1
|
Bhattacharjee A, Sarma S, Sen T, Singh AK. Alterations in molecular response of Mycobacterium tuberculosis against anti-tuberculosis drugs. Mol Biol Rep 2022; 49:3987-4002. [PMID: 35066765 DOI: 10.1007/s11033-021-07095-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, has plagued humans since the early middle-ages. More than one million deaths are recorded annually due to TB, even in present times. These deaths are primarily attributed to the constant appearance of resistant TB strains. Even with the advent of new therapeutics and diagnostics techniques, tuberculosis remains challenging to control due to resistant M. tuberculosis strains. Aided by various molecular changes, these strains adapt to stress created by anti-tuberculosis drugs. MATERIALS AND METHODS The review thus is an overview of ongoing research in the genome and transcriptome of antibiotic-resistant TB. It explores omics-based research to identify mutation and utilization of differential gene expression. CONCLUSIONS This study shows several mutations distinctive in the first- and second-line drug-resistant M. tuberculosis strains. It also explores the expressional differences of genes involved in the fundamental process of the cells and how they help in drug resistance. With the development of transcriptomics-based studies, a new insight has developed to inquire about gene expression changes in drug resistance. This information on expressional pattern changes can be utilized to design the basic platform of anti-TB treatments and therapeutic approaches. These novel insights can be instrumental in disease diagnosis and global containment of resistant TB.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Saha M, Sarkar A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J Xenobiot 2021; 11:197-214. [PMID: 34940513 PMCID: PMC8708150 DOI: 10.3390/jox11040013] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
With the advancements of science, antibiotics have emerged as an amazing gift to the human and animal healthcare sectors for the treatment of bacterial infections and other diseases. However, the evolution of new bacterial strains, along with excessive use and reckless consumption of antibiotics have led to the unfolding of antibiotic resistances to an excessive level. Multidrug resistance is a potential threat worldwide, and is escalating at an extremely high rate. Information related to drug resistance, and its regulation and control are still very little. To interpret the onset of antibiotic resistances, investigation on molecular analysis of resistance genes, their distribution and mechanisms are urgently required. Fine-tuned research and resistance profile regarding ESKAPE pathogen is also necessary along with other multidrug resistant bacteria. In the present scenario, the interaction of bacterial infections with SARS-CoV-2 is also crucial. Tracking and in-silico analysis of various resistance mechanisms or gene/s are crucial for overcoming the problem, and thus, the maintenance of relevant databases and wise use of antibiotics should be promoted. Creating awareness of this critical situation among individuals at every level is important to strengthen the fight against this fast-growing calamity. The review aimed to provide detailed information on antibiotic resistance, its regulatory molecular mechanisms responsible for the resistance, and other relevant information. In this article, we tried to focus on the correlation between antimicrobial resistance and the COVID-19 pandemic. This study will help in developing new interventions, potential approaches, and strategies to handle the complexity of antibiotic resistance and prevent the incidences of life-threatening infections.
Collapse
Affiliation(s)
- Mousumi Saha
- Department of Microbiology, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Agniswar Sarkar
- Virus Unit [NICED-ICMR], GB4-1st Floor, ID and BG Hospital, 57, S. C. Banerjee Road, Beliaghata, Kolkata 700010, India;
| |
Collapse
|
3
|
Singh G, Akhter Y. Molecular insights into the differential efflux mechanism of Rv1634 protein, a multidrug transporter of major facilitator superfamily in Mycobacterium tuberculosis. Proteins 2021; 90:566-578. [PMID: 34601761 DOI: 10.1002/prot.26253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
Currently, multidrug-resistant tuberculosis (MDR-TB) is a public health crisis and a major health security threat globally. In Mycobacterium tuberculosis (Mtb), major facilitator superfamily (MFS) is the largest group of secondary active transporters. Along with the transport of their natural substrates, MFS proteins were involved in a drug efflux mechanism that ultimately lead to resistance against available anti-TB drugs in Mtb. In the present study, the three-dimensional structure model of an MFS protein, Rv1634, a probable multidrug transporter from Mtb, was generated using homology modeling. The protein structure model was found in inward-open conformation having 14 transmembrane helices. In addition, a central transport channel was deduced across the protein, and a single binding pocket was identified halfway through the central cavity by structural alignment with the homologous protein structures. Further, Rv1634 protein was studied based on the differential structural behavior of apo and ligand-bound forms. All the protein systems were inserted into a phospholipid bilayer to characterize the conformational dynamics of the protein using molecular dynamics (MD) simulations. Detailed analysis of the MD trajectories showed the diverse substrate specificity of the binding pocket for the antibiotics that caused differential movement in the ciprofloxacin and norfloxacin, to which Mtb strains have now become resistant. The expulsion of the drugs outside the bacterial cell occurs through the alternating-access mechanism of N and C-terminal domains, which is intriguing and essential to the understanding the drug resistance mechanism in pathogenic bacteria.