1
|
Smit AK, Gokoolparsadh A, McWhirter R, Newett L, Milch V, Hermes A, McInerney-Leo A, Newson AJ. Ethical, legal, and social issues related to genetics and genomics in cancer: A scoping review and narrative synthesis. Genet Med 2024; 26:101270. [PMID: 39282688 DOI: 10.1016/j.gim.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024] Open
Abstract
Genomics is increasingly being incorporated into models of care for cancer. Understanding the ethical, legal, and social issues (ELSI) in this domain is important for successful and equitable implementation. We aimed to identify ELSI scholarship specific to cancer control and genomics. To do this, we undertook a scoping literature review and narrative synthesis, identifying 46 articles that met inclusion criteria. Eighteen ELSI themes were developed, including (1) equity of access, which included structural barriers to testing and research, access to preventive and follow-up care, and engagement with health systems; (2) family considerations, such as an ethical obligation to disseminate relevant genomic information to at-risk family members; (3) legal considerations, including privacy and confidentiality, genetic discrimination, and the prospective duty to reclassify variants; and (4) optimizing consent processes in clinical care and research. Gaps in the literature were identified with respect to equity for people living in rural or remote areas, and how to provide ethical care within culturally, linguistically, and ethnically diverse communities, including First Nations peoples. Our findings suggest a need for a multidisciplinary approach to examining ELSI in cancer genomics beyond initial test indication and within the broader context of the mainstreaming of genomics in health care.
Collapse
Affiliation(s)
- Amelia K Smit
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia; The University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Sydney, NSW, Australia
| | - Akira Gokoolparsadh
- The University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Sydney Health Ethics, Sydney, NSW, Australia
| | - Rebekah McWhirter
- ANU College of Law, Australian National University, Canberra, ACT, Australia
| | - Lyndsay Newett
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT Australia
| | - Vivienne Milch
- Cancer Australia, Surry Hills, NSW Australia; Caring Futures Institute, Flinders University, Adelaide, Australia
| | - Azure Hermes
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT Australia
| | - Aideen McInerney-Leo
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD Australia
| | - Ainsley J Newson
- The University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Sydney Health Ethics, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Martyn M, Lee L, Jan A, Tytherleigh R, Lynch F, Mighton C, Bouffler SE, Lynch E, Macciocca I, Curnow L, McCorkell G, Lunke S, Chong B, Delatycki MB, Downie L, Vears D, Best S, Clausen M, Bombard Y, Stark Z, Gaff C. Offering complex genomic screening in acute pediatric settings: Family decision-making and outcomes. Genet Med 2024; 27:101327. [PMID: 39548854 DOI: 10.1016/j.gim.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
PURPOSE Families of children in pediatric acute care who are offered ultrarapid genomic sequencing are making complex decisions during a high-stress period. To reduce complexity for families and clinicians, we offered genomic screening for the child and parents after the completion of diagnostic testing. We evaluated uptake, understanding, and service delivery preferences. METHODS A cohort of 235 families who had completed ultrarapid diagnostic genomic sequencing at 17 Australian hospitals were offered up to 3 screens on their genomic data: pediatric-onset, adult-onset, and expanded couple carrier screening. We investigated decision making, understanding, and service delivery preferences using surveys at 3 time points (pre counseling, post counseling, and post result) and performed inductive content analysis of pretest genetic counseling transcripts. RESULTS A total of 119 families (51%) attended genetic counseling with 115 (49%) accepting genomic screening. Survey respondents were more likely to find decisions about couple carrier screening easy (87%) compared with adult (68%; P = .002) or pediatric (71%; P = .01) screening decisions. All respondents with newly detected pathogenic variants accurately recalled this 1 month later. A delayed offer of screening was acceptable to most respondents (78%). CONCLUSION Separating genomic screening from the stressful diagnostic period is supported by families who demonstrate good knowledge and recall. Our results suggest delaying genomic screening should be trialed more widely.
Collapse
Affiliation(s)
- Melissa Martyn
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ling Lee
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Alli Jan
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Australian Genomics Health Alliance, Parkville, VIC, Australia
| | - Rigan Tytherleigh
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Fiona Lynch
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Chloe Mighton
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | | | - Elly Lynch
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Ivan Macciocca
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Lisette Curnow
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Martin B Delatycki
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Lilian Downie
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Danya Vears
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia; Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Stephanie Best
- Australian Genomics Health Alliance, Parkville, VIC, Australia; Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marc Clausen
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Yvonne Bombard
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Zornitza Stark
- Australian Genomics Health Alliance, Parkville, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Clara Gaff
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Majeed S, Johnston C, Saeedi S, Mighton C, Rokoszak V, Abbasi I, Grewal S, Aguda V, Kissoondoyal A, Malkin D, Bombard Y. International policies guiding the selection, analysis, and clinical management of secondary findings from genomic sequencing: A systematic review. Am J Hum Genet 2024; 111:2079-2093. [PMID: 39299240 PMCID: PMC11480791 DOI: 10.1016/j.ajhg.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Secondary findings (SFs) from genomic sequencing can have significant impacts on patient health, yet existing practices guiding their clinical investigation are inconsistent. We systematically reviewed existing SFs policies to identify variations and gaps in guidance. We cataloged and appraised international policies from academic databases (n = 5, inception-02/2022) and international human genetic societies (n = 64; inception-05/2022), across the continuum of SFs selection, analysis, and clinical management. We assessed quality using AGREE-II and interpreted results using qualitative description. Of the 63 SFs policies identified, most pertained to clinical management of SFs (98%; n = 62; primarily consent and disclosure), some guided SFs analysis (60%; n = 38), while fewer mentioned SFs selection (48%; n = 30). Overall, policies recommend (1) identifying clinically actionable, pathogenic variants with high positive predictive values for disease (selection), (2) bioinformatically filtering variants using evidence-informed gene lists (analysis), and (3) discussing with affected individuals the SFs identified, their penetrance, expressivity, medical implications, and management (clinical management). Best practices for SFs variant analysis, clinical validation, and follow-up (i.e., surveillance, treatment, etc.) were minimally described. Upon quality assessment, policies were highly rated for scope and clarity (median score, 69) but were limited by their rigor and applicability (median scores, 27 and 25). Our review represents a comprehensive international synthesis of policy guiding SFs across the continuum of selection, analysis, and clinical management. Our synthesis will help providers navigate critical decision points in SFs investigation, although significant work is needed to address gaps in SFs analysis, clinical validation, and follow-up processes and to support evidence-based practice.
Collapse
Affiliation(s)
- Safa Majeed
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christine Johnston
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Saumeh Saeedi
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Chloe Mighton
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa Rokoszak
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Ilham Abbasi
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sonya Grewal
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vernie Aguda
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Ashby Kissoondoyal
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yvonne Bombard
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Genetics Adviser, Toronto, ON, Canada.
| |
Collapse
|
4
|
Kreeftenberg LL, Henneman L, Ket JCF, Cornel MC, van El CG. Engagement of patients and the public in personalised prevention in Europe using genomic information: a scoping review. Front Public Health 2024; 12:1456853. [PMID: 39346592 PMCID: PMC11427883 DOI: 10.3389/fpubh.2024.1456853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Personalised prevention using genomic information requires active involvement from patients and the public, who should be well-informed and empowered to make healthcare decisions that reflect their personal values. We aimed to map engagement practises, and assess the extent and types of engagement methods used in the field of personalised prevention of common chronic conditions using genomic information. Methods A scoping review on selected literature (in Medline, Embase, Scopus, Web of Science, APA PsycINFO, and IBSS) from 2015 to 2023 was performed. Articles included described practises of patient and public engagement in personalised prevention and genomics conducted in Europe focusing on cancer, cardiovascular diseases and neurodegenerative disorders. Engagement was explored based on grouping practises across the domains of care, research, education, and governance. Results A total of 23 articles describing 23 engagement practises were selected. Analysis revealed diverse engagement levels, the majority falling into the low to medium engagement category, and showing mainly unidirectional methods of engagement, especially consultation. Most engagement activities related to cancer, and none to neurodegenerative disorders. Most publications appeared in the care domain, followed by the research domain, a combination of research and care, and a combination of governance and education. Conclusion These results suggest that most practises to engage patients and public in personalised prevention using genomic information appear to have lower levels of engagement. Elaborating on and implementing practises that engage and empower patients and the public at all levels of the engagement spectrum and for all chronic diseases is needed, fostering a more inclusive and participatory approach to personalised prevention.
Collapse
Affiliation(s)
- Loes Lindiwe Kreeftenberg
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Lidewij Henneman
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | | | - Martina C. Cornel
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Carla G. van El
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| |
Collapse
|
5
|
Tung N, Ricker C, Messersmith H, Balmaña J, Domchek S, Stoffel EM, Almhanna K, Arun B, Chavarri-Guerra Y, Cohen SA, Cragun D, Crew KD, Hall MJ, Idos G, Lopez G, Pal T, Pirzadeh-Miller S, Pritchard C, Rana HQ, Swami U, Vidal GA. Selection of Germline Genetic Testing Panels in Patients With Cancer: ASCO Guideline. J Clin Oncol 2024; 42:2599-2615. [PMID: 38759122 DOI: 10.1200/jco.24.00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/19/2024] Open
Abstract
PURPOSE To guide use of multigene panels for germline genetic testing for patients with cancer. METHODS An ASCO Expert Panel convened to develop recommendations on the basis of a systematic review of guidelines, consensus statements, and studies of germline and somatic genetic testing. RESULTS Fifty-two guidelines and consensus statements met eligibility criteria for the primary search; 14 studies were identified for Clinical Question 4. RECOMMENDATIONS Patients should have a family history taken and recorded that includes details of cancers in first- and second-degree relatives and the patient's ethnicity. When more than one gene is relevant based on personal and/or family history, multigene panel testing should be offered. When considering what genes to include in the panel, the minimal panel should include the more strongly recommended genes from Table 1 and may include those less strongly recommended. A broader panel may be ordered when the potential benefits are clearly identified, and the potential harms from uncertain results should be mitigated. Patients who meet criteria for germline genetic testing should be offered germline testing regardless of results from tumor testing. Patients who would not normally be offered germline genetic testing based on personal and/or family history criteria but who have a pathogenic or likely pathogenic variant identified by tumor testing in a gene listed in Table 2 under the outlined circumstances should be offered germline testing.Additional information is available at www.asco.org/molecular-testing-and-biomarkers-guidelines.
