1
|
Kang S, Han J, Jang SC, An JS, Kang I, Kwon Y, Nam SJ, Shim SH, Cho JC, Lee SK, Oh DC. Epoxinnamide: An Epoxy Cinnamoyl-Containing Nonribosomal Peptide from an Intertidal Mudflat-Derived Streptomyces sp. Mar Drugs 2022; 20:md20070455. [PMID: 35877748 PMCID: PMC9321520 DOI: 10.3390/md20070455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cinnamoyl-containing nonribosomal peptides (CCNPs) form a unique family of actinobacterial secondary metabolites and display various biological activities. A new CCNP named epoxinnamide (1) was discovered from intertidal mudflat-derived Streptomyces sp. OID44. The structure of 1 was determined by the analysis of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) data along with a mass spectrum. The absolute configuration of 1 was assigned by the combination of advanced Marfey’s method, 3JHH and rotating-frame overhauser effect spectroscopy (ROESY) analysis, DP4 calculation, and genomic analysis. The putative biosynthetic pathway of epoxinnamide (1) was identified through the whole-genome sequencing of Streptomyces sp. OID44. In particular, the thioesterase domain in the nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster was proposed as a bifunctional enzyme, which catalyzes both epimerization and macrocyclization. Epoxinnamide (1) induced quinone reductase (QR) activity in murine Hepa-1c1c7 cells by 1.6-fold at 5 μM. It also exhibited effective antiangiogenesis activity in human umbilical vein endothelial cells (IC50 = 13.4 μM).
Collapse
Affiliation(s)
- Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Jaeho Han
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (I.K.); (J.-C.C.)
| | - Yun Kwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea;
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (I.K.); (J.-C.C.)
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
- Correspondence: ; Tel.: +82-880-2491; Fax: +82-762-8322
| |
Collapse
|
2
|
Cera G, Risdian C, Pira H, Wink J. Antimicrobial potential of culturable actinobacteria isolated from the Pacific oyster
Crassostrea gigas
(Bivalvia, Ostreidae). J Appl Microbiol 2022; 133:1099-1114. [DOI: 10.1111/jam.15635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Guillermo Cera
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig Germany
- Marine Biology Program, Faculty of Natural Sciences and Engineering, Universidad Jorge Tadeo Lozano Santa Marta Colombia
| | - Chandra Risdian
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig Germany
- Research Unit for Clean Technology, National Research and Innovation Agency (BRIN), 40135 Bandung Indonesia
| | - Hani Pira
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig Germany
| | - Joachim Wink
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig Germany
| |
Collapse
|
3
|
khaleel alhialy S, Shawkat Thanoon A. Molecular diagnosis of Streptomyces genus and bioactive potential against pathogenic microbes. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study (40) locally isolated the genus Streptomyces from soil samples collected from different regions of Iraq ( Nineveh , Erbil , Duhok ) and evaluated their antagonistic. The isolates were found to have bioactivity against gram-positive and negative bacteria and fungus. Streptomyces were isolated on (S.G. medium), and morphological similarities and the 16 srRNA sequencing were used to characterize them. . The results of a polymerase chain reaction (PCR) with eight strands of DNA gene picked from local bacteria isolates in a volume range of (900–1000) base pairs. The nitrogenic base sequence determined the polymerase chain reaction products of DNA samples selected from 6 local isolates. These strands preserved the employed DNA ladder volume. According to DNA Blast NCBI data, the species are Streptomyces atrovirens, Streptomyces SP.S. coeuleroubidus, and Streptomyces bellus.
