1
|
Camacho-Arias M, Villa M, Álvarez de Andres S, Rivera B, Vázquez P, Letón P, Martín-López L, Osuna-Marco MP, López-Ibor B. Cancer Predisposition Syndromes in Children: Who, How, and When Should Genetic Studies Be Considered? J Pediatr Hematol Oncol 2024; 46:409-414. [PMID: 39262393 DOI: 10.1097/mph.0000000000002932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/05/2024] [Indexed: 09/13/2024]
Abstract
Early detection of cancer predisposition syndromes (CPS) is crucial to determine optimal treatments and follow-up, and to provide appropriate genetic counseling. This study outlines an approach in a pediatric oncology unit, where 50 randomly selected patients underwent clinical assessment, leading to 44 eligible for genetic testing. We identified 2 pathogenic or likely pathogenic variants in genes associated with CPS and 6 variants of uncertain significance (VUS) potentially associated with cancer development. We emphasize the importance of a thorough and accurate collection of family history and physical examination data and the full coordination between pediatric oncologists and geneticists.
Collapse
Affiliation(s)
- Mónica Camacho-Arias
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Marta Villa
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | | | | | - Paula Vázquez
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Patricia Letón
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Laura Martín-López
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Marta Pilar Osuna-Marco
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Blanca López-Ibor
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| |
Collapse
|
2
|
Bakhuizen JJ, van Dijk F, Koudijs MJ, Bladergroen RS, Bon SBB, Hopman SMJ, Kester LA, Kranendonk MEG, Loeffen JLC, Smetsers SE, Sonneveld E, Tachdjian M, de Vos-Kerkhof E, Goudie C, Merks JHM, Kuiper RP, Jongmans MCJ. Comparison of clinical selection-based genetic testing with phenotype-agnostic extensive germline sequencing to diagnose genetic predisposition in children with cancer: a prospective diagnostic study. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:751-761. [PMID: 39159644 DOI: 10.1016/s2352-4642(24)00144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Germline data have become widely available in paediatric oncology since the introduction of paired tumour-germline sequencing. To guide best practice in cancer predisposition syndrome (CPS) diagnostics, we aimed to assess the diagnostic yield of extensive germline analysis compared with clinical selection-based genetic testing among all children with cancer. METHODS In this prospective diagnostic study, all children (aged 0-19 years) with newly diagnosed neoplasms treated in the Netherlands national centre, the Princess Máxima Center for Pediatric Oncology (Utrecht, Netherlands), between June 1, 2020, and July 31, 2022, were offered two approaches to identify CPSs. In a phenotype-driven approach, paediatric oncologists used the McGill Interactive Pediatric OncoGenetic Guidelines tool to select children for referral to a clinical geneticist, and for genetic testing. In a phenotype-agnostic approach, CPS gene panel sequencing (143 genes) was offered to all children. In children declining the research CPS gene panel, 49 CPS genes were still analysed as part of routine diagnostics by the pathologist. Children with a causative CPS identified before neoplasm diagnosis were excluded. The primary objective was to compare the number and type of patients diagnosed with a CPS between the two approaches. FINDINGS 1052 children were eligible for this study, of whom 733 (70%) completed both the phenotype-driven approach and received phenotype-agnostic CPS gene panel sequencing (143 genes n=600; 49 genes n=133). In 53 children, a CPS was identified: 14 (26%) were diagnosed by the phenotype-driven approach only, 22 (42%) by CPS gene sequencing only, and 17 (32%) by both approaches. In 27 (51%) of the 53 children, the identified CPS was considered causative for the child's neoplasm. Only one (4%) of the 27 causative CPSs was missed by the phenotype-driven approach and was identified solely by phenotype-agnostic CPS gene sequencing. In 26 (49%) children, a CPS with uncertain causality was identified, including 14 adult-onset CPSs. The CPSs with uncertain causality were mainly detected by the phenotype-agnostic approach (21 [81%] of 26). INTERPRETATION Phenotype-driven genetic testing and phenotype-agnostic CPS gene panel sequencing were complementary. The phenotype-driven approach identified the most causative CPSs. CPS gene panel sequencing identified additional CPSs, many of those with uncertain causality, but some with clinical utility. We advise clinical evaluation for CPSs in all children with neoplasms. Phenotype-agnostic testing of all CPS genes is preferably conducted only in research settings and should be paired with counseling. FUNDING Stichting Kinderen Kankervrij.