Collapse
Affiliation(s)
- Nadine Tung
- Beth Israel Deaconess Medical Center, Sharon, MA
| | | | | | | | | | | | | | - Banu Arun
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yanin Chavarri-Guerra
- Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | - Gregory Idos
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ghecemy Lopez
- USC Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Tuya Pal
- Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Sara Pirzadeh-Miller
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | - Umang Swami
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Gregory A Vidal
- The West Cancer Center and Research Institute and The University of Tennessee Health Sciences Center, Germantown, TN
| |
Collapse
|
6
|
Martyn M, Lee L, Jan A, Lynch E, Weerasuriya R, Kanga-Parabia A, Gaff C. Evaluation of a two-step model of opportunistic genomic screening. Eur J Hum Genet 2024; 32:656-664. [PMID: 38528054 PMCID: PMC11153562 DOI: 10.1038/s41431-024-01592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
Increasing use of diagnostic genomic sequencing is pushing health services to confront the issue of opportunistic genomic screening (OGS). To date, OGS has been offered concomitant with diagnostic testing. In contrast, we piloted a service offering OGS after return of diagnostic testing results. Evaluation was designed to provide insights for future models of service and included patient surveys at three time points, semi-structured interviews with genetic counsellors (GCs) and a focus group with medical scientists. Uptake was relatively low: 83 of 200 patients approached (42%) attended the OGS service, with 81 accepting OGS. Whilst many who declined to attend the service cited practical barriers, others gave reasons that indicated this was a considered decision. Despite specific genetic counselling, one third of patients did not understand the scope of re-analysis. Yet after post-test counselling, all respondents with novel pathogenic additional findings (AF) understood the implications and reported relevant follow-up. Recall was high: five months after last contact, 75% recalled being offered OGS without prompting. GC interviews and patient survey responses provide insights into complexities that influence patient support needs, including diagnostic status and AF result type. There was no consensus among patients or professionals about when to offer OGS. There was a clear preference for multiple, flexible methods of information provision; achieving this whilst balancing patient support needs and resource requirements is a challenge requiring further investigation. Decisions about whether, when and how to offer OGS are complex; our study shows the two-step approach warrants further exploration.
Collapse
Affiliation(s)
- Melissa Martyn
- Melbourne Genomics Health Alliance, Parkville, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia.
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| | - Ling Lee
- Melbourne Genomics Health Alliance, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Alli Jan
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Central Coast Local Health District, NSW Health, Gosford, NSW, 2250, Australia
| | - Elly Lynch
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Victorian Clinical Genetics Services, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Rona Weerasuriya
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Australian Red Cross, 23-47 Villiers Street, North Melbourne, VIC, 3051, Australia
| | - Anaita Kanga-Parabia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Clara Gaff
- Melbourne Genomics Health Alliance, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| |
Collapse
|
7
|
Rosenblum LS, Auger SM, Zhu H, Zhou Z, Xin W, Reiner J, Wolf Z, Leach NT. Prenatal Testing for Variants in Genes Associated with Hereditary Cancer Risk: Laboratory Experience and Considerations. J Mol Diagn 2024; 26:202-212. [PMID: 38171482 DOI: 10.1016/j.jmoldx.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/29/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Prenatal molecular genetic testing for familial variants that cause inherited disorders has been performed for decades and is accepted as standard of care. However, the spectrum of genes considered for prenatal testing is expanding because of genetic testing for hereditary cancer risk (HCR) and inclusion of conditions with associated cancer risk in carrier screening panels. A few of these disorders, such as ataxia telangiectasia and Bloom syndrome, include increased cancer risk as part of the phenotype, already meet professional guidelines for prenatal testing, and may be associated with increased cancer risk in heterozygous carriers. In addition, recent studies implicate heterozygosity for variants in lysosomal storage disease genes in HCR etiology. Currently, there is no specific professional guidance regarding prenatal testing for HCR. To determine the prevalence of such testing, we reviewed 1345 consecutive prenatal specimens received in our laboratory for familial variant-specific testing and identified 65 (4.8%) with a known or likely HCR component, plus 210 (15.6%) for lysosomal storage disease. These specimens were classified into five distinct categories for clarity and to enable evaluation. Our experience assessing prenatal specimens for variants associated with HCR, with or without a constitutional phenotype, provides metrics for and contributes to the points to consider in prenatal testing for HCR.
Collapse
Affiliation(s)
- Lynne S Rosenblum
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts.
| | - Stephanie M Auger
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Hui Zhu
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Zhaoqing Zhou
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Winnie Xin
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Jennifer Reiner
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Zena Wolf
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Natalia T Leach
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| |
Collapse
|
8
|
Pichler T, Mumm F, Dehar N, Dickman E, Díez de Los Ríos de la Serna C, Dinkel A, Heinrich K, Hennink M, Parviainen AD, Raske V, Wicki N, Moore AC. Understanding communication between patients and healthcare professionals regarding comprehensive biomarker testing in precision oncology: A scoping review. Cancer Med 2024; 13:e6913. [PMID: 38298115 PMCID: PMC10905543 DOI: 10.1002/cam4.6913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 12/23/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Precision oncology, using comprehensive biomarker testing (cBT) to inform individual cancer diagnosis, prognosis and treatment, includes increasingly complex technology and clinical data sets. People impacted by cancer (patients and caregivers) and healthcare professionals (HCPs) face distinct challenges in navigating the cBT and personalized treatment landscape. This review summarizes evidence regarding cBT-related communication between people impacted by cancer and HCPs and identifies important avenues for future research in precision oncology. METHODS A scoping review was conducted using records published in PubMed during January 2017-August 2022, focusing on the breadth of topics on patient-HCP communication and knowledge resources used by HCPs as guidance in cBT-related communication. Data were extracted from records meeting inclusion criteria, and findings were summarized according to main topics. RESULTS The search identified 287 unique records and data were extracted from 42 records, including nine from expert input. Most records originated from the United States included patients with different types of cancer, and oncologists were the main HCPs. Patients' motivation for undergoing cBT and receiving results was generally high in different settings. However, patients' understanding of cBT-related concepts was limited, and their knowledge and information preferences changed based on cBT implications and significance to family members. HCPs were valued by patients as a trusted source of information. Limited evidence was available on HCPs' information-seeking behavior and factors influencing cBT-related knowledge and confidence, often self-reported as insufficient. CONCLUSIONS Patient education by knowledgeable and confident HCPs, information management and a caring patient-HCP relationship communicating continuity of care regardless of cBT results are crucial to empower patients and shared decision-making in precision oncology. More data on the process and structure of cBT-related communication, distinction between and characterization of different timepoints of patient-HCP interactions are needed.
Collapse
Affiliation(s)
- Theresia Pichler
- Department of Internal Medicine III, University HospitalLMU MunichMunichGermany
- Comprehensive Cancer Center Munich LMU (CCC Munich)MunichGermany
| | - Friederike Mumm
- Department of Internal Medicine III, University HospitalLMU MunichMunichGermany
- Comprehensive Cancer Center Munich LMU (CCC Munich)MunichGermany
| | - Navdeep Dehar
- Department of Medical OncologyQueen's UniversityKingstonOntarioCanada
| | - Erin Dickman
- Oncology Nursing SocietyPittsburghPennsylvaniaUSA
| | - Celia Díez de Los Ríos de la Serna
- European Oncology Nursing SocietyBrusselsBelgium
- Faculty of Medicine and Health Sciences, School of NursingBarcelona UniversityBarcelonaCataloniaSpain
| | - Andreas Dinkel
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, School of Medicine and HealthTechnical University of MunichMunichGermany
- Comprehensive Cancer Center Munich TUM (CCC Munich)MunichGermany
| | - Kathrin Heinrich
- Comprehensive Cancer Center Munich LMU (CCC Munich)MunichGermany
| | | | - Anndra D. Parviainen
- Department of Nursing Science, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | | | | | | |
Collapse
|
9
|
Koster R, Schipper LJ, Giesbertz NAA, van Beek D, Mendeville M, Samsom KG, Rosenberg EH, Hogervorst FBL, Roepman P, Boelens MC, Bosch LJW, van den Berg JG, Meijer GA, Voest EE, Cuppen E, Ruijs MWG, van Wezel T, van der Kolk L, Monkhorst K. Impact of genetic counseling strategy on diagnostic yield and workload for genome-sequencing-based tumor diagnostics. Genet Med 2024; 26:101032. [PMID: 38006283 DOI: 10.1016/j.gim.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE Genome sequencing (GS) enables comprehensive molecular analysis of tumors and identification of hereditary cancer predisposition. According to guidelines, directly determining pathogenic germline variants (PGVs) requires pretest genetic counseling, which is cost-ineffective. Referral for genetic counseling based on tumor variants alone could miss relevant PGVs and/or result in unnecessary referrals. METHODS We validated GS for detection of germline variants and simulated 3 strategies using paired tumor-normal GS data of 937 metastatic patients. In strategy-1, genetic counseling before tumor testing allowed direct PGV analysis. In strategy-2 and -3, germline testing and referral for post-test genetic counseling is based on tumor variants using Dutch (strategy-2) or Europen Society for Medical Oncology (ESMO) Precision Medicine Working Group (strategy-3) guidelines. RESULTS In strategy-1, PGVs would be detected in 50 patients (number-needed-to counsel; NTC = 18.7). In strategy-2, 86 patients would have been referred for genetic counseling and 43 would have PGVs (NTC = 2). In strategy-3, 94 patients would have been referred for genetic counseling and 32 would have PGVs (NTC = 2.9). Hence, 43 and 62 patients, respectively, were unnecessarily referred based on a somatic variant. CONCLUSION Both post-tumor test counseling strategies (2 and 3) had significantly lower NTC, and strategy-2 had the highest PGV yield. Combining pre-tumor test mainstreaming and post-tumor test counseling may maximize the clinically relevant PGV yield and minimize unnecessary referrals.
Collapse
Affiliation(s)
- Roelof Koster
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Luuk J Schipper
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Kris G Samsom
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | | | - Linda J W Bosch
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Gerrit A Meijer
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emile E Voest
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | | | - Tom van Wezel
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Kim Monkhorst
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Fernández-Castillejo S, Roig B, Melé M, Serrano S, Salvat M, Querol M, Brunet J, Pineda M, Cisneros A, Parada D, Badia J, Borràs J, Rodríguez-Balada M, Gumà J. Opportunistic genetic screening increases the diagnostic yield and is medically valuable for care of patients and their relatives with hereditary cancer. J Med Genet 2023; 61:69-77. [PMID: 37591735 PMCID: PMC10803988 DOI: 10.1136/jmg-2023-109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Multigene panel testing by next-generation sequencing (MGP-NGS) enables the detection of germline pathogenic or likely pathogenic variants (PVs/LPVs) in genes beyond those associated with a certain cancer phenotype. Opportunistic genetic screening based on MGP-NGS in patients with suspicion of hereditary cancer reveals these incidental findings (IFs). METHODS MGP-NGS was performed in patients who fulfilled the clinical criteria to undergo genetic testing according to the Catalan Health Service guidelines. Variants were classified following the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines and the Cancer Variant Interpretation Group UK guidelines. RESULTS IFs were identified in 10 (1.22%) of the 817 patients who underwent MGP-NGS. The mean age at cancer diagnosis was 49.4±9.5 years. Three IFs (30.0%) were detected in PMS2, two (20.0%) in ATM and TP53 and one (10.0%) in MSH6, NTHL1 and VHL. Seven (70.0%) IFs were single-nucleotide substitutions, two (20.0%) were deletions and one (10.0%) was a duplication. Three (30.0) IFs were located in intronic regions, three (30.3%) were nonsense, two (20.0%) were frameshift and two (20.0%) were missense variations. Six (60.0%) IFs were classified as PVs and four (40.0%) as LPVs. CONCLUSIONS Opportunistic genetic screening increased the diagnostic yield by 1.22% in our cohort. Most of the identified IFs were present in clinically actionable genes (n=7; 70.0%), providing these families with an opportunity to join cancer early detection programmes, as well as secondary cancer prevention. IFs might facilitate the diagnosis of asymptomatic individuals and the early management of cancer once it develops.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Bàrbara Roig
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Mireia Melé
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Sara Serrano
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Mònica Salvat
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Montserrat Querol
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and Biomedical Research Centre Network for Oncology (CIBERONC), L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBGI, Girona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and Biomedical Research Centre Network for Oncology (CIBERONC), L'Hospitalet de Llobregat, Spain
| | - Adela Cisneros
- Hematology Department, ICO and Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - David Parada
- Pathology Molecular Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus (HUSJR), Spain. Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Joan Badia
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Joan Borràs
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Marta Rodríguez-Balada
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Josep Gumà
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| |
Collapse
|
11
|
Gligorov J, Benderra MA, Barthere X, de Forceville L, Antoine EC, Cottu PH, Delaloge S, Pierga JY, Belkacemi Y, Houvenaegel G, Pujol P, Rivera S, Spielmann M, Penault-Llorca F, Namer M. Recommandations francophones pour la pratique clinique concernant la prise en charge des cancers du sein de Saint-Paul-de-Vence 2022-2023. Bull Cancer 2023; 110:10S1-10S43. [PMID: 38061827 DOI: 10.1016/s0007-4551(23)00473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
With more than 60,000 new cases of breast cancer in mainland France in 2023 and 8% of all cancer deaths, breast cancer is the leading cancer in women in terms of incidence and mortality. While the number of new cases has almost doubled in 30 years, the percentage of patients at all stages alive at 5 years (87%) and 10 years (76%) testifies to the major progress made in terms of screening, characterisation and treatment. However, this progress, rapid as it is, needs to be evaluated and integrated into an overall strategy, taking into account the characteristics of the disease (stage and biology), as well as those of the patients being treated. These are the objectives of the St Paul-de-Vence recommendations for clinical practice. We report here the summary of the votes, discussions and conclusions of the Saint-Paul-de-Vence 2022-2023 RPCs.
Collapse
Affiliation(s)
- Joseph Gligorov
- Institut universitaire de cancérologie AP-HP Sorbonne université, Paris, France.
| | | | - Xavier Barthere
- Institut universitaire de cancérologie AP-HP Sorbonne université, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chipoulet E, Collet G, Couderc B. [The role of physicians in patient and family adherence to genetic testing]. Bull Cancer 2023; 110:1002-1014. [PMID: 37532643 DOI: 10.1016/j.bulcan.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION More and more French cancer patients are offered by their physicians having their genetic characteristics analyzed (diagnosis, adaptation of treatment plans, etc.). In oncology, considering the development of personalized medicine, these analyses are commonplace. Analyses of germline (hereditary) genetic characteristics require information from patients who must sign an informed consent (article 16.10 of the Civil Code and articles L. 1131-3 and L. 1122-1-1 of the Public Health Code). However, prescribing physicians are rarely geneticists and have little training in genetics. Patients report that few are able to answer their questions and often sign a consent that is not truly informed. METHODS To identify the genetic knowledge and training needs of prescribers, we conducted an online survey of physicians prescribing genetic testing in oncology between January and March 2020. The survey consisted of 17 closed questions and 3 open questions. RESULTS We obtained 35 usable questionnaires which show that 50% of the prescribing physicians questioned lack knowledge of genetics, but do not express a need for training. They were interested in the provision of a digital teaching aid for patients. DISCUSSION We have therefore made a film for patients, available in free access, which aims to shed light on the analysis of genetic characteristics. The film helps physicians to explain the offered analyses and their consequences (https://youtu.be/5lWUSsteavs).
Collapse
Affiliation(s)
| | | | - Bettina Couderc
- IUCT-Oncopole, Toulouse, France; Université Toulouse 3, UMR 1295 Inserm, Toulouse, France.
| |
Collapse
|
13
|
Lavelle TA, Smith HS. Pediatric Genomic Medicine: Value, Implementation, and Access. Clin Ther 2023; 45:687-689. [PMID: 37563063 DOI: 10.1016/j.clinthera.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Tara A Lavelle
- Center for the Evaluation of Value and Risk in Health, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts.
| | - Hadley Stevens Smith
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| |
Collapse
|
14
|
Bouffler SE, Lee L, Lynch F, Martyn M, Lynch E, Macciocca I, Curnow L, McCorkell G, Lunke S, Chong B, Marum JE, Delatycki M, Downie L, Goranitis I, Vears DF, Best S, Clausen M, Bombard Y, Stark Z, Gaff CL. Two-step offer and return of multiple types of additional genomic findings to families after ultrarapid trio genomic testing in the acute care setting: a study protocol. BMJ Open 2023; 13:e072999. [PMID: 37270192 DOI: 10.1136/bmjopen-2023-072999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
INTRODUCTION As routine genomic testing expands, so too does the opportunity to look for additional health information unrelated to the original reason for testing, termed additional findings (AF). Analysis for many different types of AF may be available, particularly to families undergoing trio genomic testing. The optimal model for service delivery remains to be determined, especially when the original test occurs in the acute care setting. METHODS AND ANALYSIS Families enrolled in a national study providing ultrarapid genomic testing to critically ill children will be offered analysis for three types of AF on their stored genomic data: paediatric-onset conditions in the child, adult-onset conditions in each parent and reproductive carrier screening for the parents as a couple. The offer will be made 3-6 months after diagnostic testing. Parents will have access to a modified version of the Genetics Adviser web-based decision support tool before attending a genetic counselling appointment to discuss consent for AF. Parental experiences will be evaluated using qualitative and quantitative methods on data collected through surveys, appointment recordings and interviews at multiple time points. Evaluation will focus on parental preferences, uptake, decision support use and understanding of AF. Genetic health professionals' perspectives on acceptability and feasibility of AF will also be captured through surveys and interviews. ETHICS AND DISSEMINATION This project received ethics approval from the Melbourne Health Human Research Ethics Committee as part of the Australian Genomics Health Alliance protocol: HREC/16/MH/251. Findings will be disseminated through peer-review journal articles and at conferences nationally and internationally.