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Xu G, Liu H, Jia X, Wang X, Xu P. Mechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: The phenomenon of drug resistance is complex. Tuberculosis (Edinb) 2021; 128:102083. [PMID: 33975262 DOI: 10.1016/j.tube.2021.102083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/30/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease that poses a serious threat to human health. Rifampin (RIF) is an important first-line anti-TB drug, and rifampin resistance (RIF-R) is a key factor in formulating treatment regimen and evaluating the prognosis of TB. Compared with other drugs resistance, the RIF-R mechanism of Mycobacterium tuberculosis (M. tuberculosis) is one of the clearest, which is mainly caused by RIF resistance-related mutations in the rpoB gene. This provides a convenient condition for developing rapid detection methods, and also an ideal object for studying the general drug resistance mechanisms of M. tuberculosis. This review focuses on the mechanisms that influence the RIF resistance of M. tuberculosis and related detection methods. Besides the mutations in rpoB, M. tuberculosis can decrease the amount of drugs entering the cells, enhance the drugs efflux, and be heterogeneous RIF susceptibility to resist drug pressure. Based on the results of current researches, many genes participate in influencing the susceptibility to RIF, which indicates the phenomenon of M. tuberculosis drug resistance is very complex.
Collapse
Affiliation(s)
- Ge Xu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Hangchi Liu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Xudong Jia
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Xiaomin Wang
- Department of Microbiology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China.
| | - Peng Xu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
5
|
Romano A, Casazza M, Gonella F. Addressing Non-linear System Dynamics of Single-Strand RNA Virus-Host Interaction. Front Microbiol 2021; 11:600254. [PMID: 33519741 PMCID: PMC7843927 DOI: 10.3389/fmicb.2020.600254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Positive single-strand ribonucleic acid [(+)ssRNA] viruses can cause multiple outbreaks, for which comprehensive tailored therapeutic strategies are still missing. Virus and host cell dynamics are tightly connected, generating a complex dynamics that conveys in virion assembly to ensure virus spread in the body. Starting from the knowledge of relevant processes in (+ss)RNA virus replication, transcription, translation, virions budding and shedding, and their respective energy costs, we built up a systems thinking (ST)-based diagram of the virus-host interaction, comprehensive of stocks, flows, and processes as well-described in literature. In ST approach, stocks and flows are expressed by a proxy of the energy embedded and transmitted, respectively, whereas processes are referred to the energy required for the system functioning. In this perspective, healthiness is just a particular configuration, in which stocks relevant for the system (equivalent but not limited to proteins, RNA, DNA, and all metabolites required for the survival) are constant, and the system behavior is stationary. At time of infection, the presence of additional stocks (e.g., viral protein and RNA and all metabolites required for virion assembly and spread) confers a complex network of feedbacks leading to new configurations, which can evolve to maximize the virions stock, thus changing the system structure, output, and purpose. The dynamic trajectories will evolve to achieve a new stationary status, a phenomenon described in microbiology as integration and symbiosis when the system is resilient enough to the changes, or the system may stop functioning and die. Application of external driving forces, acting on processes, can affect the dynamic trajectories adding a further degree of complexity, which can be captured by ST approach, used to address these new configurations. Investigation of system configurations in response to external driving forces acting is developed by computational analysis based on ST diagrams, with the aim at designing novel therapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Romano
- Sezione di Ematologia, Dipartimento di Chirurgia Generale e Specialità Medico Chirurgiche (CHIRMED), Università degli Studi di Catania, Catania, Italy
- Division of Hematology, U.O.C di Ematologia, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico - San Marco”, Catania, Italy
| | - Marco Casazza
- Division of Hematology, U.O.C di Ematologia, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico - San Marco”, Catania, Italy
| | - Francesco Gonella
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Venezia, Italy
| |
Collapse
|