shen Q, Tang X, Wen X, Cheng S, Xiao P, Zang S, Shen D, Jiang L, Zheng Y, Zhang H, Xu H, Mao C, Zhang M, Hu W, Sun J, Zhang Y, Chen Z. Molecular Determinant Underlying Selective Coupling of Primary G-Protein by Class A GPCRs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310120. [PMID: 38647423 PMCID: PMC11187927 DOI: 10.1002/advs.202310120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Indexed: 04/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.
Collapse
Affiliation(s)
- Qingya Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Xinyan Tang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Xin Wen
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
| | - Shizhuo Cheng
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Peng Xiao
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
| | - Shao‐Kun Zang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Dan‐Dan Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceZhejiang Chinese Medical UniversityHangzhou310053China
| | - Huibing Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Haomang Xu
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Chunyou Mao
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and EquipmentZhejiang UniversityHangzhou310016China
| | - Min Zhang
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Jin‐Peng Sun
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesPeking UniversityKey Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191China
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceZhejiang Chinese Medical UniversityHangzhou310053China
| |
Collapse
|
5
|
Guida S, Puig S, DI Resta C, Sallustio F, Mangano E, Stabile G, Longo C, Pellacani G, Guida G, Rongioletti F. Melanocortin-1 receptor (MC1R): a review for dermatologists. Ital J Dermatol Venerol 2024; 159:285-293. [PMID: 38376504 DOI: 10.23736/s2784-8671.24.07839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Melanocortin-1 receptor (MC1R) and its variants have a pivotal role in melanin synthesis. However, MC1R has been associated to non-pigmentary pathways related to DNA-repair activities and inflammation. The aim of this review is to provide an up-to-date overview about the role of MC1R in the skin. Specifically, after summarizing the current knowledge about MC1R structure and polymorphisms, we report data concerning the correlation between MC1R, phenotypic traits, skin aging, other diseases and skin cancers and their risk assessment through genetic testing.
Collapse
Affiliation(s)
- Stefania Guida
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy -
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy -
| | - Susana Puig
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, University of Barcelona, Barcelona, Spain
| | - Chiara DI Resta
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Mangano
- Institute of Biomedical Technologies (ITB), National Research Center (CNR), Segrate, Milan, Italy
| | - Giorgio Stabile
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Skin Cancer Center, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Gabriella Guida
- Section of Molecular Biology, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Aldo Moro University of Bari, Bari, Italy
| | - Franco Rongioletti
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Pirona L, Ballabio F, Alfonso-Prieto M, Capelli R. Calcium-Driven In Silico Inactivation of a Human Olfactory Receptor. J Chem Inf Model 2024; 64:2971-2978. [PMID: 38523266 DOI: 10.1021/acs.jcim.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Conformational changes as well as molecular determinants related to the activation and inactivation of olfactory receptors are still poorly understood due to the intrinsic difficulties in the structural determination of this GPCR family. Here, we perform, for the first time, the in silico inactivation of human olfactory receptor OR51E2, highlighting the possible role of calcium in this receptor state transition. Using molecular dynamics simulations, we show that a divalent ion in the ion binding site, coordinated by two acidic residues at positions 2.50 and 3.39 conserved across most ORs, stabilizes the receptor in its inactive state. In contrast, protonation of the same two acidic residues is not sufficient to drive inactivation within the microsecond timescale of our simulations. Our findings suggest a novel molecular mechanism for OR inactivation, potentially guiding experimental validation and offering insights into the possible broader role of divalent ions in GPCR signaling.
Collapse
Affiliation(s)
- Lorenza Pirona
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Federico Ballabio
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, D-54248 Jülich, Germany
| | - Riccardo Capelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| |
Collapse
|
7
|
Betrie AH, Abdul-Ridha A, Hartono H, Chalmers DK, Wright CE, Scott DJ, Angus JA, Ayton S. The 8-hydroxyquinoline derivative, clioquinol, is an alpha-1 adrenoceptor antagonist. Biochem Pharmacol 2024; 222:116092. [PMID: 38408679 DOI: 10.1016/j.bcp.2024.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an antimicrobial agent whose actions as a zinc or copper ionophore and an iron chelator revived the interest in similar compounds for the treatment of fungal and bacterial infections, neurodegeneration and cancer. Recently, we reported zinc ionophores, including clioquinol, cause vasorelaxation in isolated arteries through mechanisms that involve sensory nerves, endothelium and vascular smooth muscle. Here, we report that clioquinol also uniquely acts as a competitive alpha-1 (α1) adrenoceptor antagonist. We employed ex vivo functional vascular contraction and pharmacological techniques in rat isolated mesenteric arteries, receptor binding assays using stabilized solubilized α1 receptor variants, or wild-type human α1-adrenoceptors transfected in COS-7 cells (African green monkey kidney fibroblast-like cells), and molecular dynamics homology modelling based on the recently published α1A adrenoceptor cryo-EM and α1B crystal structures. At higher concentrations, all ionophores including clioquinol cause a non-competitive antagonism of agonist-mediated contraction due to intracellular zinc delivery, as reported previously. However, at lower concentration ranges, clioquinol has an additional mechanism of competitively inhibiting α1-adrenoceptors that contributes to decreasing vascular contractility. Molecular dynamic simulation showed that clioquinol binds stably to the orthosteric binding site (Asp106) of the receptor, confirming the structural basis for competitive α1-adrenoceptor antagonism by clioquinol.