Collapse
Affiliation(s)
| | - Ling Lee
- Melbourne Genomics Health Alliance, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Fiona Lynch
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa Martyn
- Melbourne Genomics Health Alliance, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Elly Lynch
- Melbourne Genomics Health Alliance, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ivan Macciocca
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Lisette Curnow
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Giulia McCorkell
- Australian Genomics Health Alliance, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian Lunke
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Justine E Marum
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martin Delatycki
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Lilian Downie
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ilias Goranitis
- Australian Genomics Health Alliance, Parkville, Victoria, Australia
- Health Economics Unit, Centre for Health Policy, Melbourne Schoold of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Danya F Vears
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie Best
- Australian Genomics Health Alliance, Parkville, Victoria, Australia
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Marc Clausen
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yvonne Bombard
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Zornitza Stark
- Australian Genomics Health Alliance, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Clara L Gaff
- Melbourne Genomics Health Alliance, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Codina-Solà M, Trujillano L, Abulí A, Rovira-Moreno E, Muñoz-Cabello P, Campos B, Fernández-Álvarez P, Palau D, Carrasco E, Valenzuela I, Cueto-González AM, Lasa-Aranzasti A, Limeres J, Leno-Colorado J, Costa-Roger M, Moles-Fernández A, Balmaña J, Díez O, Cuscó I, Garcia-Arumí E, Tizzano EF. An spanish study of secondary findings in families affected with mendelian disorders: choices, prevalence and family history. Eur J Hum Genet 2023; 31:223-230. [PMID: 36446894 PMCID: PMC9905470 DOI: 10.1038/s41431-022-01240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Clinical exome sequencing has the potential to identify pathogenic variants unrelated to the purpose of the study (secondary findings, SFs). Data describing actual choices of SFs in participants in a clinical setting and factors influencing their decision are virtually non-existant in Europe. In this work, we report the acceptance rate of SFs, calculate their prevalence and study factors associated with the decision in a cohort of patients affected with a rare genetic disorder in a Spanish Hospital. Finally, we re-examine the presence of previously non reported family history in positive cases. We retrospectively reviewed informed consent choices and SF results from 824 unrelated probands affected with rare genetic disorders who underwent whole-genome or exome sequencing. Ninety percent of families (740/824) affected with rare disorders wished to be informed of SFs. Declining SFs was associated with a prenatal setting (30% vs. 8.7%, p = 0.025), consanguinity (19% vs. 8.7%, p = 0.013), male gender (10.6% vs. 1.5%, p = 0.00865) and the proband being a minor (10.6% vs. 1.5%, p = 0.014). Overall, 27 pathogenic or likely pathogenic variants were identified in 27 individuals, with an SF prevalence of 3.6%. Disclosure of SFs increased the percentage of positive family histories and resulted in early diagnosis or changes in the management of 10 individuals from five families. We show that the acceptance of SFs in Spain is high and the disclosure of SFs leads to a clinically meaningful change in the medical management of individuals.
Collapse
Affiliation(s)
- Marta Codina-Solà
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain.
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain.
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain.
| | - Laura Trujillano
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Anna Abulí
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain
| | - Eulàlia Rovira-Moreno
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain
| | - Patricia Muñoz-Cabello
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Berta Campos
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Paula Fernández-Álvarez
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain
| | - Dolors Palau
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Estela Carrasco
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Irene Valenzuela
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain
| | - Anna Maria Cueto-González
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain
| | - Javier Limeres
- European Reference Networks for rare, low prevalence and complex diseases of the heart (ERN GUARD-Heart), Barcelona, Spain
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Centre for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Jordi Leno-Colorado
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Costa-Roger
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Orland Díez
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ivon Cuscó
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Department of Genetics, Hospital Sant Pau, Barcelona, Spain
| | - Elena Garcia-Arumí
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Eduardo Fidel Tizzano
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Barcelona, Spain
| |
Collapse
|
16
|
Majeed S, Mighton C, Malkin D, Bombard Y. Heath policy guiding the identification, analysis and management of secondary findings for individuals undergoing genomic sequencing: a systematic review protocol. BMJ Open 2022; 12:e065496. [PMID: 36549730 PMCID: PMC9791410 DOI: 10.1136/bmjopen-2022-065496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Genomic sequencing is increasingly enabling precision care across medical specialties; however, the discovery of genomic 'secondary findings' (SFs) unrelated to the patient's primary indication remains a profuse, unintended consequence. Existing practices within the continuum of SF identification, analysis and management are numerous, inconsistent and sometimes contradictory across health conditions and regions. Final decisions are often at the discretion of the genomic sequencing laboratory, bioinformatician or treating physician. This difference in healthcare delivery causes inconsistent information, disclosure and downstream impacts required to manage SFs and patient outcomes. Improving our understanding of the SF health policy landscape can determine components of the SF policy continuum spanning generation through to management that are in conflict, limitations of current guidance and existing needs across clinical settings. METHODS AND ANALYSIS We will carry out a systematic review to catalogue and appraise current guidance directing the identification, analysis and management of SFs for participants receiving genomic sequencing globally. We will conduct a comprehensive search of Medline (Medline R, Medline Epub Ahead of Print and Medline-In-Process & In-Data-Review Citations), Embase and Cochrane databases (n=5, inception to Feb 2022) and a grey literature search of international genomics websites (n=64; inception to May 2022). Key inclusion criteria include: guidance produced by health organisations, bioethics committees and professional associations, outlining recommendations for: (1) SF identification, (2) SF analysis or (3) SF management. Non-English language articles and conference abstracts will be excluded. Guidance will be critically appraised with the Appraisal of Guidelines for Research & Evaluation Instrument (AGREE) II tool. We will interpret our findings by process and across populations using a qualitative descriptive approach. ETHICS AND DISSEMINATION Our systematic review evaluates published data and does not require ethics review. Our findings will be disseminated through peer-reviewed publications, conference presentations and workshops with precision medicine stakeholders. PROSPERO REGISTRATION NUMBER CRD42022316079.
Collapse
Affiliation(s)
- Safa Majeed
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chloe Mighton
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Yvonne Bombard
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Carrasco E, López-Fernández A, Codina-Sola M, Valenzuela I, Cueto-González AM, Villacampa G, Navarro V, Torres-Esquius S, Palau D, Cruellas M, Torres M, Perez-Dueñas B, Abulí A, Diez O, Sábado-Álvarez C, García-Arumí E, Tizzano EF, Moreno L, Balmaña J. Clinical and psychological implications of secondary and incidental findings in cancer susceptibility genes after exome sequencing in patients with rare disorders. J Med Genet 2022:jmg-2022-108929. [DOI: 10.1136/jmg-2022-108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Background/ObjectivesExome sequencing may identify pathogenic variants unrelated with the purpose of the analysis. We investigated the frequency of secondary and incidental findings (SF/IF) in cancer susceptibility genes (CSG), their clinical actionability and the psychological impact in individuals with an SF/IF (cases) compared with individuals tested due to their cancer history (controls).MethodsThis study analysed 533 exomes ordered for non-cancer conditions. Medical records were reviewed for clinical actionability of SF/IF. Psychological impact was analysed using the Multidimensional Impact of Cancer Risk Assessment (MICRA) scale and compared between cases and controls with a propensity score weighting method.ResultsThe frequency of SF/IF in CSG was 2.1% (95% CI 1.1% to 3.8%): threeBRCA2, threePMS2, twoSDHB, and one each inBRCA1,MLH1andRAD51C. Among the relatives, 18 were carriers. Twenty enrolled for surveillance, and a neoplasm was diagnosed in 20%: three paragangliomas and one breast cancer. Cases presented higher MICRA mean scores than controls (21.3 vs 16.2 in MICRA total score, 6.3 vs 4.2 in the distress subscale, and 8.3 vs 6.6 in the uncertainty subscale; all p<0.001).ConclusionSF/IF in CSG were identified in 2.1% of patients. Despite a numerically higher psychological impact, the identification of SF/IF allowed early detection and cancer prevention in families without cancer history.
Collapse
|
18
|
Martone S, Buonagura AT, Marra R, Rosato BE, Del Giudice F, Bonfiglio F, Capasso M, Iolascon A, Andolfo I, Russo R. Clinical exome-based panel testing for medically actionable secondary findings in a cohort of 383 Italian participants. Front Genet 2022; 13:956723. [DOI: 10.3389/fgene.2022.956723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Next-generation sequencing-based genetic testing represents a great opportunity to identify hereditary predispositions to specific pathological conditions and to promptly implement health surveillance or therapeutic protocols in case of disease. The term secondary finding refers to the active search for causative variants in genes associated with medically actionable conditions.Methods: We evaluated 59 medically actionable ACMG genes using a targeted in silico analysis of clinical exome sequencing performed in 383 consecutive individuals referred to our Medical Genetics Unit. A three-tier classification system of SFs for assessing their clinical impact and supporting a decision-making process for reporting was established.Results: We identified SFs with high/moderate evidence of pathogenicity in 7.0% (27/383) of analyzed subjects. Among these, 12/27 (44.4%) were carriers of a high-risk recessive disease allele. The most represented disease domains were cancer predisposition (33.3%), cardiac disorders (16.7%), and familial hypercholesterolemia (12.5%).Conclusion: Although still debated, ensuring during NGS-based genetic testing an opportunistic screening might be valuable for personal and familial early management and surveillance of medically actionable disorders, the individual’s reproductive choices, and the prevalence assessment of underestimated hereditary genetic diseases.
Collapse
|
19
|
Prevalence of pathogenic germline variants in the circulating tumor DNA testing. Int J Clin Oncol 2022; 27:1554-1561. [PMID: 35870019 PMCID: PMC9510107 DOI: 10.1007/s10147-022-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 11/05/2022]
Abstract
Abstract
Background
Somatic and germline variants are not distinguishable by circulating tumor DNA (ctDNA) testing without analyzing non-tumor samples. Although confirmatory germline testing is clinically relevant, the criteria for selecting presumed germline variants have not been established in ctDNA testing. In the present study, we aimed to evaluate the prevalence of pathogenic germline variants in clinical ctDNA testing through their variant allele fractions (VAFs).
Methods
A total of consecutive 106 patients with advanced solid tumors who underwent ctDNA testing (Guardant360®) between January 2018 and March 2020 were eligible for this study. To verify the origin of pathogenic variants reported in ctDNA testing, germline sequencing was performed using peripheral blood DNA samples archived in the Clinical Bioresource Center in Kyoto University Hospital (Kyoto, Japan) under clinical research settings.
Results
Among 223 pathogenic variants reported in ctDNA testing, the median VAF was 0.9% (0.02–81.8%), and 88 variants with ≥ 1% VAFs were analyzed in germline sequencing. Among 25 variants with ≥ 30% VAFs, seven were found in peripheral blood DNA (BRCA2: n = 6, JAK2: n = 1). In contrast, among the 63 variants with VAFs ranging from 1 to < 30%, only one variant was found in peripheral blood DNA (TP53: n = 1). Eventually, this variant with 15.6% VAF was defined to be an acquired variant, because its allelic distribution did not completely link to those of neighboring germline polymorphisms.