Collapse
Affiliation(s)
- Jette J Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Freerk van Dijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marco J Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | | | - Saskia M J Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Jan L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Melissa Tachdjian
- Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, QC, Canada
| | | | - Catherine Goudie
- Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, QC, Canada; Department of Pediatrics, Division of Hematology-Oncology, McGill University Health Centre, Montreal, QC, Canada
| | - Johannes H M Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
3
|
Telman-Kołodziejczyk G, Strauss E, Sosnowska-Sienkiewicz P, Januszkiewicz-Lewandowska D. The Prevalence of Cancer Predisposition Syndromes (CPSs) in Children with a Neoplasm: A Cohort Study in a Central and Eastern European Population. Genes (Basel) 2024; 15:1141. [PMID: 39336731 PMCID: PMC11431396 DOI: 10.3390/genes15091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
IMPORTANCE The etiology of pediatric cancers is often unclear; however, advancements in genetics have identified significant roles for genetic disorders in their development. Over time, the number of cancer predisposition syndromes (CPSs) and awareness of them have increased, providing the possibility of cancer prevention and early detection. PURPOSE In this study, we present data concerning the number and type of oncological cases and their correlation with CPS occurrence in a cohort of Central and Eastern European pediatric patients. MATERIALS The data were collected between 2000 and 2019 at the Karol Jonscher Clinical Hospital of Poznan University of Medical Sciences, resulting in a cohort of 2190 cases in total, of which 193 children (8.81%) were confirmed to have a CPS. RESULTS CPSs occurred most frequently in infancy (22.90% of all children suffering from any diagnosed cancer during the first year of life; p < 0.0001), accounting for more than one-quarter of all CPS cases in our cohort. CPSs were least likely to be observed in patients aged 14 and 15 years (2.17% and 2.44% of children diagnosed with any of the listed cancers at the exact age, respectively; p < 0.05). Among CPSs, the most common were neurofibromatosis type I (NF1), Li-Fraumeni syndrome (LFS), and Down syndrome (DS). CONCLUSIONS To conclude, it is important to emphasize the need for personalized treatment for each patient affected by both CPSs and subsequent cancer in order to reduce the toxicity of therapy and improve quality of life by reducing the risk of side effects.
Collapse
Affiliation(s)
- Gabriela Telman-Kołodziejczyk
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska Street 32, 60-479 Poznan, Poland;
| | - Patrycja Sosnowska-Sienkiewicz
- Department of Pediatric Surgery, Traumatology and Urology, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland;
| | - Danuta Januszkiewicz-Lewandowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| |
Collapse
|
4
|
Kaffai S, Angelova-Toshkin D, Weins AB, Ickinger S, Steinke-Lange V, Vollert K, Frühwald MC, Kuhlen M. Cancer predisposing syndromes in childhood and adolescence pose several challenges necessitating interdisciplinary care in dedicated programs. Front Pediatr 2024; 12:1410061. [PMID: 38887560 PMCID: PMC11180882 DOI: 10.3389/fped.2024.1410061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Genetic disposition is a major etiologic factor in childhood cancer. More than 100 cancer predisposing syndromes (CPS) are known. Surveillance protocols seek to mitigate morbidity and mortality. To implement recommendations in patient care and to ascertain that the constant gain of knowledge forces its way into practice specific pediatric CPS programs were established. Patients and methods We retrospectively analyzed data on children, adolescents, and young adults referred to our pediatric CPS program between October 1, 2021, and March 31, 2023. Follow-up ended on December 31, 2023. Results We identified 67 patients (30 male, 36 female, 1 non-binary, median age 9.5 years). Thirty-five patients were referred for CPS surveillance, 32 for features suspicious of a CPS including café-au-lait macules (n = 10), overgrowth (n = 9), other specific symptoms (n = 4), cancer suspicious of a CPS (n = 6), and rare neoplasms (n = 3). CPS was confirmed by clinical criteria in 6 patients and genetic testing in 7 (of 13). In addition, 6 clinically unaffected at-risk relatives were identified carrying a cancer predisposing pathogenic variant. A total of 48 patients were eventually diagnosed with CPS, surveillance recommendations were on record for 45. Of those, 8 patients did not keep their appointments for various reasons. Surveillance revealed neoplasms (n = 2) and metachronous tumors (n = 4) by clinical (n = 2), radiological examination (n = 2), and endoscopy (n = 2). Psychosocial counselling was utilized by 16 (of 45; 35.6%) families. Conclusions The diverse pediatric CPSs pose several challenges necessitating interdisciplinary care in specified CPS programs. To ultimately improve outcome including psychosocial well-being joint clinical and research efforts are necessary.
Collapse
Affiliation(s)
- Stefanie Kaffai
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Daniela Angelova-Toshkin
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Andreas B. Weins
- Augsburger Zentrum für Seltene Erkrankungen, University of Augsburg, Augsburg, Germany
| | - Sonja Ickinger
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Kurt Vollert
- Department of Diagnostic and Interventional Radiology, University of Augsburg, Augsburg, Germany
| | - Michael C. Frühwald
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
5
|
Linga BG, Mohammed SGAA, Farrell T, Rifai HA, Al-Dewik N, Qoronfleh MW. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers (