1
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
2
|
Nonarath HJT, Jackson MA, Penoske RM, Zahrt TC, Price NPJ, Link BA. The tunicamycin derivative TunR2 exhibits potent antibiotic properties with low toxicity in an in vivo Mycobacterium marinum-zebrafish TB infection model. J Antibiot (Tokyo) 2024; 77:245-256. [PMID: 38238588 PMCID: PMC11403873 DOI: 10.1038/s41429-023-00694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 03/28/2024]
Abstract
Tunicamycins (TUN) are well-defined, Streptomyces-derived natural products that inhibit protein N-glycosylation in eukaryotes, and by a conserved mechanism also block bacterial cell wall biosynthesis. TUN inhibits the polyprenylphosphate-N-acetyl-hexosamine-1-phospho-transferases (PNPT), an essential family of enzymes found in both bacteria and eukaryotes. We have previously published the development of chemically modified TUN, called TunR1 and TunR2, that have considerably reduced activity on eukaryotes but that retain the potent antibacterial properties. A mechanism for this reduced toxicity has also been reported. TunR1 and TunR2 have been tested against mammalian cell lines in culture and against live insect cells but, until now, no in vivo evaluation has been undertaken for vertebrates. In the current work, TUN, TunR1, and TunR2 are investigated for their relative toxicity and antimycobacterial activity in zebrafish using a well-established Mycobacterium marinum (M. marinum) infection system, a model for studying human Mycobacterium tuberculosis infections. We also report the relative ability to activate the unfolded protein response (UPR), the known mechanism for the eukaryotic toxicity observed with TUN treatment. Importantly, TunR1 and TunR2 retained their antimicrobial properties, as evidenced by a reduction in M. marinum bacterial burden, compared to DMSO-treated zebrafish. In summary, findings from this study highlight the characteristics of recently developed TUN derivatives, mainly TunR2, and its potential for use as a novel anti-bacterial agent for veterinary and potential medical purposes.
Collapse
Affiliation(s)
- Hannah J T Nonarath
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael A Jackson
- USDA, Agricultural Research Service, Renewable Products Technology Research, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL, 61604, USA
| | - Renee M Penoske
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas C Zahrt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Neil P J Price
- USDA, Agricultural Research Service, Renewable Products Technology Research, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL, 61604, USA.
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Price NPJ, Jackson MA, Hartman TM, Brändén G, Ek M, Koch AA, Kennedy PD. Branched Chain Lipid Metabolism As a Determinant of the N-Acyl Variation of Streptomyces Natural Products. ACS Chem Biol 2021; 16:116-124. [PMID: 33411499 DOI: 10.1021/acschembio.0c00799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Branched-chain fatty acids (BCFA) are encountered in Gram-positive bacteria, but less so in other organisms. The bacterial BCFA in membranes are typically saturated, with both odd- and even-numbered carbon chain lengths, and with methyl branches at either the ω-1 (iso) or ω-2 (anteiso) positions. The acylation with BCFA also contributes to the structural diversity of microbial natural products and potentially modulates biological activity. For the tunicamycin (TUN) family of natural products, the toxicity toward eukaryotes is highly dependent upon N-acylation with trans-2,3-unsaturated BCFA. The loss of the 2,3-unsaturation gives modified TUN with reduced eukaryotic toxicity but crucially with retention of the synergistic enhancement of the β-lactam group of antibiotics. Here, we infer from genomics, mass spectrometry, and deuterium labeling that the trans-2,3-unsaturated TUN variants and the saturated cellular lipids found in TUN-producing Streptomyces are derived from the same pool of BCFA metabolites. Moreover, non-natural primers of BCFA metabolism are selectively incorporated into the cellular lipids of TUN-producing Streptomyces and concomitantly produce structurally novel neo-branched TUN N-acyl variants.
