1
|
Chen S, Zhao W, Chen R, Sheng F, Gu Y, Hao S, Wu D, Lu B, Chen L, Wu Y, Xu Y, Han Y, Zhou L, Riazuddin SA, Fu Q, Yao K. FYCO1 regulates autophagy and senescence via PAK1/p21 in cataract. Arch Biochem Biophys 2024; 761:110180. [PMID: 39395618 DOI: 10.1016/j.abb.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND ARC (Age-related cataract) is one of the leading causes of vision impairment and blindness; however, its pathogenesis remains unclear. FYCO1 (FYVE and coiled-coil domain containing 1) serves as an autophagy adaptor. The present study investigated the role of FYCO1 in cataract. METHODS Ultraviolet-B (UVB) irradiation was used to establish a cataract mice model. Hematoxylin and eosin (H&E) assay were used to observe lens morphology. Cell models were constructed by cultivating SRA 01/04 cells with H2O2 and UVB. Cell counting kit-8 (CCK8) and Senescence-associated β-galactosidase (SA-β-Gal) assay were performed to explore proliferation and senescence. The gene and protein expression were assessed by quantitative real-time PCR (qRT-PCR), Western blot and immunofluorescence staining. RESULTS We demonstrated lens structural damage and downregulation of FYCO1 in mice with UVB-induced cataracts. In vitro results revealed a deletion in autophagy levels along with the decrease of FYCO1 expression in human lens epithelial cells (HLECs) after H2O2 treatment, which was confirmed in vivo. The knockout of FYCO1 in the HLECs did not change basal autophagy and senescence but suppressed HLECs response in the induction of both. Further investigation indicated that FYCO1 knockout inhibited senescence and p21 levels by suppressing the expression of p21 activated kinase 1 (PAK1) in cataract cell models. CONCLUSIONS This study has newly characterized the role of FYCO1 in UVB-induced cataracts and in oxidative stress, both of which are associated with ARCs. A novel association between FYCO1 and PAK1/p21 in lens epithelial cell autophagy, senescence, and cataractogenesis also appears to have been established.
Collapse
Affiliation(s)
- Shuying Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Wei Zhao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China; Eye Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China
| | - Rongrong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Feiyin Sheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuzhou Gu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shengjie Hao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Lu Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuhao Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yili Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yu Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Shu X, Liu Y, He F, Gong Y, Li J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024; 10:e26044. [PMID: 38390089 PMCID: PMC10881887 DOI: 10.1016/j.heliyon.2024.e26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Research on the pathogenesis of cataracts is ongoing and the number of publications on this topic is increasing annually. This study offers an overview of the research status, popular topics, and scholarly tendencies in the field of cataract pathogenesis over recent decades,which helps to guide future research directions, and optimize resource allocation. In the present study, we performed a bibliometric analysis of cataract pathogenesis. Publications from January 1, 1999, to December 20, 2023, were collected from the Web of Science Core Collection (WoSCC), and the extracted data were quantified and analyzed. We analyzed and presented the data using Microsoft Excel, VOSviewer, CiteSpace, and Python. In all, 4006 articles were evaluated based on various characteristics, including publication year, authors, countries, institutions, journals, citations, and keywords. This study utilized VOSviewer to conduct visualized analysis, including co-authorship, co-citation, co-occurrence, and network visualization. The CiteSpace software was used to identify keywords with significant bursts of activity. The number of annual global publications climbed from 76 to 277 between 1999 and 2023, a 264.47% rise. Experimental Eye Research published the most manuscripts (178 publications), whereas Investigative Ophthalmology & Visual Science received the most citations (6675 citations). The most influential and productive country, institution, and author were the United States (1244 publications, 54,456 citations), University of California system (136 publications, 5401 citations), and Yao Ke (49 publications, 838 citations), respectively. The top 100 ranked keywords are divided into four clusters through co-occurrence analysis: (1) secondary cataracts, (2) oxidative stress, (3) gene mutations and protein abnormalities, and (4) alteration of biological processes in lens epithelial cells. Further discussions on the four subtopics outline the research topics and trends. In conclusion, the specific mechanism of cataract formation remains a popular topic for future research and should be explored in greater depth.