Conclusion
Our current study demonstrated that VAFs values are helpful for selecting presumed germline variants in clinical ctDNA testing.
Collapse
|
20
|
Kondo T, Yamamoto Y, Fukuyama K, Kanai M, Yamada A, Matsubara J, Quy PN, Yoshioka M, Yamada T, Minamiguchi S, Matsumoto S, Kosugi S, Muto M. Germline sequencing for presumed germline pathogenic variants via tumor-only comprehensive genomic profiling. Int J Clin Oncol 2022; 27:1256-1263. [PMID: 35567649 DOI: 10.1007/s10147-022-02176-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/17/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The European Society for Medical Oncology Precision Medicine Working Group (ESMO-PMWG) published recommendations regarding confirmatory germline testing for presumed germline pathogenic variants (PGPVs) in tumor-only comprehensive genomic profiling (CGP). However, the clinical validity of these recommendations has not been investigated in a real-world practice. METHODS Medical records of 180 consecutive patients who obtained the results of a tumor-only CGP (FoundationOne® CDx, Foundation Medicine, Inc, Cambridge, MA, USA) between October 2018 and March 2020, were retrospectively reviewed. After excluding patients with no reported variants in 45 actionable genes (n = 6), or no archived germline DNA samples (n = 31), 143 patients were investigated. The PGPVs were selected from the CGP report and germline sequencing were performed using DNA samples archived in Clinical Bioresource Center in Kyoto University Hospital (Kyoto, Japan). RESULTS A total of 195 variants were classified as PGPV based on the conventional criteria. Germline sequencing disclosed that 12 variants (6.2%) were of germline origin. In contrast, after filtering these 195 variants through the ESMO-PMWG recommendation criteria for confirmatory germline testing, following seven PGPVs, BRCA2 (n = 2), BRIP1 (n = 1), BAP1 (n = 1), PMS2 (n = 1), MSH2 (n = 1), and SDHB (n = 1) remained and six variants (85.7%) were confirmed to be of germline origin. CONCLUSION Our current data suggested that the application of ESMO-PMWG criteria is helpful in selecting PGPVs with a high likelihood of germline origin in a tumor-only CGP in daily clinical practice.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.,Clinical Genetics Unit, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshihiro Yamamoto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keita Fukuyama
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Atsushi Yamada
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junichi Matsubara
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Pham Nguyen Quy
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Yoshioka
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Clinical Genetics Unit, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahiro Yamada
- Clinical Genetics Unit, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shigemi Matsumoto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinji Kosugi
- Clinical Genetics Unit, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
21
|
Higashigawa S, Matsubayashi H, Kiyozumi Y, Kado N, Nishimura S, Oishi T, Sugino T, Fushiki K, Shirasu H, Yasui H, Mamesaya N, Fukuzaki N, Kunitomo K, Horiuchi Y, Kenmotsu H, Serizawa M. Present status of germline findings in precision medicine for Japanese cancer patients: issues in the current system. Jpn J Clin Oncol 2022; 52:599-608. [PMID: 35411369 DOI: 10.1093/jjco/hyac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/11/2021] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Since 2019, precision cancer medicine has been covered by national insurance in Japan; however, to date, germline findings have not been fully reported. The aim of this study was to evaluate the current status and raise a problem of germline finding analysis and disclosure in Japanese precision cancer medicine. METHODS Germline findings of 52 genes were examined in 296 cases with advanced cancer by a case series study. RESULTS Six (2.0%) cases were examined by the Oncoguide™ NCC Oncopanel with germline testing, but no germline findings were reported. The remaining 290 (98.0%) cases were analyzed by FoundationOne® CDx (tumor-only testing), which recognized 404 pathogenic variants; those of BRCA1/2 were recognized in 16 (5.5%) tumors. Our institutional algorithm suggested 39 candidate germline findings in 34 cases, while the public algorithm listed at least 91 candidate germline findings. Four germline findings had been previously identified (BRCA1: 3 and ATM: 1). Nine of 30 cases with candidate germline findings excluding these known germline findings refused or deferred germline testing. Only 4 of 16 cases that received counseling underwent germline testing, and those 4 revealed 3 germline findings (BRCA2, CDK4 and RAD51C); in total, 8 (2.7%) germline findings were revealed. Reasons for refusing genetic counseling and/or germline testing included extra hospital visits, added expense for germline testing due to limited national insurance coverage, poor patient physical condition and no known family members associated with the possible germline finding. CONCLUSIONS In current Japanese precision cancer medicine, only a small fraction of the patients undergoes germline testing and demonstrated germline finding. The current results suggested a need for earlier indications for precision cancer medicine, broader insurance coverage and more efficient germline finding prediction algorithms, to increase the number of germline testings and to improve the following managements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yasue Horiuchi
- Division of Genetic Medicine Promotion.,Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | | | - Masakuni Serizawa
- Clinical Research Center, Shizuoka Cancer Center, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| |
Collapse
|
22
|
Smogavec M, Gerykova Bujalkova M, Lehner R, Neesen J, Behunova J, Yerlikaya-Schatten G, Reischer T, Altmann R, Weis D, Duba HC, Laccone F. Singleton exome sequencing of 90 fetuses with ultrasound anomalies revealing novel disease-causing variants and genotype-phenotype correlations. Eur J Hum Genet 2022; 30:428-438. [PMID: 34974531 PMCID: PMC8991249 DOI: 10.1038/s41431-021-01012-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022] Open
Abstract
Exome sequencing has been increasingly implemented in prenatal genetic testing for fetuses with morphological abnormalities but normal rapid aneuploidy detection and microarray analysis. We present a retrospective study of 90 fetuses with different abnormal ultrasound findings, in which we employed the singleton exome sequencing (sES; 75 fetuses) or to a lesser extent (15 fetuses) a multigene panel analysis of 6713 genes as a primary tool for the detection of monogenic diseases. The detection rate of pathogenic or likely pathogenic variants in this study was 34.4%. The highest diagnostic rate of 56% was in fetuses with multiple anomalies, followed by cases with skeletal or renal abnormalities (diagnostic rate of 50%, respectively). We report 20 novel disease-causing variants in different known disease-associated genes and new genotype-phenotype associations for the genes KMT2D, MN1, CDK10, and EXOC3L2. Based on our data, we postulate that sES of fetal index cases with a concurrent sampling of parental probes for targeted testing of the origin of detected fetal variants could be a suitable tool to obtain reliable and rapid prenatal results, particularly in situations where a trio analysis is not possible.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | | | - Reinhard Lehner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jana Behunova
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Gülen Yerlikaya-Schatten
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Theresa Reischer
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Altmann
- Department of Prenatal Medicine, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Hans-Christoph Duba
- Department of Medical Genetics, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Menko FH, Monkhorst K, Hogervorst FB, Rosenberg EH, Adank M, Ruijs MW, Bleiker EM, Sonke GS, Russell NS, Oldenburg HS, van der Kolk LE. Challenges in breast cancer genetic testing. A call for novel forms of multidisciplinary care and long-term evaluation. Crit Rev Oncol Hematol 2022; 176:103642. [DOI: 10.1016/j.critrevonc.2022.103642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
|
24
|
Wallander K, Thonberg H, Nilsson D, Tham E. Massive parallel sequencing in individuals with multiple primary tumours reveals the benefit of re-analysis. Hered Cancer Clin Pract 2021; 19:46. [PMID: 34711244 PMCID: PMC8555269 DOI: 10.1186/s13053-021-00203-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple primary cancers, defined as three or more primary tumours, are rare, and there are few genetic studies concerning them. There is a need for increased knowledge on the heritability of multiple primary cancers and genotype-phenotype correlations. We have performed whole-genome/exome sequencing (WGS/WES) in ten individuals with three or more primary tumours, with no previous findings on standard clinical genetic investigations. In one individual with a clinical diagnosis of MEN1, a likely pathogenic cryptic splice site variant was detected in the MEN1 gene. The variant (c.654C > A) is synonymous but we showed in a cDNA analysis that it affects splicing and leads to a frameshift, with the theoretical new amino acid sequence p.(Gly219Glufs*13). In one individual with metachronous colorectal cancers, ovarian cancer, endometrial cancer and chronic lymphocytic leukaemia, we found a likely pathogenic variant in the MLH1 gene (c.27G > A), and two risk factor variants in the genes CHEK2 and HOXB13. The MLH1 variant is synonymous but has previously been shown to be associated to constitutional low-grade hypermethylation of the MLH1 promoter, and segregates with disease in families with colorectal and endometrial cancer. No pathogenic single nucleotide or structural variants were detected in the remaining eight individuals in the study. The pathogenic variants found by WGS/WES were in genes already sequenced by Sanger sequencing and WES in the clinic, without any findings. We conclude that, in individuals with an unequivocal clinical diagnosis of a specific hereditary cancer syndrome, where standard clinical testing failed to detect a causative variant, re-analysis may lead to a diagnosis.
Collapse
Affiliation(s)
- Karin Wallander
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| | - Håkan Thonberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Remec ZI, Trebusak Podkrajsek K, Repic Lampret B, Kovac J, Groselj U, Tesovnik T, Battelino T, Debeljak M. Next-Generation Sequencing in Newborn Screening: A Review of Current State. Front Genet 2021; 12:662254. [PMID: 34122514 PMCID: PMC8188483 DOI: 10.3389/fgene.2021.662254] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Newborn screening was first introduced at the beginning of the 1960s with the successful implementation of the first phenylketonuria screening programs. Early expansion of the included disorders was slow because each additional disorder screened required a separate test. Subsequently, the technological advancements of biochemical methodology enabled the scaling-up of newborn screening, most notably with the implementation of tandem mass spectrometry. In recent years, we have witnessed a remarkable progression of high-throughput sequencing technologies, which has resulted in a continuous decrease of both cost and time required for genetic analysis. This has enabled more widespread use of the massive multiparallel sequencing. Genomic sequencing is now frequently used in clinical applications, and its implementation in newborn screening has been intensively advocated. The expansion of newborn screening has raised many clinical, ethical, legal, psychological, sociological, and technological concerns over time. This review provides an overview of the current state of next-generation sequencing regarding newborn screening including current recommendations and potential challenges for the use of such technologies in newborn screening.
