1
|
Tharavecharak S, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Tsuyama T, Kamei I, Gabazza EC. Culture Conditions for Mycelial Growth and Anti-Cancer Properties of Termitomyces. MYCOBIOLOGY 2023; 51:94-108. [PMID: 37122680 PMCID: PMC10142329 DOI: 10.1080/12298093.2023.2187614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Termitomyces sp. that grow in symbiosis with fungus-farming Termites have medicinal properties. However, they are rare in nature, and their artificial culture is challenging. The expression of AXL receptor tyrosine kinase and immune checkpoint molecules favor the growth of cancer cells. The study evaluated the optimal conditions for the artificial culture of Termitomyces and their inhibitory activity on AXL and immune checkpoint molecules in lung adenocarcinoma and melanoma cell lines. The culture of 45 strains of Termitomyces was compared. Five strains with marked growth rates were selected. Four of the selected strains form a single cluster by sequence analysis. The mycelium of 4 selected strains produces more fungal mass in potato dextrose broth than in a mixed media. The bark was the most appropriate solid substrate for Termitomyces mycelia culture. The mycelium of all five selected strains showed a higher growth rate under normal CO2 conditions. The culture broth, methanol, and ethyl acetate of one selected strain (T-120) inhibited the mRNA relative expression of AXL receptor tyrosine kinase and immune checkpoint molecules in cancer cell lines. Overall, these results suggest the potential usefulness of Termitomyces extracts as a co-adjuvant therapy in malignant diseases.
Collapse
Affiliation(s)
- Suphachai Tharavecharak
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | | | - Masaaki Toda
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Taro Yasuma
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Taku Tsuyama
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ichiro Kamei
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
- CONTACT Esteban C. Gabazza
| |
Collapse
|
2
|
Kotajima M, Choi JH, Kondo M, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Miwa Y, Shoda C, Lee D, Nakai A, Kurihara T, Wu J, Hirai H, Kawagishi H. Axl, Immune Checkpoint Molecules and HIF Inhibitors from the Culture Broth of Lepista luscina. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248925. [PMID: 36558053 PMCID: PMC9781456 DOI: 10.3390/molecules27248925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Two compounds 1 and 2 were isolated from the culture broth of Lepista luscina. This is the first time that compound 1 was isolated from a natural source. The structure of compound 1 was identified via 1D and 2D NMR and HRESIMS data. Compounds 1 and 2 along with 8-nitrotryptanthrin (4) were evaluated for their biological activities using the A549 lung cancer cell line. As a result, 1 and 2 inhibited the expression of Axl and immune checkpoint molecules. In addition, compounds 1, 2 and 4 were tested for HIF inhibitory activity. Compound 2 demonstrated statistically significant HIF inhibitory effects on NIH3T3 cells and 1 and 2 against ARPE19 cells.