Collapse
Affiliation(s)
- Xinjie Shu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yingying Liu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Fanfan He
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yu Gong
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| |
Collapse
|
3
|
Ullah MI, Rehman Z, Dad R, Alsrhani A, Shakil M, Ghanem HB, Alameen AAM, Elsadek MF, Eltayeb LB, Ullah S, Atif M. Identification and Functional Characterization of Mutation in FYCO1 in Families with Congenital Cataract. Life (Basel) 2023; 13:1788. [PMID: 37629644 PMCID: PMC10456301 DOI: 10.3390/life13081788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Congenital cataract (CC) causes a third of the cases of treatable childhood blindness worldwide. CC is a disorder of the crystalline lens which is established as clinically divergent and has complex heterogeneity. This study aimed to determine the genetic basis of CC. Whole blood was obtained from four consanguineous families with CC. Genomic DNA was extracted from the blood, and the combination of targeted and Sanger sequencing was used to identify the causative gene. The mutations detected were analyzed in silico for structural and protein-protein interactions to predict their impact on protein activities. The sequencing found a known FYCO1 mutation (c.2206C>T; p.Gln736Term) in autosomal recessive mode in families with CC. Co-segregation analysis showed affected individuals as homozygous and carriers as heterozygous for the mutation and the unaffected as wild-type. Bioinformatics tools uncovered the loss of the Znf domain and structural compactness of the mutant protein. In conclusion, a previously reported nonsense mutation was identified in four consanguineous families with CC. Structural analysis predicted the protein as disordered and coordinated with other structural proteins. The autophagy process was found to be significant for the development of the lens and maintenance of its transparency. The identification of these markers expands the scientific knowledge of CC; the future goal should be to understand the mechanism of disease severity. Ascertaining the genetic etiology of CC in a family member facilitates establishing a molecular diagnosis, unlocks the prospect of prenatal diagnosis in pregnancies, and guides the successive generations by genetic counseling.
Collapse
Affiliation(s)
- Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.); (H.B.G.); (A.A.M.A.); (M.A.)
| | - Zaira Rehman
- Department of Pathology, Indus Hospital & Health Network, Karachi 75190, Pakistan;
| | - Rubina Dad
- Structure Biology Research Centre, Human Technopole, 20157 Milan, Italy
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.); (H.B.G.); (A.A.M.A.); (M.A.)
| | - Muhammad Shakil
- Department of Biochemistry, King Edward Medical University, Lahore 54600, Pakistan;
- Department of Biochemistry, University of Health Sciences, Lahore 54600, Pakistan
| | - Heba Bassiony Ghanem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.); (H.B.G.); (A.A.M.A.); (M.A.)
| | - Ayman Ali Mohammed Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.); (H.B.G.); (A.A.M.A.); (M.A.)
| | - Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj, Riyadh 11942, Saudi Arabia;
| | - Sajjad Ullah
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54600, Pakistan;
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.); (H.B.G.); (A.A.M.A.); (M.A.)
| |
Collapse
|
4
|
Bellamy KKL, Lingaas F. Cataracts in Havanese: genome wide association study reveals two loci associated with posterior polar cataract. Canine Med Genet 2023; 10:5. [PMID: 37118843 PMCID: PMC10142750 DOI: 10.1186/s40575-023-00127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Cataract is considered an important health issue in Havanese, and studies indicate a breed predisposition. Possible consequences of cataracts include lens induced uveitis, reduced eyesight, and blindness in severe cases. Reducing the prevalence of cataracts could therefore improve health and welfare significantly. The most frequently diagnosed forms of cataract in Havanese are cortical- and anterior suture line cataract, but cases of posterior polar cataract are also regularly reported. Out of the three, posterior polar- and cortical cataracts are considered the most clinically relevant. RESULTS We performed a genome wide association study that included 57 controls and 27 + 23 + 7 cases of cortical-, anterior suture line- and posterior polar cataract, respectively. An association analysis using a mixed linear model, revealed two SNPs on CFA20 (BICF2S23632983, p = 7.2e-09) and CFA21 (BICF2G630640490, p = 3.3e-09), that were significantly associated with posterior polar cataract, both of which are linked to relevant candidate genes. The results suggest that the two variants are linked to alleles with large effects on posterior polar cataract formation, possibly in a dominant fashion, and identifies regions that should be subject to further sequencing. Promising regions on CFA4 and CF30 were also identified in the association analysis of cortical cataract. The top SNPs on each chromosome, chr4_12164500 (p = 4.3e-06) and chr30_28836339 (p = 5.6e-06), are located within, or in immediate proximity to, potential cataract candidate genes. The study shows that age at examination is strongly associated with sensitivity of cataract screening. Havanese in Norway are on average 3.4 years old when eye examinations are performed: an age where most dogs that are genetically at risk have not yet developed clinically observable changes. Increasing the average age of breeding animals could increase accuracy of selection, leading to improved health. CONCLUSIONS The study identified two loci, on CFA20 and CFA21, that were significantly associated with posterior polar cataract in Havanese. SNPs that showed putative association with cortical cataracts, were observed on CFA4 and CFA30. All the top SNPs are located in close proximity to cataract candidate genes. The study also show that sensitivity of cataract screening is highly dependent on age at examination.