Collapse
Affiliation(s)
- Neil P. J. Price
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Michael A. Jackson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Trina M. Hartman
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Margareta Ek
- Structure, Biophysics & FBLG, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Aaron A. Koch
- Cayman Chemical, 1180 E. Ellsworth Rd., Ann Arbor, Michigan 48108, United States
| | - Paul D. Kennedy
- Cayman Chemical, 1180 E. Ellsworth Rd., Ann Arbor, Michigan 48108, United States
| |
Collapse
|
4
|
Hering J, Dunevall E, Snijder A, Eriksson PO, Jackson MA, Hartman TM, Ting R, Chen H, Price NPJ, Brändén G, Ek M. Exploring the Active Site of the Antibacterial Target MraY by Modified Tunicamycins. ACS Chem Biol 2020; 15:2885-2895. [PMID: 33164499 DOI: 10.1021/acschembio.0c00423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The alarming growth of antibiotic resistance that is currently ongoing is a serious threat to human health. One of the most promising novel antibiotic targets is MraY (phospho-MurNAc-pentapeptide-transferase), an essential enzyme in bacterial cell wall synthesis. Through recent advances in biochemical research, there is now structural information available for MraY, and for its human homologue GPT (GlcNAc-1-P-transferase), that opens up exciting possibilities for structure-based drug design. The antibiotic compound tunicamycin is a natural product inhibitor of MraY that is also toxic to eukaryotes through its binding to GPT. In this work, we have used tunicamycin and modified versions of tunicamycin as tool compounds to explore the active site of MraY and to gain further insight into what determines inhibitor potency. We have investigated tunicamycin variants where the following motifs have been modified: the length and branching of the tunicamycin fatty acyl chain, the saturation of the fatty acyl chain, the 6″-hydroxyl group of the GlcNAc ring, and the ring structure of the uracil motif. The compounds are analyzed in terms of how potently they bind to MraY, inhibit the activity of the enzyme, and affect the protein thermal stability. Finally, we rationalize these results in the context of the protein structures of MraY and GPT.
Collapse
Affiliation(s)
- Jenny Hering
- Structure, Biophysics and FBLG, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Arjan Snijder
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Per-Olof Eriksson
- Structure, Biophysics and FBLG, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael A. Jackson
- U.S. Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Trina M. Hartman
- U.S. Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Ran Ting
- Chemistry and Chemical Biology Centre, Bioland Laboratory, Guangzhou, China
| | - Hongming Chen
- Chemistry and Chemical Biology Centre, Bioland Laboratory, Guangzhou, China
| | - Neil P. J. Price
- U.S. Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Margareta Ek
- Structure, Biophysics and FBLG, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
5
|
Fourie JCJ, Bezuidenhout CC, Sanko TJ, Mienie C, Adeleke R. Inside environmental Clostridium perfringens genomes: antibiotic resistance genes, virulence factors and genomic features. JOURNAL OF WATER AND HEALTH 2020; 18:477-493. [PMID: 32833675 DOI: 10.2166/wh.2020.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Until recently, research has focused on Clostridium perfringens in clinical settings without considering environmental isolates. In this study, environmental genomes were used to investigate possible antibiotic resistance and the presence of virulence traits in C. perfringens strains from raw surface water. In silico assembly of three C. perfringens strains, DNA generated almost complete genomes setting their length ranging from 3.4 to 3.6 Mbp with GC content of 28.18%. An average of 3,175 open reading frames was identified, with the majority associated with carbohydrate and protein metabolisms. The genomes harboured several antibiotic resistance genes for glycopeptides, macrolide-lincosamide-streptogramin B, β-lactam, trimethoprim, tetracycline and aminoglycosides and also the presence of several genes encoding for polypeptides and multidrug resistance efflux pumps and 35 virulence genes. Some of these encode for haemolysins, sialidase, hyaluronidase, collagenase, perfringolysin O and phospholipase C. All three genomes contained sequences indicating phage, antibiotic resistance and pathogenic islands integration sites. A genomic comparison of these three strains confirmed high similarity and shared core genes with clinical C. perfringens strains, highlighting their health security risks. This study provides a genomic insight into the potential pathogenicity of C. perfringens present in the environment and emphasises the importance of monitoring this niche in the future.
Collapse
Affiliation(s)
| | | | - Tomasz Janusz Sanko
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Charlotte Mienie
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Rasheed Adeleke
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| |
Collapse
|