Collapse
Affiliation(s)
- Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mitsuru Kondo
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | - Masaaki Toda
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yukihiro Miwa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chiho Shoda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayaka Nakai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Correspondence:
| |
Collapse
|
3
|
Inoue C, Yasuma T, D’Alessandro-Gabazza CN, Toda M, Fridman D’Alessandro V, Inoue R, Fujimoto H, Kobori H, Tharavecharak S, Takeshita A, Nishihama K, Okano Y, Wu J, Kobayashi T, Yano Y, Kawagishi H, Gabazza EC. The Fairy Chemical Imidazole-4-Carboxamide Inhibits the Expression of Axl, PD-L1, and PD-L2 and Improves Response to Cisplatin in Melanoma. Cells 2022; 11:cells11030374. [PMID: 35159184 PMCID: PMC8834508 DOI: 10.3390/cells11030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of death worldwide is cancer. Many reports have proved the beneficial effect of mushrooms in cancer. However, the precise mechanism is not completely clear. In the present study, we focused on the medicinal properties of biomolecules released by fairy ring-forming mushrooms. Fairy chemicals generally stimulate or inhibit the growth of surrounding vegetation. In the present study, we evaluated whether fairy chemicals (2-azahypoxanthine, 2-aza-8-oxohypoxanthine, and imidazole-4-carboxamide) exert anticancer activity by decreasing the expression of Axl and immune checkpoint molecules in melanoma cells. We used B16F10 melanoma cell lines and a melanoma xenograft model in the experiments. Treatment of melanoma xenograft with cisplatin combined with imidazole-4-carboxamide significantly decreased the tumor volume compared to untreated mice or mice treated cisplatin alone. In addition, mice treated with cisplatin and imidazole-4-carboxamide showed increased peritumoral infiltration of T cells compared to mice treated with cisplatin alone. In vitro studies showed that all fairy chemicals, including imidazole-4-carboxamide, inhibit the expression of immune checkpoint molecules and Axl compared to controls. Imidazole-4-carboxamide also significantly blocks the cisplatin-induced upregulation of PD-L1. These observations point to the fairy chemical imidazole-4-carboxamide as a promising coadjuvant therapy with cisplatin in patients with cancer.
Collapse
Affiliation(s)
- Chisa Inoue
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Ryo Inoue
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Hajime Kobori
- Iwade—Research Institute of Mycology Co., Ltd., Tsu 514-0012, Japan;
| | - Suphachai Tharavecharak
- Department of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Yuko Okano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Correspondence:
| |
Collapse
|
4
|
Yasuma T, Toda M, Kobori H, Tada N, D’Alessandro-Gabazza CN, Gabazza EC. Subcritical Water Extracts from Agaricus blazei Murrill's Mycelium Inhibit the Expression of Immune Checkpoint Molecules and Axl Receptor. J Fungi (Basel) 2021; 7:jof7080590. [PMID: 34436128 PMCID: PMC8397183 DOI: 10.3390/jof7080590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Agaricus blazei Murrill or Himematsutake is an edible and medicinal mushroom. Agaricus blazei Murrill’s fruiting body extracts have anticancer properties, although the mechanism is unknown. Basic or organic solvents, which are hazardous for human health, are generally used to prepare Agaricus blazei Murrill’s extracts. The inhibition of immune checkpoint molecules and Axl receptor is an effective therapy in cancer. This study assessed whether subcritical water extracts of the Agaricus blazei Murrill’s fruiting body or mycelium affect the expression of Axl and immune checkpoint molecules in lung cancer cells. We used A549 cells and mouse bone marrow-derived dendritic cells in the experiments. We prepared subcritical water extracts from the Agaricus blazei Murrill’s fruiting body or mycelium. The subcritical water extracts from the Agaricus blazei Murrill’s fruiting body or mycelium significantly inhibited the expression of immune checkpoint molecules and Axl compared to saline-treated cells. Additionally, the hot water extract, subcritical water extract, and the hot water extraction residue subcritical water extract from the Agaricus blazei Murrill’s mycelium significantly enhanced the expression of maturation markers in dendritic cells. These observations suggest that the subcritical water extract from Agaricus blazei Murrill’s mycelium is a promising therapeutic tool for stimulating the immune response in cancer.
Collapse
Affiliation(s)
- Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (T.Y.); (M.T.); (C.N.D.-G.)
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (T.Y.); (M.T.); (C.N.D.-G.)
| | - Hajime Kobori
- Iwade Research Institute of Mycology Co., Ltd., Tsu 514-0012, Mie, Japan; (H.K.); (N.T.)
| | - Naoto Tada
- Iwade Research Institute of Mycology Co., Ltd., Tsu 514-0012, Mie, Japan; (H.K.); (N.T.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (T.Y.); (M.T.); (C.N.D.-G.)
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (T.Y.); (M.T.); (C.N.D.-G.)
- Correspondence: ; Tel.: +81-59-231-5037
| |
Collapse
|