Collapse
Affiliation(s)
- Ashenafi H Betrie
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Translational Cardiovascular and Renal Research Group, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Alaa Abdul-Ridha
- Drug Discovery Innovation Group, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Herodion Hartono
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - David K Chalmers
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Christine E Wright
- Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Daniel J Scott
- Drug Discovery Innovation Group, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - James A Angus
- Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Scott Ayton
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Xiong Y, Xu Z, Li X, Wang Y, Zhao J, Wang N, Duan Y, Xia R, Han Z, Qian Y, Liang J, Zhang A, Guo C, Inoue A, Xia Y, Chen Z, He Y. Identification of oleic acid as an endogenous ligand of GPR3. Cell Res 2024; 34:232-244. [PMID: 38287117 PMCID: PMC10907358 DOI: 10.1038/s41422-024-00932-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Although GPR3 plays pivotal roles in both the nervous system and metabolic processes, such as cold-induced thermogenesis, its endogenous ligand remains elusive. Here, by combining structural approach (including cryo-electron microscopy), mass spectrometry analysis, and functional studies, we identify oleic acid (OA) as an endogenous ligand of GPR3. Our study reveals a hydrophobic tunnel within GPR3 that connects the extracellular side of the receptor to the middle of plasma membrane, enabling fatty acids to readily engage the receptor. Functional studies demonstrate that OA triggers downstream Gs signaling, whereas lysophospholipids fail to activate the receptor. Moreover, our research reveals that cold stimulation induces the secretion of OA in mice, subsequently activating Gs/cAMP/PKA signaling in brown adipose tissue. Notably, brown adipose tissues from Gpr3 knockout mice do not respond to OA during cold stimulation, reinforcing the significance of GPR3 in this process. Finally, we propose a "born to be activated and cold to enhance" model for GPR3 activation. Our study provides a starting framework for the understanding of GPR3 signaling in cold-stimulated thermogenesis.
Collapse
Affiliation(s)
- Yangjie Xiong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhenmei Xu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Na Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yaning Duan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Ruixue Xia
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yu Qian
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jiale Liang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Japan
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Yuanzheng He
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Gimenez LE, Martin C, Yu J, Hollanders C, Hernandez CC, Wu Y, Yao D, Han GW, Dahir NS, Wu L, Van der Poorten O, Lamouroux A, Mannes M, Zhao S, Tourwé D, Stevens RC, Cone RD, Ballet S. Novel Cocrystal Structures of Peptide Antagonists Bound to the Human Melanocortin Receptor 4 Unveil Unexplored Grounds for Structure-Based Drug Design. J Med Chem 2024; 67:2690-2711. [PMID: 38345933 DOI: 10.1021/acs.jmedchem.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.
Collapse
Affiliation(s)
- Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Charlie Hollanders
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
10
|
Wang N, Qian Y, Xia R, Zhu X, Xiong Y, Zhang A, Guo C, He Y. Structural basis of CD97 activation and G-protein coupling. Cell Chem Biol 2023; 30:1343-1353.e5. [PMID: 37673067 DOI: 10.1016/j.chembiol.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
CD97 (ADGRE5) is an adhesion G protein-coupled receptor (aGPCR) which plays crucial roles in immune system and cancer. However, the mechanism of CD97 activation and the determinant of G13 coupling selectivity remain unknown. Here, we present the cryo-electron microscopy structures of human CD97 in complex with G13, Gq, and Gs. Our structures reveal the stalk peptide recognition mode of CD97, adding missing information of the current tethered-peptide activation model of aGPCRs. For instance, a revised "FXφφφ" motif and a framework of conserved aromatic residues in the ligand-binding pocket. Importantly, structural comparisons of G13, Gq, and Gs engagements of CD97 reveal key determinants of G13 coupling selectivity, where a deep insertion of the α helix 5 and a closer contact with the transmembrane helix 6, 5, and 3 dictate coupling preferences. Taken together, our structural study of CD97 provides a framework for understanding CD97 signaling and the G13 coupling selectivity.
Collapse
Affiliation(s)
- Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyan Zhu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yangjie Xiong
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Anqi Zhang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Changyou Guo
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
11
|
Guo Y, Zhou Q, Wei B, Wang MW, Zhao S. GPCRana: A web server for quantitative analysis of GPCR structures. Structure 2023; 31:1132-1142.e2. [PMID: 37392740 DOI: 10.1016/j.str.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
G protein-coupled receptors (GPCRs) attract tremendous attention from both industrial and academic researchers with currently over 900 released structures. Structural analysis is widely used to understand receptor functionality and pharmacology, but more user-friendly tools are needed. Residue-residue contact score (RRCS) is an atomic distance-based method that allows a quantitative description of GPCR structures. Here, we present GPCRana, a web server that provides a user-friendly interface to analyze GPCR structures. After uploading selected structures, GPCRana immediately generates a comprehensive report covering four aspects: (i) RRCS for all residue pairs incorporated with real-time 3D visualization; (ii) ligand-receptor interactions; (iii) activation pathway analysis; and (iv) RRCS_TMs that indicates the global movements of transmembrane helices. Moreover, conformational changes between two structures can be analyzed. Applying GPCRana on AlphaFold2-predicted models reveals differentiated inter-helical packing forms in a receptor-dependent manner. Our web server offers a fast and precise way to study GPCR structures and is freely available at http://gpcranalysis.com/#/.
Collapse
Affiliation(s)
- Yu Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China.
| | - Bin Wei
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
12
|
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, Wang MW. Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors. Cell Discov 2023; 9:81. [PMID: 37524700 PMCID: PMC10390531 DOI: 10.1038/s41421-023-00586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.
