1
|
Kim J, Lee K, Kim S, Sohn BH. Orientation and stretching of supracolloidal chains of diblock copolymer micelles by spin-coating process. NANOSCALE 2024; 16:10377-10387. [PMID: 38739015 DOI: 10.1039/d4nr00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Supracolloidal chains consisting of nano- or micro-scale particles exhibit anisotropic properties not observed in individual particles. The orientation of the chains is necessary to manifest such characteristics on a macroscopic scale. In this study, we demonstrate the orientation of supracolloidal chains composed of nano-scale micelles of a diblock copolymer through spin-coating. We observed separate chains coated on a substrate with electron microscopy, and analyzed the orientation and stretching of the chains quantitatively with image analysis software. In drop-casting, the chains were coated randomly with no preferred orientation, and the degree of stretching exhibited an intrinsic semi-flexible nature. In contrast, spin-coated chains were aligned in the radial direction, and the apparent persistence length of the chain increased, confirming the stretching of the chain quantitatively. Furthermore, by incorporating fluorophores into supracolloidal chains and confirming the oriented chains with confocal fluorescence microscopy, it is demonstrated that oriented chains can be utilized as a template to align functional materials.
Collapse
Affiliation(s)
- Jaemin Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sangyoon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Chetverikov AO, Borovkov VI. The effect of an electric field on the reaction kinetics of a charge carrier migrating within a one-dimensional chain. J Chem Phys 2023; 159:214105. [PMID: 38047507 DOI: 10.1063/5.0179891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The aim of this study is to suggest a novel approach for estimating the intramolecular mobility of a charge carrier that migrates within a polymer chain and is involved in a pair reaction with a particle located on the same chain. The approach is based on the effect of an external electric field on the migration rate and, consequently, the kinetics of the reaction. As a first step, this problem is considered a stochastic one-step process with absorbing and reflecting boundaries, and an analytical solution is obtained in the case that the second reactant is immobile. With the use of computer simulations of stochastic migration, the effect of the mobility of both reactants and the influence of the Coulomb interaction between them are considered. It is found that the ratio of the pair reaction rates with and without an external field is relatively little dependent on these factors and that the analytical expressions derived can be applied to estimate the relative mobility of recombining particles with accuracy better than a factor of two in many realistic situations.
Collapse
Affiliation(s)
- Artem O Chetverikov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, 3, Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Vsevolod I Borovkov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, 3, Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Söyüt H, Kolcu F, Kaya İ, Yaşar AÖ. Influence of the enzymatic and the chemical oxidative polymerization of trifluoromethyl‐substituted aromatic diamine on thermal and photophysical properties. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hakan Söyüt
- Bursa Uludağ University Faculty of Education, Department of Basic Education Bursa Turkey
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| | - Feyza Kolcu
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
- Lapseki Vocational School, Department of Chemistry and Chemical Processing Technologies Çanakkale Onsekiz Mart University Çanakkale Turkey
| | - İsmet Kaya
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| | - Alper Ömer Yaşar
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| |
Collapse
|
4
|
Grześ G, Wolski K, Uchacz T, Bała J, Louis B, Scheblykin IG, Zapotoczny S. Ladder-like Polymer Brushes Containing Conjugated Poly(Propylenedioxythiophene) Chains. Int J Mol Sci 2022; 23:ijms23115886. [PMID: 35682563 PMCID: PMC9180196 DOI: 10.3390/ijms23115886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023] Open
Abstract
The high stability and conductivity of 3,4-disubstituted polythiophenes such as poly(3,4-ethylenedioxythiophene) (PEDOT) make them attractive candidates for commercial applications. However, next-generation nanoelectronic devices require novel macromolecular strategies for the precise synthesis of advanced polymer structures as well as their arrangement. In this report, we present a synthetic route to make ladder-like polymer brushes with poly(3,4-propylenedioxythiophene) (PProDOT)-conjugated chains. The brushes were prepared via a self-templating surface-initiated technique (ST-SIP) that combines the surface-initiated atom transfer radical polymerization (SI-ATRP) of bifunctional ProDOT-based monomers and subsequent oxidative polymerization of the pendant ProDOT groups in the parent brushes. The brushes prepared in this way were characterized by grazing-angle FTIR, XPS spectroscopy, and AFM. Steady-state and time-resolved photoluminescence measurements were used to extract the information about the structure and effective conjugation length of PProDOT-based chains. Stability tests performed in ambient conditions and under exposure to standardized solar light revealed the remarkable stability of the obtained materials.