Keywords. Streptomyces, Molecular, Pathogenic Microbes
Collapse
|
4
|
An JS, Kim MS, Han J, Jang SC, Im JH, Cui J, Lee Y, Nam SJ, Shin J, Lee SK, Yoon YJ, Oh DC. Nyuzenamide C, an Antiangiogenic Epoxy Cinnamic Acid-Containing Bicyclic Peptide from a Riverine Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:804-814. [PMID: 35294831 DOI: 10.1021/acs.jnatprod.1c00837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new nonribosomal peptide, nyuzenamide C (1), was discovered from riverine sediment-derived Streptomyces sp. DM14. Comprehensive analysis of the spectroscopic data of nyuzenamide C (1) revealed that 1 has a bicyclic backbone composed of six common amino acid residues (Asn, Leu, Pro, Gly, Val, and Thr) and four nonproteinogenic amino acid units, including hydroxyglycine, β-hydroxyphenylalanine, p-hydroxyphenylglycine, and 3,β-dihydroxytyrosine, along with 1,2-epoxypropyl cinnamic acid. The absolute configuration of 1 was proposed by J-based configuration analysis, the advanced Marfey's method, quantum mechanics-based DP4 calculations, and bioinformatic analysis of its nonribosomal peptide synthetase biosynthetic gene cluster. Nyuzenamide C (1) displayed antiangiogenic activity in human umbilical vein endothelial cells and induced quinone reductase in murine Hepa-1c1c7 cells.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myoun-Su Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Han
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsheng Cui
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Li X, Fu J, Li Y, Liu J, Gao R, Shi Y, Li Y, Sun H, Wang L, Li Y, Jiang B, Wu L, Hong B. Cytochrome P450 Monooxygenase for Catalyzing C-42 Hydroxylation of the Glycine-Derived Fragment in Hangtaimycin Biosynthesis. Org Lett 2022; 24:1388-1393. [PMID: 35138108 DOI: 10.1021/acs.orglett.2c00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A hybrid trans-AT PKS/NRPS gene cluster htm was identified with defined boundaries for hangtaimycin biosynthesis in Streptomyces spectabilis CPCC200148. Deoxyhangtaimycin, a new derivative of hangtaimycin, was identified from the htm11 gene knockout mutant. In vitro biochemical assays demonstrated that the cytochrome P450 monooxygenase Htm11 was responsible for the stereoselective hydroxylation of deoxyhangtaimycin to hangtaimycin. More importantly, deoxyhangtaimycin showed activity against influenza A virus at the micromolar level, highlighting its potential as an antiviral lead compound.
Collapse
Affiliation(s)
- Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Jie Fu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Yihua Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Jiachang Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Rongmei Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Yuanyuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Yihong Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Hongmin Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Lifei Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Yuhuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, 100050 Beijing, China
| |
Collapse
|
6
|
Carbapenemases producing Klebsiella pneumoniae from the pus of hospitalized patients: In-vitro antibiotic properties of Streptomyces against multidrug resistant infectious bacteria. J Infect Public Health 2021; 14:892-897. [PMID: 34119841 DOI: 10.1016/j.jiph.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is predominantly exists in the pus of the human wounds and it creates massive infections in the skin and causes serious health associated infections. Modern antibiotics are highly active in the treatment of wound infections. In this study was aimed to determine resistance of K. pneumoniae screened from wound specimens of patients. Sample was collected from the pus of the patients associated with secondary infection. METHODS Samples were serially diluted and the isolated bacterial strains were characterized by biochemical tests, colony morphology and Gram's staining methods. Resistance of K. pneumoniae was tested using antibiotics such as, Gentamycin, Ampicillin, Tetracycline, Cefurooxime, Oxacillin, Ofloxacin, Erythromycin, Nalidic acid, Cefepine, Piperacillin, Norfloxacin, Imipenem, Nitrofurantoin, Amikacin, Ciprofloxacin, Vancomycin, Meropeneum and Cefotaxime with Kirby-Bauer disc diffusion method. RESULTS Among the 73 K. pneumoniae strains, four strains produced AmpC and ESBLs, 42 strains produced ESBLs and 7 bacterial strains synthesized only AmpC enzyme. Four stains produced ESBLs and showed multidrug resistance against various antibiotics. Most of the strains synthesized extracellular polysaccharides and mediated biofilm formation. Among the K. pneumoniae strains, K. pneumoniae PS02 showed multidrug resistant against most of the tested antibiotics. It produced ESBLs and AmpC enzyme. To produce secondary metabolites, actinomycetes were isolated and characterized as Streptomyces sp. AC14. The secondary metabolite was effective against Klebsiella strains. CONCLUSIONS To conclude, secondary metabolites extracted from Streptomyces sp. AC14 was found to be effective against multidrug resistant bacterium. Further studies are warranted to analyze the drug hydrolyzing pathways of bacteria and to identify the mechanism of action of secondary metabolites from Streptomyces sp. AC14.