Collapse
Affiliation(s)
- Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
13
|
Mun Y, Kim W, Shin D. Melanocortin 1 Receptor (MC1R): Pharmacological and Therapeutic Aspects. Int J Mol Sci 2023; 24:12152. [PMID: 37569558 PMCID: PMC10418475 DOI: 10.3390/ijms241512152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Melanocortins play crucial roles in regulating the stress response, inflammation, and skin pigmentation. In this review, we focus on the melanocortin 1 receptor (MC1R), a G protein-coupled receptor primarily known for regulating skin pigmentation and exhibiting anti-inflammatory effects. First, we provide an overview of the structure, signaling pathways, and related diseases of MC1R. Next, we discuss the potential therapeutic use of synthetic peptides and small molecule modulators of MC1R, highlighting the development of various drugs that enhance stability through amino acid sequence modifications and small molecule drugs to overcome limitations associated with peptide characteristics. Notably, MC1R-targeted drugs have applications beyond skin pigmentation-related diseases, which predominantly affect MC1R in melanocytes. These drugs can also be useful in treating inflammatory diseases with MC1R expression present in various cells. Our review underscores the potential of MC1R-targeted drugs to treat a wide range of diseases and encourages further research in this area.
Collapse
Affiliation(s)
- Yoonwoo Mun
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
| | - Woohyun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
- Gachon Pharmaceutical Research Institute, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
14
|
Zhou Y, Mowlazadeh Haghighi S, Sawyer JR, Hruby VJ, Cai M. Ψ and χ Angle Constrains at the C-Terminus Trp Position of the Melanotropin Tetrapeptide Ac-His-d-Phe-Arg-Trp-NH 2 Lead to Potent and Selective Agonists at hMC1R and hMC4R. J Med Chem 2023; 66:6715-6724. [PMID: 37133411 DOI: 10.1021/acs.jmedchem.2c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Melanocortin receptors (MCRs) are a family of G protein-coupled receptors that regulate important physiological functions. Yet, drug development targeting MCRs is hindered by potential side effects due to a lack of receptor subtype-selective ligands with bioavailability. Here, we report novel synthetic pathways to introduce Ψ and χ angle constraints at the C-terminus Trp position of the nonselective prototype tetrapeptide agonist Ac-His-d-Phe-Arg-Trp-NH2. With these conformational constraints, peptide 1 (Ac-His-d-Phe-Arg-Aia) shows improved selectivity at hMC1R, with an EC50 of 11.2 nM for hMC1R and at least 15-fold selectivity compared to other MCR subtypes. Peptide 3 (Ac-His-pCF3-d-Phe-Arg-Aia) is a potent and selective hMC4R agonist with an EC50 of 4.1 nM at hMC4R and at least ninefold selectivity. Molecular docking studies reveal that the Ψ and χ angle constraints force the C-terminal Aia residue to flip and interact with TM6 and TM7, a feature that we hypothesize leads to the receptor subtype selectivity.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Saghar Mowlazadeh Haghighi
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonathon R Sawyer
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Minying Cai
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Jia X, Fan S, Dong W, Li S, Zhang Y, Ma Y, Wang S. Setmelanotide optimization through fragment-growing, molecular docking in-silico method targeting MC4 receptor. J Biomol Struct Dyn 2023; 41:15411-15420. [PMID: 37126536 DOI: 10.1080/07391102.2023.2204385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/28/2023] [Indexed: 05/02/2023]
Abstract
Obesity has emerged as a global issue, but with the complex structures of multiple related important targets and their agonists or antagonists determined, the mechanism of ligand-protein interaction may offer new chances for developing new generation agonists anti-obesity. Based on the molecule surface of the cryo-EM protein structure 7AUE, we tried to replace D-Ala3 with D-Met in setmelanotide as the linker site for fragment-growing with De novo evolution. The simulation results indicate that the derivatives could improve the binding abilities with the melanocortin 4 receptor and the selectivity over the melanocortin 1 receptor. The improved selectivity of the newly designed derivatives is mainly due to the shape difference of the molecular surface at the orthosteric peptide-binding pocket between melanocortin 4 receptor and melanocortin 1 receptor. The new extended fragments could not only enhance the binding affinities but also function as a gripper to seize the pore, making it easier to balance and stabilize the other component of the new derivatives. Although it is challenging to synthesize the compounds designed in silico, this study may perhaps serve as a trigger for additional anti-obesity research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaopu Jia
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuai Fan
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Weili Dong
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shaoyong Li
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ying Ma
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Wang J, Chen G, Liao Q, Lyu W, Liu A, Zhu L, Du Y, Ye RD. Cryo-EM structure of the human chemerin receptor 1-Gi protein complex bound to the C-terminal nonapeptide of chemerin. Proc Natl Acad Sci U S A 2023; 120:e2214324120. [PMID: 36881626 PMCID: PMC10089180 DOI: 10.1073/pnas.2214324120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023] Open
Abstract
Chemerin is a processed protein that acts on G protein-coupled receptors (GPCRs) for its chemotactic and adipokine activities. The biologically active chemerin (chemerin 21-157) results from proteolytic cleavage of prochemerin and uses its C-terminal peptide containing the sequence YFPGQFAFS for receptor activation. Here we report a high-resolution cryo-electron microscopy (cryo-EM) structure of human chemerin receptor 1 (CMKLR1) bound to the C-terminal nonapeptide of chemokine (C9) in complex with Gi proteins. C9 inserts its C terminus into the binding pocket and is stabilized through hydrophobic interactions involving its Y1, F2, F6, and F8, as well as polar interactions between G4, S9, and several amino acids lining the binding pocket of CMKLR1. Microsecond scale molecular dynamics simulations support a balanced force distribution across the whole ligand-receptor interface that enhances thermodynamic stability of the captured binding pose of C9. The C9 interaction with CMKLR1 is drastically different from chemokine recognition by chemokine receptors, which follow a two-site two-step model. In contrast, C9 takes an "S"-shaped pose in the binding pocket of CMKLR1 much like angiotensin II in the AT1 receptor. Our mutagenesis and functional analyses confirmed the cryo-EM structure and key residues in the binding pocket for these interactions. Our findings provide a structural basis for chemerin recognition by CMKLR1 for the established chemotactic and adipokine activities.