Collapse
Affiliation(s)
- Ziga I. Remec
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebusak Podkrajsek
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Barbka Repic Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovac
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tine Tesovnik
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marusa Debeljak
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1391-1398. [PMID: 34012069 DOI: 10.1038/s41436-021-01171-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
|
27
|
Stakeholder views on opportunistic genomic screening in the Netherlands: a qualitative study. Eur J Hum Genet 2021; 29:949-956. [PMID: 33619333 DOI: 10.1038/s41431-021-00828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
Genome sequencing can be used to actively search for genetic variants unrelated to the initial clinical question. While such 'opportunistic genomic screening' (OGS) has been proposed in the USA, a European discussion on the ethics of OGS is only starting. Should testing for selected 'secondary findings' be offered to patients who need genetic sequencing? Using focus groups and interviews, we explored views on OGS in adults and minors from three perspectives: policy experts (n = 9), health professionals (n = 8) and patient representatives (n = 7). A thematic approach was used to analyze the data. There was consensus that OGS should be evaluated in terms of the classical 'screening' framework, rather than as a form of 'good patient care'. Accordingly, stakeholders agreed that professionals do not have a 'fiduciary duty' to look for secondary findings. Adding screening to clinical care was only conceivable with the patient's informed consent. In general, stakeholders were reluctant towards OGS. Arguments for regarding OGS being premature included lack of evidence regarding its clinical utility, also in view of uncertainties regarding general population penetrance, and concerns about both its psychosocial impact and respect for autonomy. All groups agreed that OGS means unequal access, which was seen as problematic. Yet, despite their concerns, stakeholders felt that offering screening for certain actionable pathogenic variants with known high penetrance could potentially be valuable in certain contexts for both adults and minors. Pharmacogenetic variants were regarded as a category by itself, for which OGS could potentially be beneficial.
Collapse
|
28
|
Pujol P, Barberis M, Beer P, Friedman E, Piulats JM, Capoluongo ED, Garcia Foncillas J, Ray-Coquard I, Penault-Llorca F, Foulkes WD, Turnbull C, Hanson H, Narod S, Arun BK, Aapro MS, Mandel JL, Normanno N, Lambrechts D, Vergote I, Anahory M, Baertschi B, Baudry K, Bignon YJ, Bollet M, Corsini C, Cussenot O, De la Motte Rouge T, Duboys de Labarre M, Duchamp F, Duriez C, Fizazi K, Galibert V, Gladieff L, Gligorov J, Hammel P, Imbert-Bouteille M, Jacot W, Kogut-Kubiak T, Lamy PJ, Nambot S, Neuzillet Y, Olschwang S, Rebillard X, Rey JM, Rideau C, Spano JP, Thomas F, Treilleux I, Vandromme M, Vendrell J, Vintraud M, Zarca D, Hughes KS, Alés Martínez JE. Clinical practice guidelines for BRCA1 and BRCA2 genetic testing. Eur J Cancer 2021; 146:30-47. [PMID: 33578357 DOI: 10.1016/j.ejca.2020.12.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022]
Abstract
BRCA1 and BRCA2 gene pathogenic variants account for most hereditary breast cancer and are increasingly used to determine eligibility for PARP inhibitor (PARPi) therapy of BRCA-related cancer. Because issues of BRCA testing in clinical practice now overlap with both preventive and therapeutic management, updated and comprehensive practice guidelines for BRCA genotyping are needed. The integrative recommendations for BRCA testing presented here aim to (1) identify individuals who may benefit from genetic counselling and risk-reducing strategies; (2) update germline and tumour-testing indications for PARPi-approved therapies; (3) provide testing recommendations for personalised management of early and metastatic breast cancer; and (4) address the issues of rapid process and tumour analysis. An international group of experts, including geneticists, medical and surgical oncologists, pathologists, ethicists and patient representatives, was commissioned by the French Society of Predictive and Personalised Medicine (SFMPP). The group followed a methodology based on specific formal guidelines development, including (1) evaluating the likelihood of BRCAm from a combined systematic review of the literature, risk assessment models and expert quotations, and (2) therapeutic values of BRCAm status for PARPi therapy in BRCA-related cancer and for management of early and advanced breast cancer. These international guidelines may help clinicians comprehensively update and standardise BRCA testing practices.
Collapse
Affiliation(s)
- Pascal Pujol
- Department of Cancer Genetics, CHU Montpellier, Univ Montpellier, Montpellier, France; CREEC, UMR IRD 224-CNRS 5290 Université Montpellier, Montpellier, France.
| | | | - Philp Beer
- Wellcome Trust Sanger institute, Cambridge, United Kingdom; Glasgow Precision Oncology Laboratory, United Kingdom.
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| | - Josep M Piulats
- Unidad Funcional de Cáncer de Próstata, Servicio de Oncología Médica, Hospital Universitari de Bellvitge-Institut Català d'Oncologia (ICO), Hospitalet de Llobregat, Spain; Servicio de Oncología Médica, Institut Català d'Oncologia (ICO), Hospitalet de Llobregat, Spain.
| | - Ettore D Capoluongo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università Federico II, CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.
| | - Jesus Garcia Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Diaz-UAM, Madrid, Spain.
| | - Isabelle Ray-Coquard
- Oncologie Médicale, Centre Leon Bérard; Univ Lyon, Université Claude Bernard Lyon1, Hesper EA 7425, F - 69003, Lyon, France.
| | - Frédérique Penault-Llorca
- Department of Biology and Pathology, Centre Jean Perrin, Clermont Ferrand, France; UMR INSERM 1240, Université Clermont Auvergne, Clermont Ferrand, France.
| | - William D Foulkes
- McGill University, Division of Medical Genetics, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; Genomics England, Queen Mary University of London, London, UK; Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Helen Hanson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| | - Steven Narod
- University of Toronto Dalla Lana School of Public Health, Toronto, ON, Canada; Canada Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada.
| | - Banu K Arun
- Anderson Cancer Center, The University of Texas, Department of Breast Medical Oncology, Division of Cancer Medicine, USA.
| | | | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| | - Diether Lambrechts
- Laboratory of Translational Genetics (VIB-KU Leuven), ON IV Herestraat 49 - box 912, 3000, Leuven Belgium.
| | - Ignace Vergote
- Department of Gynaecologic Oncology University Hospitals Leuven, Gasthuisberg Herestraat 49, 3000 Leuven, Belgium.
| | - Michèle Anahory
- Pech de Laclause, Bathmanabane & Associés Law Firm, Paris, France.
| | - Bernard Baertschi
- French National Institute for Health and Medical Research (INSERM) Ethics Committee, France University of Geneva, Geneva, Switzerland.
| | - Karen Baudry
- Department of Cancer Genetics, CHU Montpellier, Univ Montpellier, Montpellier, France.
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France; INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France.
| | - Marc Bollet
- Institut Hartmann, 4, rue Kléber, et Institut Rafael, 3 bd Bineau, 92309 Levallois-Perret cedex, France.
| | - Carole Corsini
- Department of Cancer Genetics, CHU Montpellier, Univ Montpellier, Montpellier, France.
| | - Olivier Cussenot
- CeRePP, Hopital Tenon, Paris, France; Sorbonne Université, Institut Universitaire de Cancérologie, GRC n°5 ONCOTYPE-URO, Hopital Tenon, APHP, Paris, France; Department of Urology, Assistance Publique- Hôpitaux de Paris, Hopital Tenon, Paris, France.
| | - Thibault De la Motte Rouge
- Inserm, Oncogenesis, Stress and Signaling, 35000 Rennes, France; Service d'oncologie médicale, CRLCC Eugène-Marquis, 35000 Rennes, France; UMR 1242, Inserm, Univ Rennes, CLCC Eugène Marquis, Rue Bataille Flandres Dunkerque, 35042, Rennes, France.
| | | | - Florence Duchamp
- Department of Cancer Genetics, CHU Montpellier, Univ Montpellier, Montpellier, France.
| | | | - Karim Fizazi
- Institut Gustave Roussy and University of Paris Sud, Villejuif, France.
| | - Virginie Galibert
- Department of Cancer Genetics, CHU Montpellier, Univ Montpellier, Montpellier, France.
| | - Laurence Gladieff
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-O, Toulouse, France.
| | | | - Pascal Hammel
- Department of Pancreatology, Hôpital Beaujon (AP-HP), Université Denis Diderot-Paris VII, Clichy, France.
| | | | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier (ICM), Univ. Montpellier, 208 rue des Apothicaires, 34298, Montpellier Cedex 5, France; Translational Research Unit, Institut du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France.
| | - Tatiana Kogut-Kubiak
- Department of Cancer Genetics, CHU Montpellier, Univ Montpellier, Montpellier, France.
| | - Pierre-Jean Lamy
- Institut d'analyse génomique-Imagenome, Labosud, Montpellier, France.
| | - Sophie Nambot
- Centre de Génétique et Centre de Référence Maladies Rares (Anomalies du Développement de l'Interrégion Est), Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France; Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France.
| | - Yann Neuzillet
- Service d'urologie et de transplantation rénale, hôpital Foch, université de Versailles - Saint-Quentin-en-Yvelines, 40, rue Worth, 92150 Suresnes, France.
| | - Sylviane Olschwang
- Aix Marseille Université, INSERM GMGF UMR 1251, France; Département de Génétique Médicale, Hôpital Européen & Groupe Ramsay Générale de Santé, Hôpital Clairval, Aix Marseille Université, Marseille, France.