Collapse
|
7
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
8
|
Karim MRU, In Y, Zhou T, Harunari E, Oku N, Igarashi Y. Nyuzenamides A and B: Bicyclic Peptides with Antifungal and Cytotoxic Activity from a Marine-Derived Streptomyces sp. Org Lett 2021; 23:2109-2113. [PMID: 33661652 DOI: 10.1021/acs.orglett.1c00210] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two bicyclic peptides, nyuzenamides A (1) and B (2), were discovered from Streptomyces isolated from suspended matter in deep sea water collected in the Sea of Japan. Their structures were determined through nuclear magnetic resonance and mass spectrometry analyses in combination with X-ray crystallography and the chiral-phase gas chromatography-mass spectrometry method to comprise ten amino acid residues containing four unusual amino acids along with aromatic acyl units. Both compounds displayed antifungal activity against pathogenic fungi and cytotoxicity against P388 murine leukemia cells.
Collapse
Affiliation(s)
- Md Rokon Ul Karim
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuko In
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka 569-1041, Japan
| | - Tao Zhou
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
9
|
Maiti PK, Das S, Sahoo P, Mandal S. Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Sci Rep 2020; 10:10092. [PMID: 32572099 PMCID: PMC7308314 DOI: 10.1038/s41598-020-66984-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
A Kashmir Himalayan (India) soil isolate, Streptomyces sp. SM01 was subjected to small scale fermentation for the production of novel antimicrobials, picolinamycin (SM1). The production has been optimized which found to be maximum while incubated in AIA medium (pH 7) for 7 days at 30 °C. Seven days grew crude cell-free culture media (50 µL) showed a larger zone of inhibition against Staphylococcus aureus compared to streptomycin (5 µg) and ampicillin (5 µg). Extraction, purification, and chemical analysis of the antimicrobial component has been proved to be a new class of antibiotic with 1013 dalton molecular weight. We have named this new antibiotic as picolinamycin for consisting picolinamide moiety in the center of the molecule and produced by a Streptomyces sp. In general, the antimicrobial potency of this newly characterized antibiotic found to be higher against Gram-positive organisms than the tested Gram-negative organisms. The MIC of this antimicrobial compound was found to be 0.01 µg/ml for tested Gram-positive organisms and 0.02 to 5.12 µg/ml for Gram-negative organisms. Furthermore, it showed strong growth impairments of several multidrug resistance (MDR) strains, including methicillin-resistant strains of Staphylococci and Enterococci with the MIC value of 0.04 to 5.12 µg/ml and MDR (but methicillin-sensitive) strains of S. aureus with the MIC value of 0.084 µg/ml. It also showed anti-mycobacterial potential in higher concentrations (MIC is 10.24 µg/ml). Picolinamycin however did not show toxicity against tested A549 human cell line indicating that the spectrum of its activity limited within bacteria only.
Collapse
Affiliation(s)
- Pulak Kumar Maiti
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sujoy Das
- The Molecular Recognition Laboratory, Department of Chemistry, Visva-Bharati University, Siksha Bhavana, Santiniketan, Birbhum, West Bengal, 731235, India
| | - Prithidipa Sahoo
- The Molecular Recognition Laboratory, Department of Chemistry, Visva-Bharati University, Siksha Bhavana, Santiniketan, Birbhum, West Bengal, 731235, India.
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|