Collapse
Affiliation(s)
- Junlin Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, P.R. China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| |
Collapse
|
17
|
Yue WK, Zhang T, Shandre Mugan R, Barlow N, Chalmers DK, Pouton CW, Thompson PE. Targeting Melanocortin Receptors Using S NAr-Type Macrocyclization: A Doubly Orthogonal Route to Cyclic Peptide Conjugates. J Med Chem 2023; 66:3273-3283. [PMID: 36808973 DOI: 10.1021/acs.jmedchem.2c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
While a range of strategies exist to accomplish peptide macrocyclization, they are frequently limited by the need for orthogonal protection or provide little opportunity for structural diversification. We have evaluated an efficient macrocyclization method that employs nucleophilic aromatic substitution (SNAr) to create thioether macrocycles. This versatile macrocyclization, orthogonal to conventional peptide synthesis, can be performed in solution on unprotected peptidomimetics or on resin-bound peptides with side-chain protection in place. We show that the electron-withdrawing groups present in the products can be further utilized in subsequent orthogonal reactions to alter the peptide properties or to add prosthetic groups. The macrocyclization strategy was applied to the design of melanocortin ligands, generating a library of potent melanocortin agonists that exhibit distinct subtype selectivity.
Collapse
Affiliation(s)
- Wenxiao K Yue
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tianxia Zhang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Rekha Shandre Mugan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
18
|
Hilger D. Buckle up! How the nano-seatbelt MRAP1 fastens ACTH in its orthosteric seat. Cell Res 2023; 33:191-192. [PMID: 36646762 PMCID: PMC9977889 DOI: 10.1038/s41422-022-00767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
19
|
Liang J, Inoue A, Ikuta T, Xia R, Wang N, Kawakami K, Xu Z, Qian Y, Zhu X, Zhang A, Guo C, Huang Z, He Y. Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation. Nat Commun 2023; 14:1012. [PMID: 36823105 PMCID: PMC9950150 DOI: 10.1038/s41467-023-36575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Lysophosphatidylserine (LysoPS) is a lipid mediator that induces multiple cellular responses through binding to GPR174. Here, we present the cryo-electron microscopy (cryo-EM) structure of LysoPS-bound human GPR174 in complex with Gs protein. The structure reveals a ligand recognition mode, including the negatively charged head group of LysoPS forms extensive polar interactions with surrounding key residues of the ligand binding pocket, and the L-serine moiety buries deeply into a positive charged cavity in the pocket. In addition, the structure unveils a partially open pocket on transmembrane domain helix (TM) 4 and 5 for a lateral entry of ligand. Finally, the structure reveals a Gs engaging mode featured by a deep insertion of a helix 5 (αH5) and extensive polar interactions between receptor and αH5. Taken together, the information revealed by our structural study provides a framework for understanding LysoPS signaling and a rational basis for designing LysoPS receptor-targeting drugs.
Collapse
Affiliation(s)
- Jiale Liang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Miyagi, Japan.
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Miyagi, Japan
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Miyagi, Japan
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Xinyan Zhu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China.
| |
Collapse
|
20
|
Venkatesh KM, Mishra C, Pradhan SK, Behera K, Mishra SR, Nayak G. A novel heterozygote allele in caprine melanocortin 1 receptor (MC1R) gene: an association with heat stress traits. Trop Anim Health Prod 2023; 55:68. [PMID: 36749525 DOI: 10.1007/s11250-023-03497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
Climate change negatively influences the productive and reproductive abilities of goats. There is a need to understand the relationship between heat stress and genes that may aid in the development of climate-resilient goats. Melanism variation in goats plays a role in thermoregulation, in which the melanogenic genes have a pleiotropic effect on the regulation of physiological responses and behavior that are altered due to heat stress in the animals. Thus, the present study was conducted to establish a possible association between the coat color gene (MC1R) and heat stress characteristics. The physiological responses and cortisol levels were recorded in forty different coat-colored goats. The genotyping of the animals revealed four SNPs at the 183rd (C/T), 332nd (C/G), 748th (G/T), and 801st (C/G) positions, among which the black and brown goat populations had novel SNPs at the 332nd position. Eight haplotypes were constructed, and an association study revealed that haplotypes (CCGG, TCGG, and CCTC) that were linked to white animals had lower cortisol values, rectal temperature, skin temperature, and respiration rate. The multivariate and cluster analyses revealed that the white goats were distinct from the rest of the goats. In addition, the docking results revealed the residues that were forming the interaction complex, which could play a role in melanogenesis in the animals and, in turn, the heat stress ability of the goats. Altogether, the results of the present study could pave the way for more research into coat color genes and their relationship with heat stress traits.
Collapse
Affiliation(s)
- K M Venkatesh
- Department of Animal Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Chinmoy Mishra
- Department of Animal Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, India.