Collapse
Affiliation(s)
- Gabriela Grześ
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
- Correspondence: (K.W.); (S.Z.)
| | - Tomasz Uchacz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Justyna Bała
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Boris Louis
- Division of Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden; (B.L.); (I.G.S.)
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ivan G. Scheblykin
- Division of Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden; (B.L.); (I.G.S.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
- Correspondence: (K.W.); (S.Z.)
| |
Collapse
|
5
|
Kukhta N, Marks A, Luscombe CK. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem Rev 2022; 122:4325-4355. [PMID: 34902244 PMCID: PMC8874907 DOI: 10.1021/acs.chemrev.1c00266] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure-property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic-electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.
Collapse
Affiliation(s)
- Nadzeya
A. Kukhta
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
He Y, Kukhta NA, Marks A, Luscombe CK. The effect of side chain engineering on conjugated polymers in organic electrochemical transistors for bioelectronic applications. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:2314-2332. [PMID: 35310858 PMCID: PMC8852261 DOI: 10.1039/d1tc05229b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 05/08/2023]
Abstract
Bioelectronics focuses on the establishment of the connection between the ion-driven biosystems and readable electronic signals. Organic electrochemical transistors (OECTs) offer a viable solution for this task. Organic mixed ionic/electronic conductors (OMIECs) rest at the heart of OECTs. The balance between the ionic and electronic conductivities of OMIECs is closely connected to the OECT device performance. While modification of the OMIECs' electronic properties is largely related to the development of conjugated scaffolds, properties such as ion permeability, solubility, flexibility, morphology, and sensitivity can be altered by side chain moieties. In this review, we uncover the influence of side chain molecular design on the properties and performance of OECTs. We summarise current understanding of OECT performance and focus specifically on the knowledge of ionic-electronic coupling, shedding light on the significance of side chain development of OMIECs. We show how the versatile synthetic toolbox of side chains can be successfully employed to tune OECT parameters via controlling the material properties. As the field continues to mature, more detailed investigations into the crucial role side chain engineering plays on the resultant OMIEC properties will allow for side chain alternatives to be developed and will ultimately lead to further enhancements within the field of OECT channel materials.
Collapse
Affiliation(s)
- Yifei He
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Adam Marks
- Department of Chemistry, University of Oxford Oxford OX1 3TA UK
| | - Christine K Luscombe
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
- Department of Chemistry, University of Washington, Seattle Washington 98195 USA
| |
Collapse
|
7
|
Feng G, Tan W, Karuthedath S, Li C, Jiao X, Liu ACY, Venugopal H, Tang Z, Ye L, Laquai F, McNeill CR, Li W. Revealing the Side‐Chain‐Dependent Ordering Transition of Highly Crystalline Double‐Cable Conjugated Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guitao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenliang Tan
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Amelia C. Y. Liu
- School of Physics and Astronomy Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy Monash University Clayton Victoria 3800 Australia
| | - Zheng Tang
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Long Ye
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300350 P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
8
|
Feng G, Tan W, Karuthedath S, Li C, Jiao X, Liu ACY, Venugopal H, Tang Z, Ye L, Laquai F, McNeill CR, Li W. Revealing the Side-Chain-Dependent Ordering Transition of Highly Crystalline Double-Cable Conjugated Polymers. Angew Chem Int Ed Engl 2021; 60:25499-25507. [PMID: 34546627 DOI: 10.1002/anie.202111192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/06/2022]
Abstract
We developed a series of highly crystalline double-cable conjugated polymers for application in single-component organic solar cells (SCOSCs). These polymers contain conjugated backbones as electron donor and pendant perylene bisimide units (PBIs) as electron acceptor. PBIs are connected to the backbone via alkyl units varying from hexyl (C6 H12 ) to eicosyl (C20 H40 ) as flexible linkers. For double-cable polymers with short linkers, the PBIs tend to stack in a head-to-head fashion, resulting in large d-spacings (e.g. 64 Å for the polymer P12 with C12 H24 linker) along the lamellar stacking direction. When the length of the linker groups is longer than a certain length, the PBIs instead adopt a more ordered packing likely via H-aggregation, resulting in short d-spacings (e.g. 50 Å for the polymer P16 with C16 H32 linker). This work highlights the importance of linker length on the molecular packing of the acceptor units and the influences on the photovoltaic performance of SCOSCs.