Collapse
Affiliation(s)
- Kim K L Bellamy
- The Norwegian Kennel Club, Oslo, Norway.
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Frode Lingaas
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Brennan L, Costello MJ, Hejtmancik JF, Menko AS, Riazuddin SA, Shiels A, Kantorow M. Autophagy Requirements for Eye Lens Differentiation and Transparency. Cells 2023; 12:475. [PMID: 36766820 PMCID: PMC9914699 DOI: 10.3390/cells12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Recent evidence points to autophagy as an essential cellular requirement for achieving the mature structure, homeostasis, and transparency of the lens. Collective evidence from multiple laboratories using chick, mouse, primate, and human model systems provides evidence that classic autophagy structures, ranging from double-membrane autophagosomes to single-membrane autolysosomes, are found throughout the lens in both undifferentiated lens epithelial cells and maturing lens fiber cells. Recently, key autophagy signaling pathways have been identified to initiate critical steps in the lens differentiation program, including the elimination of organelles to form the core lens organelle-free zone. Other recent studies using ex vivo lens culture demonstrate that the low oxygen environment of the lens drives HIF1a-induced autophagy via upregulation of essential mitophagy components to direct the specific elimination of the mitochondria, endoplasmic reticulum, and Golgi apparatus during lens fiber cell differentiation. Pioneering studies on the structural requirements for the elimination of nuclei during lens differentiation reveal the presence of an entirely novel structure associated with degrading lens nuclei termed the nuclear excisosome. Considerable evidence also indicates that autophagy is a requirement for lens homeostasis, differentiation, and transparency, since the mutation of key autophagy proteins results in human cataract formation.
Collapse
Affiliation(s)
- Lisa Brennan
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33460, USA
| | - M. Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marc Kantorow
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33460, USA
| |
Collapse
|
6
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
7
|
A Novel Mutation in the FYCO1 Gene Causing Congenital Cataract: Case Study of a Chinese Family. DISEASE MARKERS 2022; 2022:5838104. [PMID: 36061348 PMCID: PMC9439885 DOI: 10.1155/2022/5838104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
Congenital cataract is the most important global cause of visual impairment in children. Autosomal dominant and autosomal recessive inheritance account for the majority of the hereditary nonsyndromic congenital cataract. The function of FYCO1 gene is to guide the transport of the microtubule-directed vesicles. Mutations in the FYCO1 gene may cause cataracts. We reported a novel nonsense mutation in FYCO1 (c.1411C > T, P. R471 ∗), which could cause nonsyndrome autosomal recessive congenital cataract. We underwent an ophthalmology examination of all participants and collected blood samples from all participants and extracted genomic DNAs. By whole exome sequencing, we found that this family carried an unreported mutation in the FYCO1 gene: c.1411C > T, P. R471 ∗. Sanger sequencing was performed to verify the mutation. We used ITASSER and PYMOL to predict and compare the structure and function of the mutated proteins. Using SIFT software and referring to the relevant guidelines of ACMG, the mutation was determined to be pathogenic. The models suggested that the nonsense mutation p.R471∗ resulted in a profound disruption of the FYCO1 protein structure. This report expands the locus information of the FYCO1 mutations.