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Kumaresh Behera
- Department of Livestock Production and Management, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Smruti Ranjan Mishra
- Department of Veterinary Physiology, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Gangadhar Nayak
- Department of Animal Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, India
| |
Collapse
|
21
|
Chen Y, Zhou Q, Wang J, Xu Y, Wang Y, Yan J, Wang Y, Zhu Q, Zhao F, Li C, Chen CW, Cai X, Bathgate RAD, Shen C, Eric Xu H, Yang D, Liu H, Wang MW. Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4). Nat Commun 2023; 14:492. [PMID: 36717591 PMCID: PMC9886975 DOI: 10.1038/s41467-023-36182-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Members of the insulin superfamily regulate pleiotropic biological processes through two types of target-specific but structurally conserved peptides, insulin/insulin-like growth factors and relaxin/insulin-like peptides. The latter bind to the human relaxin family peptide receptors (RXFPs). Here, we report three cryo-electron microscopy structures of RXFP4-Gi protein complexes in the presence of the endogenous ligand insulin-like peptide 5 (INSL5) or one of the two small molecule agonists, compound 4 and DC591053. The B chain of INSL5 adopts a single α-helix that penetrates into the orthosteric pocket, while the A chain sits above the orthosteric pocket, revealing a peptide-binding mode previously unknown. Together with mutagenesis and functional analyses, the key determinants responsible for the peptidomimetic agonism and subtype selectivity were identified. Our findings not only provide insights into ligand recognition and subtype selectivity among class A G protein-coupled receptors, but also expand the knowledge of signaling mechanisms in the insulin superfamily.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Lingang Laboratory, Shanghai, 200031, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Youwei Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Wang
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Jiahui Yan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qi Zhu
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Fenghui Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenghao Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Chuan-Wei Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Chun Shen
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China. .,Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
22
|
Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023; 66:1083-1111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of G protein-coupled receptors (GPCRs) is triggered by ligand binding to their orthosteric sites, which induces ligand-specific conformational changes. Agonists and antagonists bound to GPCR orthosteric sites provide detailed information on ligand-binding modes. Among these, peptide ligands play an instrumental role in GPCR pharmacology and have attracted increased attention as therapeutic drugs. The recent breakthrough in GPCR structural biology has resulted in the remarkable availability of peptide-bound GPCR complexes. Despite the several structural similarities shared by these receptors, they exhibit distinct features in terms of peptide recognition and receptor activation. From this perspective, we have summarized the current status of peptide-bound GPCR structural complexes, largely focusing on the interactions between the receptor and its peptide ligand at the orthosteric site. In-depth structural investigations have yielded valuable insights into the molecular mechanisms underlying peptide recognition. This study would contribute to the discovery of GPCR peptide drugs with improved therapeutic effects.
Collapse
Affiliation(s)
- Yuxin Shi
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yi Chen
- Department of Ultrasound Interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
23
|
Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, Jain MK, Liu W, Melcher K, Jiang Y, Roth BL, Xu HE. Structures of the entire human opioid receptor family. Cell 2023; 186:413-427.e17. [PMID: 36638794 DOI: 10.1016/j.cell.2022.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Opioids are effective analgesics, but their use is beset by serious side effects, including addiction and respiratory depression, which contribute to the ongoing opioid crisis. The human opioid system contains four opioid receptors (μOR, δOR, κOR, and NOPR) and a set of related endogenous opioid peptides (EOPs), which show distinct selectivity toward their respective opioid receptors (ORs). Despite being key to the development of safer analgesics, the mechanisms of molecular recognition and selectivity of EOPs to ORs remain unclear. Here, we systematically characterize the binding of EOPs to ORs and present five structures of EOP-OR-Gi complexes, including β-endorphin- and endomorphin-bound μOR, deltorphin-bound δOR, dynorphin-bound κOR, and nociceptin-bound NOPR. These structures, supported by biochemical results, uncover the specific recognition and selectivity of opioid peptides and the conserved mechanism of opioid receptor activation. These results provide a structural framework to facilitate rational design of safer opioid drugs for pain relief.
Collapse
Affiliation(s)
- Yue Wang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwen Zhuang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - X Edward Zhou
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gavin P Schmitz
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Qingning Yuan
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Manish K Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Weiyi Liu
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karsten Melcher
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200031, China
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
24
|
In Vitro, In Vivo, and In Silico Analyses of Molecular Anti-Pigmentation Mechanisms of Selected Thai Rejuvenating Remedy and Bioactive Metabolites. Molecules 2023; 28:molecules28030958. [PMID: 36770624 PMCID: PMC9920523 DOI: 10.3390/molecules28030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Thai rejuvenating remedies are mixed herbal formulas promoting longevity. Due to the complexity, the biological activities of these remedies are minimal. Therefore, in this study, the authors evaluated the anti-pigmentation effect at the molecular level of the selected Thai rejuvenating remedy to fulfill the knowledge gap. First, the authors found that the selected remedy showed promising activity against the tyrosinase enzyme with an IC50 value of 9.41 µg/mL. In the comparison, kojic acid (positive control) exhibited an IC50 value of 3.92 µg/mL against the same enzyme. Later, the authors identified glabridin as a bioactive molecule against tyrosinase with an IC50 value of 0.08 µg/mL. However, ethyl p-methoxycinnamate was the most abundant metabolite found in the remedy. The authors also found that the selected remedy and glabridin reduced the melanin content in the cell-based assay (B16F1) but not in the zebrafish larvae experiment. Finally, the authors conducted a computational investigation through molecular docking proposing a theoretical molecular interplay between glabridin, ethyl p-methoxycinnamate, and target proteins (tyrosinase and melanocortin-1 receptor, MC1R). Hence, in this study, the authors reported the molecular anti-pigmentation mechanism of the selected Thai rejuvenating remedy for the first time by combining the results from in silico, in vitro, and in vivo experiments.
Collapse
|
25
|
Li H, Zhang J, Yu Y, Luo F, Wu L, Liu J, Chen N, Liu Z, Hua T. Structural insight into the constitutive activity of human orphan receptor GPR12. Sci Bull (Beijing) 2023; 68:95-104. [PMID: 36593162 DOI: 10.1016/j.scib.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptor 12 (GPR12) is an orphan G protein-coupled receptor that is highly expressed in the thalamus of the brain and plays a vital role in driving thalamocortical functions in short-term memory. GPR12 performs high constitutive activity and couples with Gs, increasing the intracellular cyclic adenosine monophosphate (cAMP) level when it is expressed. However, exploitation for drug development is limited since it is unclear how GPR12 initiates self-activation and signal transduction, and whether it can be modulated by endogenous or synthetic ligands. Here, we report the cryo-electron microscopy structure of the GPR12-Gs complex in the absence of agonists. Our structure reveals the key determinants for the intrinsically high basal activity of GPR12, including extracellular loop 2 partially occupying the orthosteric binding pocket, a tight-packed TM1 and TM7, and unique activation-related residues in TM6 and TM7. Together with mutagenesis data, this study will improve our understanding of the function and self-activation of the orphan receptor GPR12, enable the identification of endogenous ligands, and guide drug discovery efforts that target GPR12.