Collapse
Affiliation(s)
- Guitao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenliang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, 3800, Australia
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Giridharagopal R, Guo J, Kong J, Ginger DS. Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34616-34624. [PMID: 34270213 DOI: 10.1021/acsami.1c08176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic electrochemical transistors are believed to face an inherent material design tension between optimizing for ion mobility and for electronic mobility. These devices transduce ion uptake into electrical current, thereby requiring high ion mobility for efficient electrochemical doping and rapid turn-on kinetics and high electronic mobility for the maximum transconductance. Here, we explore a facile route to improve operational kinetics and volumetric capacitance in a high-mobility conjugated polymer (poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)], DPP-DTT) by employing a nanowire morphology. For equivalent thicknesses, the DPP-DTT nanowire films exhibit consistently faster kinetics (∼6-10× faster) compared to a neat DPP-DTT film. The nanowire architectures show ∼4× higher volumetric capacitance, increasing from 7.1 to 27.7 F/cm3, consistent with the porous structure better enabling ion uptake throughout the film. The nanowires also exhibit a small but energetically favorable shift in a threshold voltage of ∼17 mV, making the nanostructured system both faster and energetically easier to electrochemically dope compared to neat films. We explain the variation using two atomic force microscopy methods: in situ electrochemical strain microscopy and nanoinfrared imaging via photoinduced force microscopy. These data show that the nanowire film's structure allows greater swelling and ion uptake throughout the active layer, indicating that the nanowire architecture exhibits volumetric operation, whereas the neat film is largely operating via the field effect. We propose that for higher-mobility materials, casting the active layer in a nanowire form may offer faster kinetics, enhanced volumetric capacitance, and possibly lower threshold voltage while maintaining desirable device performance.
Collapse
Affiliation(s)
- Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Kong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Huang Y, Elder DL, Kwiram AL, Jenekhe SA, Jen AKY, Dalton LR, Luscombe CK. Organic Semiconductors at the University of Washington: Advancements in Materials Design and Synthesis and toward Industrial Scale Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904239. [PMID: 31576634 DOI: 10.1002/adma.201904239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Research at the University of Washington regarding organic semiconductors is reviewed, covering four major topics: electro-optics, organic light emitting diodes, organic field-effect transistors, and organic solar cells. Underlying principles of materials design are demonstrated along with efforts toward unlocking the full potential of organic semiconductors. Finally, opinions on future research directions are presented, with a focus on commercial competency, environmental sustainability, and scalability of organic-semiconductor-based devices.