Collapse
|
8
|
Saleem RS, Siddiqui SN, Irshad S, Ashraf NM, Hamid A, Khan MAU, Khan MI, Micheal S. Targeted gene sequencing of FYCO1 identified a novel mutation in a Pakistani family for autosomal recessive congenital cataract. Mol Genet Genomic Med 2022; 10:e1985. [PMID: 35638468 PMCID: PMC9356559 DOI: 10.1002/mgg3.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background Congenital cataract is causing one‐third of blindness worldwide. Congenital cataract is heterogeneous in its inheritance patterns. The current study is aimed to explore the unknown genetic causes underlying congenital cataracts. Methods Blood samples from affected and normal individuals of n = 25 Pakistani families identified with congenital cataracts were collected. Genomic DNA was extracted and Sanger sequencing was performed to identify novel pathogenic variants in the FYCO1 (MIM#607182) gene. Later structural bioinformatics tools and molecular dynamics simulations were performed to analyze the impact of these variants on protein structure and function. Results Sanger sequencing resulted in the identification of a novel splice site mutation (NM_024513.3: c.3151‐29_3151‐7del) segregating in an autosomal recessive manner. This novel variant was confirmed to be absent in the n = 300 population controls. Further, bioinformatics tools revealed the formation of a mutant protein with a loss of the Znf domain. In addition, we also found a previously known (c.4127 T > C; p.Leu1376Pro) mutation in four families. We also report a novel heterozygous variant (c.3419G > A; p.Arg1140Gln) in another family. Conclusions In conclusion, we report a novel deletion (NM_024513.3: c.3151‐29_3151‐7del) in one family and a frequent homozygous missense mutation (c.4127 T > C; p.Leu1376Pro) in four Pakistani families. The current research highlights the importance of autophagy in lens development and maintaining its transparency.
Collapse
Affiliation(s)
- Rani Saira Saleem
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, Pakistan
| | - Sorath Noorani Siddiqui
- Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Eye Trust Hospital, Rawalpindi, Pakistan
| | - Saba Irshad
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Punjab, Pakistan
| | - Arslan Hamid
- LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Shazia Micheal
- Department of Clinical Genetics, AcademicMedical Centre, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Al-Badran RA, Al-Badran AI, Mabudi H, Neissi M, Mohammadi-Asl J. Detection of an FYCO1 nonsense mutation in an affected patient with autosomal recessive cataract (CTRCT18): a case report. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autosomal recessive cataract (CTRCT18) is a rare type of congenital cataract that develops to complete and lifelong childhood blindness. This inherited disorder is one of the major visual health concerns in infants. Genetic studies discovered that various gene mutations resulted in congenital cataracts. This study reports an 8-month-old affected boy from a consanguineous family with a diagnosis of congenital cataract and a causative genetic abnormality.
Case presentation
In this study, we applied whole-exome sequencing (WES) followed by Sanger sequencing to identify probable gene defects in an affected patient with a congenital cataract. We found a homozygous disease-causing FYCO1 gene mutation (c.1387 G > T; p.G463X), located in exon 8 (NM_024513), causing a nonsense mutation that has been resulted in the stop codon. Parents are heterozygous for the detected mutation.
Conclusions
Our findings establish that this detected FYCO1 gene mutation is a pathogenic variant causing autosomal recessive cataract.
Collapse
|
10
|
FYCO1 Frameshift Deletion in Wirehaired Pointing Griffon Dogs with Juvenile Cataract. Genes (Basel) 2022; 13:genes13020334. [PMID: 35205377 PMCID: PMC8871958 DOI: 10.3390/genes13020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
Different breed-specific inherited cataracts have been described in dogs. In this study, we investigated an inbred family of Wirehaired Pointing Griffon dogs in which three offspring were affected by juvenile cataract. The pedigree suggested monogenic autosomal recessive inheritance of the trait. Whole-genome sequencing of an affected dog revealed 12 protein-changing variants that were not present in 566 control genomes, of which two were located in functional candidate genes, FYCO1 and CRYGB. Targeted genotyping of both variants in the investigated family excluded CRYGB and revealed perfect co-segregation of the FYCO1 variant with the juvenile cataract phenotype. This variant, FYCO1:c.2024delG, represents a 1 bp frameshift deletion predicted to truncate ~50% of the open reading frame p.(Ser675Thrfs*5). FYCO1 encodes the FYVE and coiled-coil domain autophagy adaptor 1, a known regulator of lens autophagy, which is required for the normal homeostasis in the eye. In humans, at least 37 pathogenic variants in FYCO1 have been shown to cause autosomal recessive cataract. Fcyo1−/− knockout mice also develop cataracts. Together with the current knowledge on FYCO1 variants and their functional impact in humans and mice, our data strongly suggest FYCO1:c.2024delG as a candidate causative variant for the observed juvenile cataract in Wirehaired Pointing Griffon dogs. To the best of our knowledge, this study represents the first report of a FYCO1-related cataract in domestic animals.
Collapse
|