| | | | - Jean-Marc Rey
- Department of Cancer Genetics, CHU Montpellier, Univ Montpellier, Montpellier, France.
| | - Chloé Rideau
- Department of Cancer Genetics, CHU Montpellier, Univ Montpellier, Montpellier, France.
| | - Jean-Philippe Spano
- Department of Medical Oncology, Hôpital Pitié Salpêtrière, APHP, Sorbonne Université, Paris, France; Inserm UMRS 1136, Sorbonne Université, Paris, France.
| | - Frédéric Thomas
- IRD, CREEC et MIVE911 avenue Agropolis, BP 64501, Montpellier 34 394, France.
| | - Isabelle Treilleux
- Department of Pathology, Centre Léon Bérard, 28 rue Laënnec, 69373, Lyon Cédex 08, France.
| | | | - Julie Vendrell
- IRCM, INSERM 1194, Department of Pathology and Oncobiology, Laboratoire de biologie des tumeurs solides, CHU Montpellier, Univ Montpellier, Montpellier, France.
| | - Michèle Vintraud
- Department of Radiotherapy, Hartmann Radiotherapy Center, Levallois-Perret, France.
| | - Daniel Zarca
- The Paris Breast Centre- L'Institut Français du Sein- 15 rue Jean Nicot, 75007, Paris, France.
| | - Kevin S Hughes
- Division of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jose E Alés Martínez
- Medical Oncology Department, Hospital Nuestra Señora de Sonsoles, Ávila, Ávila, Spain.
| |
Collapse
|
29
|
Molecular Features and Clinical Management of Hereditary Gynecological Cancers. Int J Mol Sci 2020; 21:ijms21249504. [PMID: 33327492 PMCID: PMC7765001 DOI: 10.3390/ijms21249504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Hereditary gynecological cancers are caused by several inherited genes. Tumors that arise in the female reproductive system, such as ovaries and the uterus, overlap with hereditary cancers. Several hereditary cancer-related genes are important because they might lead to therapeutic targets. Treatment of hereditary cancers should be updated in line with the advent of various new methods of evaluation. Next-generation sequencing has led to rapid, economical genetic analyses that have prompted a concomitant and significant paradigm shift with respect to hereditary cancers. Molecular tumor profiling is an epochal method for determining therapeutic targets. Clinical treatment strategies are now being designed based on biomarkers based on tumor profiling. Furthermore, the National Comprehensive Cancer Network (NCCN) guidelines significantly changed the genetic testing process in 2020 to initially consider multi-gene panel (MGP) evaluation. Here, we reviewed the molecular features and clinical management of hereditary gynecological malignancies, such as hereditary breast and ovarian cancer (HBOC), and Lynch, Li–Fraumeni, Cowden, and Peutz–Jeghers syndromes. We also reviewed cancer-susceptible genes revealed by MGP tests.
Collapse
|
30
|
Opportunistic genomic screening. Recommendations of the European Society of Human Genetics. Eur J Hum Genet 2020; 29:365-377. [PMID: 33223530 PMCID: PMC7940405 DOI: 10.1038/s41431-020-00758-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
If genome sequencing is performed in health care, in theory the opportunity arises to take a further look at the data: opportunistic genomic screening (OGS). The European Society of Human Genetics (ESHG) in 2013 recommended that genome analysis should be restricted to the original health problem at least for the time being. Other organizations have argued that ‘actionable’ genetic variants should or could be reported (including American College of Medical Genetics and Genomics, French Society of Predictive and Personalized Medicine, Genomics England). They argue that the opportunity should be used to routinely and systematically look for secondary findings—so-called opportunistic screening. From a normative perspective, the distinguishing characteristic of screening is not so much its context (whether public health or health care), but the lack of an indication for having this specific test or investigation in those to whom screening is offered. Screening entails a more precarious benefits-to-risks balance. The ESHG continues to recommend a cautious approach to opportunistic screening. Proportionality and autonomy must be guaranteed, and in collectively funded health-care systems the potential benefits must be balanced against health care expenditures. With regard to genome sequencing in pediatrics, ESHG argues that it is premature to look for later-onset conditions in children. Counseling should be offered and informed consent is and should be a central ethical norm. Depending on developing evidence on penetrance, actionability, and available resources, OGS pilots may be justified to generate data for a future, informed, comparative analysis of OGS and its main alternatives, such as cascade testing.
Collapse
|
31
|
Vu M, Degeling K, Martyn M, Lynch E, Chong B, Gaff C, IJzerman MJ. Evaluating the resource implications of different service delivery models for offering additional genomic findings. Genet Med 2020; 23:606-613. [PMID: 33214711 DOI: 10.1038/s41436-020-01030-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate the resource implications of different delivery models for the provision of additional findings (AF) in genomics from a health-care purchaser perspective. METHODS Data from the Additional Findings study were used to develop and validate a discrete event simulation model that represented the pathway of delivering AF. Resource implications were estimated by microcosting the consultations, sample verifications, bioinformatics, curation, and multidisciplinary case review meetings. A proof-of-concept model was used to generate costing, and then the simulation model was varied to assess the impact of an automated analysis pipeline, use of telehealth consultation, full automation with electronic decision support, and prioritizing case review for cases with pathogenic variants. RESULTS For the proof-of-concept delivery model, the average total cost to report AF was US$430 per patient irrespective of result pathogenicity (95% confidence interval [CI] US$375-US$489). However, the cost of per AF diagnosis was US$4349 (95% CI US$3794-US$4953). Alternative approaches to genetic counseling (telehealth, decision support materials) and to multidisciplinary case review (pathogenic AF cases only) lowered the total per patient cost of AF analysis and reporting by 41-51%. CONCLUSION Resources required to provide AF can be reduced substantially by implementing alternative approaches to counseling and multidisciplinary case review.
Collapse
Affiliation(s)
- Martin Vu
- Centre for Cancer Research and Centre for Health Policy, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia.,Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Koen Degeling
- Centre for Cancer Research and Centre for Health Policy, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia.,Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Melissa Martyn
- Murdoch Children's Research Institute, Melbourne, Australia.,Melbourne Genomics Health Alliance, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elly Lynch
- Murdoch Children's Research Institute, Melbourne, Australia.,Melbourne Genomics Health Alliance, Melbourne, Australia.,Victorian Clinical Genetics Services, Melbourne, Australia
| | - Belinda Chong
- Murdoch Children's Research Institute, Melbourne, Australia.,Victorian Clinical Genetics Services, Melbourne, Australia
| | - Clara Gaff
- Murdoch Children's Research Institute, Melbourne, Australia.,Melbourne Genomics Health Alliance, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Maarten J IJzerman
- Centre for Cancer Research and Centre for Health Policy, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia. .,Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia. .,Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.
| |
Collapse
|
32
|
Horiuchi Y, Matsubayashi H, Kiyozumi Y, Nishimura S, Higashigawa S, Kado N, Nagashima T, Mizuguchi M, Ohnami S, Arai M, Urakami K, Kusuhara M, Yamaguchi K. Disclosure of secondary findings in exome sequencing of 2480 Japanese cancer patients. Hum Genet 2020; 140:321-331. [PMID: 32710294 DOI: 10.1007/s00439-020-02207-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
High-throughput sequencing has greatly contributed to precision medicine. However, challenges remain in reporting secondary findings (SFs) of germline pathogenic variants and managing the affected patients. The aim of this study was to examine the incidence of SFs in Japanese cancer patients using whole exome sequencing (WES) and to understand patient preferences regarding SF disclosure. WES was conducted for 2480 cancer patients. Genomic data were screened and classified for variants of 59 genes listed by the American College of Medical Genetics and Genomics SF v2.0 and for an additional 13 hereditary cancer-related genes. Majority of the participants (68.9%; 1709/2480) opted for disclosure of their SFs. Thirty-two pathogenic or likely pathogenic variants, including BRCA1 (7 patients), BRCA2 (4), CHEK2 (4), PTEN (3), MLH1 (3), SDHB (2), MSH6 (1), NF1 (1), EXT2 (1), NF1 (1), NTRK1 (1), MYH7 (3), MYL2 (1), TNNT2 (1), LDLR (2), FBN1 (1), and KCNH2 (1) were recognized in 36 patients (1.5%). Twenty-eight (77.8%) patients underwent genetic counseling and received their SF results. Eighteen (64.3%) patients underwent clinical management for SFs. Genetic validation tests were administered significantly more frequently to patients with than without a SF-related personal history (P = 0.025). This was a first attempt at a large-scale systematic exome analysis in Japan; nevertheless, many cancer patients opted for disclosure of SFs and accepted or considered clinical management.
Collapse
Affiliation(s)
- Yasue Horiuchi
- Division of Genetic Counseling, Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan.,Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroyuki Matsubayashi
- Division of Genetic Counseling, Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan.
| | - Yoshimi Kiyozumi
- Division of Genetic Counseling, Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Seiichiro Nishimura
- Division of Genetic Counseling, Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Satomi Higashigawa
- Division of Genetic Counseling, Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Nobuhiro Kado
- Division of Genetic Counseling, Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | | | - Maki Mizuguchi
- Research Institute of Shizuoka Cancer Center, Shizuoka, Japan
| | - Sumiko Ohnami
- Research Institute of Shizuoka Cancer Center, Shizuoka, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenichi Urakami
- Research Institute of Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Ken Yamaguchi
- Research Institute of Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
33
|
Pujol P, Fodil-Chérif S, Mandel J, Baertschi B, Sanlaville D, Zarca D, Toledano A, Bloch P, Geneviève D. Réflexions éthiques sur le dépistage génétique préconceptionnel en population générale : le débat français et l’avis de la Société Française de Médecine Prédictive et Personnalisée. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.jemep.2019.100439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Dombrádi V, Pitini E, van El CG, Jani A, Cornel M, Villari P, Gray M, Bíró K. Value-based genomic screening: exploring genomic screening for chronic diseases using triple value principles. BMC Health Serv Res 2019; 19:823. [PMID: 31711483 PMCID: PMC6849239 DOI: 10.1186/s12913-019-4703-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genomic screening has unique challenges which makes it difficult to easily implement on a wide scale. If the costs, benefits and tradeoffs of investing in genomic screening are not evaluated properly, there is a risk of wasting finite healthcare resources and also causing avoidable harm. MAIN TEXT If healthcare professionals - including policy makers, payers and providers - wish to incorporate genomic screening into healthcare while minimizing waste, maximizing benefits, and considering results that matter to patients, using the principles of triple value (allocative, technical, and personal value) could help them to evaluate tough decisions and tradeoffs. Allocative value focuses on the optimal distribution of limited healthcare resources to maximize the health benefits to the entire population while also accounting for all the costs of care delivery. Technical value ensures that for any given condition, the right intervention is chosen and delivered in the right way. Various methods (e.g. ACCE, HTA, and Wilson and Jungner screening criteria) exist that can help identify appropriate genomic applications. Personal value incorporates preference based informed decision making to ensure that patients are informed about the benefits and harms of the choices available to them and to ensure they make choices based on their values and preferences. CONCLUSIONS Using triple value principles can help healthcare professionals make reasoned and tough judgements about benefits and tradeoffs when they are exploring the role genomic screening for chronic diseases could play in improving the health of their patients and populations.