Collapse
Affiliation(s)
- Yunping Huang
- Materials Science and Engineering Department, University of Washington, Seattle, WA, 98195, USA
| | - Delwin L Elder
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Alvin L Kwiram
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Samson A Jenekhe
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Alex K Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Larry R Dalton
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Christine K Luscombe
- Materials Science and Engineering Department, University of Washington, Seattle, WA, 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Zhao K, Zhang Q, Chen L, Zhang T, Han Y. Nucleation and Growth of P(NDI2OD-T2) Nanowires via Side Chain Ordering and Backbone Planarization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Chen X, Shi W, Zhang K. Observation of Energy-Dependent Carrier Scattering in Conducting Polymer Nanowire Blends for Enhanced Thermoelectric Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34451-34461. [PMID: 32614168 DOI: 10.1021/acsami.0c09907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Without sacrificing the intrinsic softness and flexibility of conducting polymers, their blends have been demonstrated to be promising to improve thermoelectric properties of conducting polymers. However, the underlying mechanism for the thermoelectric enhancement is hitherto far from clear and is worthy of being explored deeply. In this work, we report novel conducting polymer nanowire blends by physically mixing poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and polypyrrole (PPy) nanowires. By carefully tuning the energetic structure of PPy nanowires (nanofillers), the Seebeck coefficients and power factors of nanowire blends are surprisingly increased by ∼20 and ∼32% (compared to PEDOT nanowires), respectively. By means of first-principles calculations and experimental characterizations, we qualitatively confirm that the improved thermoelectric property is a consequence of a built-in energy barrier at nanowire interfaces rather than the commonly used doping/de-doping effect. Subsequently, we further employ the Kang-Snyder transport model and quantitatively demonstrate that the energy barrier involves energy-dependent carrier scattering (thus, a change of total relaxation time) at nanowire heterojunctions, which contributes to the enhanced Seebeck coefficients and power factors. Our work sheds light on the mechanism that can be adopted to design soft but high-performance thermoelectric materials with conducting polymer blends.
Collapse
Affiliation(s)
- Xinyi Chen
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Wen Shi
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Kun Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
13
|
Tatum WK, Torrejon D, O'Neil P, Onorato JW, Resing AB, Holliday S, Flagg LQ, Ginger DS, Luscombe CK. Generalizable Framework for Algorithmic Interpretation of Thin Film Morphologies in Scanning Probe Images. J Chem Inf Model 2020; 60:3387-3397. [PMID: 32526145 DOI: 10.1021/acs.jcim.0c00308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe an open-source and widely adaptable Python library that recognizes morphological features and domains in images collected via scanning probe microscopy. π-Conjugated polymers (CPs) are ideal for evaluating the Materials Morphology Python (m2py) library because of their wide range of morphologies and feature sizes. Using thin films of nanostructured CPs, we demonstrate the functionality of a general m2py workflow. We apply numerical methods to enhance the signals collected by the scanning probe, followed by Principal Component Analysis (PCA) to reduce the dimensionality of the data. Then, a Gaussian Mixture Model segments every pixel in the image into phases, which have similar material-property signals. Finally, the phase-labeled pixels are grouped and labeled as morphological domains using either connected components labeling or persistence watershed segmentation. These tools are adaptable to any scanning probe measurement, so the labels that m2py generates will allow researchers to individually address and analyze the identified domains in the image. This level of control, allows one to describe the morphology of the system using quantitative and statistical descriptors such as the size, distribution, and shape of the domains. Such descriptors will enable researchers to quantitatively track and compare differences within and between samples.
Collapse
Affiliation(s)
- Wesley K Tatum
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Diego Torrejon
- BlackSky, 13241 Woodland Park Road, Suite 300, Herndon, Virginia 20171, United States.,Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030 United States
| | - Patrick O'Neil
- BlackSky, 13241 Woodland Park Road, Suite 300, Herndon, Virginia 20171, United States.,Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030 United States
| | - Jonathan W Onorato
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Anton B Resing
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Sarah Holliday
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Lucas Q Flagg
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christine K Luscombe
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Department of Molecular Engineering and Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Yamamoto K, Kawaguchi D, Sasahara K, Inutsuka M, Yamamoto S, Uchida K, Mita K, Ogawa H, Takenaka M, Tanaka K. Aggregation States of Poly(4-methylpentene-1) at a Solid Interface. Polym J 2018. [DOI: 10.1038/s41428-018-0134-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Killgore JP, DelRio FW. Contact Resonance Force Microscopy for Viscoelastic Property Measurements: From Fundamentals to State-of-the-Art Applications. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01178] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jason P. Killgore
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Frank W. DelRio
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| |
Collapse
|