Collapse
Affiliation(s)
- Hao Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Feng Luo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
26
|
Luo P, Feng W, Ma S, Dai A, Wu K, Chen X, Yuan Q, Cai X, Yang D, Wang MW, Eric Xu H, Jiang Y. Structural basis of signaling regulation of the human melanocortin-2 receptor by MRAP1. Cell Res 2023; 33:46-54. [PMID: 36588120 PMCID: PMC9810661 DOI: 10.1038/s41422-022-00751-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/08/2022] [Indexed: 01/03/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are regulated by various downstream proteins, of which the melanocortin receptor accessory protein 1 (MRAP1) is closely involved in the regulation of melanocortin receptor 2 (MC2R). Assisted by MRAP1, MC2R responds to adrenocorticotropic hormone (ACTH) and stimulates glucocorticoid biogenesis and cortisol secretion. MC2R activation plays an essential role in the hypothalamic-pituitary-adrenal (HPA) axis that regulates stress response, while its dysfunction causes glucocorticoid insufficiency- or cortisol excess-associated disorders. Here, we present a cryo-electron microscopy (cryo-EM) structure of the ACTH-bound MC2R-Gs-MRAP1 complex. Our structure, together with mutagenesis analysis, reveals a unique sharp kink at the extracellular region of MRAP1 and the 'seat-belt' effect of MRAP1 on stabilizing ACTH binding and MC2R activation. Mechanisms of ACTH recognition by MC2R and receptor activation are also demonstrated. These findings deepen our understanding of GPCR regulation by accessory proteins and provide valuable insights into the ab initio design of therapeutic agents targeting MC2R.
Collapse
Affiliation(s)
- Ping Luo
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shanshan Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Qingning Yuan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Yi Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| |
Collapse
|
27
|
Insights into divalent cation regulation and G 13-coupling of orphan receptor GPR35. Cell Discov 2022; 8:135. [PMID: 36543774 PMCID: PMC9772185 DOI: 10.1038/s41421-022-00499-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Endogenous ions play important roles in the function and pharmacology of G protein-coupled receptors (GPCRs) with limited atomic evidence. In addition, compared with G protein subtypes Gs, Gi/o, and Gq/11, insufficient structural evidence is accessible to understand the coupling mechanism of G12/13 protein by GPCRs. Orphan receptor GPR35, which is predominantly expressed in the gastrointestinal tract and is closely related to inflammatory bowel diseases (IBDs), stands out as a prototypical receptor for investigating ionic modulation and G13 coupling. Here we report a cryo-electron microscopy structure of G13-coupled GPR35 bound to an anti-allergic drug, lodoxamide. This structure reveals a novel divalent cation coordination site and a unique ionic regulatory mode of GPR35 and also presents a highly positively charged binding pocket and the complementary electrostatic ligand recognition mode, which explain the promiscuity of acidic ligand binding by GPR35. Structural comparison of the GPR35-G13 complex with other G protein subtypes-coupled GPCRs reveals a notable movement of the C-terminus of α5 helix of the Gα13 subunit towards the receptor core and the least outward displacement of the cytoplasmic end of GPR35 TM6. A featured 'methionine pocket' contributes to the G13 coupling by GPR35. Together, our findings provide a structural basis for divalent cation modulation, ligand recognition, and subsequent G13 protein coupling of GPR35 and offer a new opportunity for designing GPR35-targeted drugs for the treatment of IBDs.
Collapse
|
28
|
Qian Y, Ma Z, Liu C, Li X, Zhu X, Wang N, Xu Z, Xia R, Liang J, Duan Y, Yin H, Xiong Y, Zhang A, Guo C, Chen Z, Huang Z, He Y. Structural insights into adhesion GPCR ADGRL3 activation and G q, G s, G i, and G 12 coupling. Mol Cell 2022; 82:4340-4352.e6. [PMID: 36309016 DOI: 10.1016/j.molcel.2022.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) play key roles in a diversity of physiologies. A hallmark of aGPCR activation is the removal of the inhibitory GAIN domain and the dipping of the cleaved stalk peptide into the ligand-binding pocket of receptors; however, the detailed mechanism remains obscure. Here, we present cryoelectron microscopy (cryo-EM) structures of ADGRL3 in complex with Gq, Gs, Gi, and G12. The structures reveal unique ligand-engaging mode, distinctive activation conformation, and key mechanisms of aGPCR activation. The structures also reveal the uncharted structural information of GPCR/G12 coupling. A comparison of Gq, Gs, Gi, and G12 engagements with ADGRL3 reveals the key determinant of G-protein coupling on the far end of αH5 of Gα. A detailed analysis of the engagements allows us to design mutations that specifically enhance one pathway over others. Taken together, our study lays the groundwork for understanding aGPCR activation and G-protein-coupling selectivity.
Collapse
Affiliation(s)
- Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China; HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhengxiong Ma
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Chunhong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xinyan Zhu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Jiale Liang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Yaning Duan
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Han Yin
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Yangjie Xiong
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
29
|
Venkatesh K, Mishra C, Pradhan SK. Integrative molecular characterization and in silico analyses of caprine MC3R, MC4R, and MC5R genes. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Chalhoub G, McCormick PJ. Palmitoylation and G-protein coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:195-211. [PMID: 36357078 DOI: 10.1016/bs.pmbts.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
More and more it is being appreciated that not all GPCRs are the same, sub-populations of GPCRs exist within a cell and function differently than others. The question is, how does one regulate a given sub-population? One way is through the addition of post-translational modifications to G-protein coupled receptors (GPCR). This process has long been known to occur and play a role in trafficking, pharmacology and ultimately function. This chapter will focus on one particular modification, that of S-palmitoylation, and its impact on GPCR function. We will discuss the history of this modification on these receptors and the connection with disease. We will highlight several examples from the literature of where palmitoylation impacts GPCR function.