Collapse
Affiliation(s)
- Viktor Dombrádi
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Erica Pitini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Carla G. van El
- Department of Clinical Genetics/Amsterdam Public Health research Institute, Section Community Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Anant Jani
- Value Based Healthcare Programme, Department of Primary Care, University of Oxford, Oxford, UK
| | - Martina Cornel
- Department of Clinical Genetics/Amsterdam Public Health research Institute, Section Community Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Muir Gray
- Value Based Healthcare Programme, Department of Primary Care, University of Oxford, Oxford, UK
- Oxford Centre for Triple Value Healthcare, Oxford, UK
| | - Klára Bíró
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
35
|
Yamamoto Y, Kanai M, Kou T, Sugiyama A, Nakamura E, Miyake H, Yamada T, Nishigaki M, Kondo T, Murakami H, Torishima M, Matsumoto S, Kosugi S, Muto M. Clinical significance of TP53 variants as possible secondary findings in tumor-only next-generation sequencing. J Hum Genet 2019; 65:125-132. [PMID: 31628423 PMCID: PMC6917569 DOI: 10.1038/s10038-019-0681-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
In tumor-only next-generation sequencing (NGS), identified variants have the potential to be secondary findings (SFs), but they require verification through additional germline testing. In the present study, 194 patients with advanced cancer who underwent tumor-only NGS between April 2015 and March 2018 were enrolled, and the incidences of possible and true SFs were evaluated. Among them, 120 patients (61.9%) harbored at least one possible SF. TP53 was the most frequent gene in which 97 variants were found in 91 patients (49.5%). Nine patients provided informed consent to undergo additional germline testing, and a total of 14 variants (BRCA1, n = 1; BRCA2, n = 2; PTEN, n = 2; RB1, n = 1; SMAD4, n = 1; STK11, n = 1; TP53, n = 6) were analyzed. Three variants (BRCA1, n = 1; BRCA2, n = 2) were confirmed to be SFs, whereas TP53 variants were confirmed to be somatic variants. To confirm the low prevalence of SFs in TP53, we analyzed 24 patients with TP53 variants who underwent a paired tumor–normal NGS assay. As expected, all TP53 variants were confirmed to be somatic variants. A total of 30 patients were tested for germline variants in TP53, but none of them resulted in true SFs, suggesting the low prevalence of SFs in this gene. Therefore, the significance of additional germline testing for TP53 variants appears to be relatively low in daily clinical practice using a tumor-only NGS assay, unless patients have any relevant medical or family history.
Collapse
Affiliation(s)
- Yoshihiro Yamamoto
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Kanai
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tadayuki Kou
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aiko Sugiyama
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eijiro Nakamura
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiko Miyake
- Faculty of Core Research, Natural Science Division, Ochanomizu University, Tokyo, Japan.,Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan
| | - Takahiro Yamada
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan.,Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Masakazu Nishigaki
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan.,Department of Human Health Sciences, School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Kondo
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan
| | - Hiromi Murakami
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan
| | | | - Shigemi Matsumoto
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Kosugi
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan.,Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Manabu Muto
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
From Targeting Somatic Mutations to Finding Inherited Cancer Predispositions: The Other Side of the Coin. Diagnostics (Basel) 2019; 9:diagnostics9030083. [PMID: 31357515 PMCID: PMC6787697 DOI: 10.3390/diagnostics9030083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
The expanding use of tumor genome analysis by next generation sequencing to drive target therapies has led to increased germline findings in genes predisposing to hereditary cancer. These putative germline findings obtained from theranostic analyses, such as BRCA1/2 gene testing, large panels, whole-exome, or whole-genome sequencing, need to be managed carefully and in an anticipated way with the patient. Before the genetic analysis of a tumor, specific information should be given to patients, who should be aware that the results may have extra-therapeutic medical issues for themselves and relatives. We previously published a list of 36 actionable genes predisposing to cancer for which informing the patient is recommended prior to pangenomic germline analysis because of available screening or preventive strategies. Here, we report clinical practice considerations and schemes for managing germline findings in tumor analyses, including written informed consent and a multidisciplinary approach involving an oncologist, molecular biologist/pathologist, and geneticist in case of germline findings. A somatic result showing a deleterious mutation in a known predisposing gene in a patient who has consented to this purpose should result in referral to a geneticist who is part of the multidisciplinary team. At any time of the somatic analysis process, the patient may have access to a geneticist consultation if additional information is required. This framework will optimally manage both personalized theranostic issues and specific preventive strategies for individuals and relatives; it will also simplify and accelerate the process of genetic testing.
Collapse
|
37
|
Yu JH, Appelbaum PS, Brothers KB, Joffe S, Kauffman TL, Koenig BA, Prince AE, Scollon S, Wolf SM, Bernhardt BA, Wilfond BS. Consent for clinical genome sequencing: considerations from the Clinical Sequencing Exploratory Research Consortium. Per Med 2019; 16:325-333. [PMID: 31313633 DOI: 10.2217/pme-2018-0076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Implementing genome and exome sequencing in clinical practice presents challenges, including obtaining meaningful informed consent. Consent may be challenging due to test limitations such as uncertainties associated with test results and interpretation, complexity created by the potential for additional findings and high patient expectations. We drew on the experiences of research teams within the Clinical Sequencing Exploratory Research (CSER1) Consortium on informed consent for clinical genome and exome sequencing (CGES) to negotiate consensus considerations. We present six considerations for clinicians and 12 key points to communicate as they support patients in deciding whether to undergo CGES. These considerations and key points provide a helpful starting point for informed consent to CGES, grounded in the Clinical Sequencing Exploratory Research (CSER1) experience.
Collapse
Affiliation(s)
- Joon-Ho Yu
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Treuman Katz Center for Pediatric Bioethics, Seattle Children's Hospital & Research Institute, Seattle, WA 98101, USA
| | - Paul S Appelbaum
- Department of Psychiatry, Columbia University Medical Center, NY, 10032, USA
| | - Kyle B Brothers
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Steven Joffe
- Department of Medical Ethics & Health Policy, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Tia L Kauffman
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR 97227, USA
| | - Barbara A Koenig
- Program in Bioethics, University of California, San Francisco, CA 94143, USA
| | - Anya Er Prince
- College of Law, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah Scollon
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Wolf
- Law School; Medical School; Consortium on Law & Values in Health, Environment & the Life Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Barbara A Bernhardt
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin S Wilfond
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Treuman Katz Center for Pediatric Bioethics, Seattle Children's Hospital & Research Institute, Seattle, WA 98101, USA
| | | |
Collapse
|
38
|
Stalke A, Pfister ED, Baumann U, Eilers M, Schäffer V, Illig T, Auber B, Schlegelberger B, Brackmann R, Prokisch H, Krooss S, Bohne J, Skawran B. Homozygous frame shift variant in ATP7B exon 1 leads to bypass of nonsense-mediated mRNA decay and to a protein capable of copper export. Eur J Hum Genet 2019; 27:879-887. [PMID: 30723317 DOI: 10.1038/s41431-019-0345-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Wilson disease (WD) is an autosomal recessive disease of copper excess due to pathogenic variants in the ATP7B gene coding for a copper-transporting ATPase. We present a 5-year-old girl with the homozygous frame shift variant NM_000053.3: c.19_20del in exon 1 of ATP7B (consecutive exon numbering with c.1 as first nucleotide of exon 1), detected by whole-exome sequencing as a secondary finding. The variant leads to a premature termination codon in exon 2. The girl exhibited no WD symptoms and no abnormalities in liver biopsy. ATP7B liver mRNA expression was comparable to healthy controls suggesting that nonsense-mediated mRNA decay (NMD) could be bypassed by the mechanism of translation reinitiation. To verify this hypothesis, a CMV-driven ATP7B minigene (pcDNA3) was equipped with the authentic ATP7B 5' untranslated region and a truncated intron 2. We introduced c.19_20del by site-directed mutagenesis and overexpressed the constructs in HEK293T cells. We analyzed ATP7B expression by qRT-PCR, northern and western blot, and examined protein function by copper export capacity assays. Northern blot, qRT-PCR, and western blot revealed that c.19_20del ATP7B mRNA and protein is expressed in size and amount comparable to wild-type. Copper export capacity was also comparable to wild-type. Our results indicate that c.19_20del in ATP7B is able to bypass NMD by translation reinitiation, demonstrating that the classification of truncating variants as pathogenic without additional investigations should be done carefully.
Collapse
Affiliation(s)
- Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany. .,Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany.
| | - Eva-Doreen Pfister
- Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Renate Brackmann
- Department of Child and Adolescent Medicine, Klinikum Herford, Herford, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Simon Krooss
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|