Collapse
Affiliation(s)
- Georges Chalhoub
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom
| | - Peter J McCormick
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
31
|
White AM, Dellsén A, Larsson N, Kaas Q, Jansen F, Plowright AT, Knerr L, Durek T, Craik DJ. Late-Stage Functionalization with Cysteine Staples Generates Potent and Selective Melanocortin Receptor-1 Agonists. J Med Chem 2022; 65:12956-12969. [PMID: 36167503 DOI: 10.1021/acs.jmedchem.2c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, cysteine staples were used as a late-stage functionalization strategy to diversify peptides and build conjugates targeting the melanocortin G-protein-coupled receptors [melanocortin receptor-1 (MC1R) and MC3R-MC5R]. Monocyclic and bicyclic agonists based on sunflower trypsin inhibitor-1 were used to generate a selection of stapled peptides that were evaluated for binding (pKi) and functional activation (pEC50) of the melanocortin receptor subtypes. Stapled peptides generally had improved activity, with aromatic stapled peptides yielding selective MC1R agonists, including a xylene-stapled peptide (2) with an EC50 of 1.9 nM for MC1R and >150-fold selectivity for MC3R and MC4R. Selected stapled peptides were further functionalized with linkers and payloads, generating a series of conjugated peptides with potent MC1R activity, including one pyridazine-functionalized peptide (21) with picomolar activity at MC1R (Ki 58 pM; EC50 < 9 pM). This work demonstrates that staples can be used as modular synthetic tools to tune potency and selectivity in peptide-based drug design.
Collapse
Affiliation(s)
- Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frank Jansen
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
32
|
Zhu X, Qian Y, Li X, Xu Z, Xia R, Wang N, Liang J, Yin H, Zhang A, Guo C, Wang G, He Y. Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling. Nat Commun 2022; 13:5513. [PMID: 36127364 PMCID: PMC9489763 DOI: 10.1038/s41467-022-33173-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are keys of many physiological events and attractive targets for various diseases. aGPCRs are also known to be capable of self-activation via an autoproteolysis process that removes the inhibitory GAIN domain on the extracellular side of receptor and releases a stalk peptide to bind and activate the transmembrane side of receptor. However, the detailed mechanism of aGPCR activation remains elusive. Here, we report the cryo-electron microscopy structures of GPR110 (ADGRF1), a member of aGPCR, in complex with Gq, Gs, Gi, G12 and G13. The structures reveal distinctive ligand engaging model and activation conformations of GPR110. The structures also unveil the rarely explored GPCR/G12 and GPCR/G13 engagements. A comparison of Gq, Gs, Gi, G12 and G13 engagements with GPR110 reveals details of G-protein engagement, including a dividing point at the far end of the alpha helix 5 (αH5) of Gα subunit that separates Gq/Gs engagements from Gi/G12/G13 engagements. This is also where Gq/Gs bind the receptor through both hydrophobic and polar interaction, while Gi/G12/G13 engage receptor mainly through hydrophobic interaction. We further provide physiological evidence of GPR110 activation via stalk peptide. Taken together, our study fills the missing information of GPCR/G-protein engagement and provides a framework for understanding aGPCR activation and GPR110 signaling. aGPCRs play key roles in multiple physiological processes. Here the authors report cryo-EM structures of GPR110 in complexes with Gq, Gs, Gi, G12 and G13 protein to reveal a detailed mechanism of aGPCR activation via the tethered stalk peptide and principles of G-protein coupling and selectivity on GPR110.
Collapse
Affiliation(s)
- Xinyan Zhu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaowan Li
- Laboratory of Neuroscience, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiale Liang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Han Yin
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Guangfu Wang
- Laboratory of Neuroscience, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
33
|
Abstract
The 5 known melanocortin receptors (MCs) have established physiological roles. With the exception of MC2, these receptors can behave unpredictably, and since they are more widely expressed than their established roles would suggest, it is likely that they have other poorly characterized functions. The aim of this review is to discuss some of the less well-explored aspects of the 4 enigmatic members of this receptor family (MC1,3-5) and describe how these are multifaceted G protein-coupled receptors (GPCRs). These receptors appear to be promiscuous in that they bind several endogenous agonists (products of the proopiomelanocortin [POMC] gene) and antagonists but with inconsistent relative affinities and effects. We propose that this is a result of posttranslational modifications that determine receptor localization within nanodomains. Within each nanodomain there will be a variety of proteins, including ion channels, modifying proteins, and other GPCRs, that can interact with the MCs to alter the availability of receptor at the cell surface as well as the intracellular signaling resulting from receptor activation. Different combinations of interacting proteins and MCs may therefore give rise to the complex and inconsistent functional profiles reported for the MCs. For further progress in understanding this family, improved characterization of tissue-specific functions is required. Current evidence for interactions of these receptors with a range of partners, resulting in modulation of cell signaling, suggests that each should be studied within the full context of their interacting partners. The role of physiological status in determining this context also remains to be characterized.
Collapse
Affiliation(s)
- Linda Laiho
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanne Fiona Murray
- Correspondence: J. F. Murray, PhD, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9DX, UK.
| |
Collapse
|
34
|
Tomassi S, Dimmito MP, Cai M, D’Aniello A, Del Bene A, Messere A, Liu Z, Zhu T, Hruby VJ, Stefanucci A, Cosconati S, Mollica A, Di Maro S. CLIPSing Melanotan-II to Discover Multiple Functionally Selective hMCR Agonists. J Med Chem 2022; 65:4007-4017. [DOI: 10.1021/acs.jmedchem.1c01848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Antonia D’Aniello
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Del Bene
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Zekun Liu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Tingyi Zhu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
35
|
Tai X, Zhang Y, Yao J, Li X, Liu J, Han J, Lyu J, Lin G, Zhang C. Pharmacological Modulation of Melanocortin 1 Receptor Signaling by Mrap Proteins in Xenopus tropicalis. Front Endocrinol (Lausanne) 2022; 13:892407. [PMID: 35795143 PMCID: PMC9251544 DOI: 10.3389/fendo.2022.892407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The melanocortin system consists of five G protein-coupled receptors (MC1R-MC5R), the bidirectional endogenous ligands (MSH and Agouti families), and accessory proteins (MRAP1 and MRAP2). Accumulative studies of vertebrate species find high expression level of melanocortin 1 receptor (MC1R) in the dermal melanocyte and elucidate the essential roles in the skin and fur pigmentation, morphological background adaptation, and stress response. The diploid amphibian Xenopus tropicalis (xt) has been utilized as a fantastic animal model for embryonic development and studies of physiological cryptic colouring and environmental adaptiveness. However, the interaction of xtMc1r signaling with xtMrap proteins has not been assessed yet. In this study, we carried out in silico evolutionary analysis of protein alignment and genetic phylogenetic and genomic synteny of mc1r among various vertebrates. Ubiquitous expression of mrap1 and mrap2 and the co-expression with mc1r transcripts in the skin were clearly observed. Co-immunoprecipitation (ip) and fluorescent complementary approach validated the direct functional interaction of xtMc1r with xtMrap1 or xtMrap2 proteins on the plasma membrane. Pharmacological assay showed the improvement of the constitutive activity and alpha melanocyte-stimulating hormone (α-MSH) stimulated plateau without dramatic alteration of the cell surface translocation of xtMc1r in the presence of xtMrap proteins. Overall, the pharmacological modulation of xtMc1r by dual xtMrap2 proteins elucidated the potential role of this protein complex in the regulation of proper dermal function in amphibian species.
Collapse
Affiliation(s)
- Xiaolu Tai
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaqun Zhang
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
| | - Jindong Yao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuan Li
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jun Liu
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
| | - Jiazhen Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| |
Collapse
|
36
|
Translational advances of melanocortin drugs: Integrating biology, chemistry and genetics. Semin Immunol 2022; 59:101603. [PMID: 35341670 DOI: 10.1016/j.smim.2022.101603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/15/2023]
Abstract
Melanocortin receptors have emerged as important targets with a very unusual versatility, as their widespread distribution on multiple tissues (e.g. skin, adrenal glands, brain, immune cells, exocrine glands) together with the variety of physiological processes they control (pigmentation, cortisol release, satiety mechanism, inflammation, secretions), place this family of receptors as genuine therapeutic targets for many disorders. This review focuses in the journey of the development of melanocortin receptors as therapeutic targets from the discovery of their existence in the early 1990 s to the approval of the first few drugs of this class. Two major areas of development characterise the current state of melanocortin drug development: their role in obesity, recently culminated with the approval of setmelanotide, and their potential for the treatment of chronic inflammatory and autoimmune diseases like rheumatoid arthritis, multiple sclerosis or fibrosis. The pro-resolving nature of these drugs offers the advantage of acting by mimicking the way our body naturally resolves inflammation, expecting fewer side effects and a more balanced (i.e. non-immunosuppressive) response from them. Here we also review the approaches followed for the design and development of novel compounds, the importance of the GPCR nature of these receptors in the process of drug development, therapeutic value, current challenges and successes, and the potential for the implementation of precision medicine approaches through the incorporation of genetics advances.
Collapse
|
37
|
Structures of active melanocortin-4 receptor-Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Res 2021; 31:1176-1189. [PMID: 34561620 PMCID: PMC8563958 DOI: 10.1038/s41422-021-00569-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.
Collapse
|
38
|
Hong TI, Hwang KS, Choi TI, Kleinau G, Scheerer P, Bang JK, Jung SH, Kim CH. Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity. Int J Mol Sci 2021; 22:9313. [PMID: 34502223 PMCID: PMC8431389 DOI: 10.3390/ijms22179313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, we used the zebrafish animal model to establish a bioassay by which physiological efficacy differential of alpha-melanocyte-stimulating hormone (α-MSH) analogues could be measured by melanosome dispersion in zebrafish larvae. Brain-skin connection research has purported the interconnectedness between the nervous system and skin physiology. Accordingly, the neuropeptide α-MSH is a key regulator in several physiological processes, such as skin pigmentation in fish. In mammals, α-MSH has been found to regulate motivated behavior, appetite, and emotion, including stimulation of satiety and anxiety. Several clinical and animal model studies of autism spectrum disorder (ASD) have already demonstrated the effectiveness of α-MSH in restoring the social deficits of autism. Therefore, we sought to analyze the effect of synthetic and naturally-occurring α-MSH variants amongst different species. Our results showed that unique α-MSH derivatives from several fish species produced differential effects on the degree of melanophore dispersion. Using α-MSH human form as a standard, we could identify derivatives that induced greater physiological effects; particularly, the synthetic analogue melanotan-II (MT-II) exhibited a higher capacity for melanophore dispersion than human α-MSH. This was consistent with previous findings in an ASD mouse model demonstrating the effectiveness of MT-II in improving ASD behavioral symptoms. Thus, the melanophore assay may serve as a useful screening tool for therapeutic candidates for novel drug discovery.
Collapse
Affiliation(s)
- Ted I. Hong
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| | - Kyu-Seok Hwang
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (G.K.); (P.S.)
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (G.K.); (P.S.)
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea;
| | - Seung-Hyun Jung
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| |
Collapse
|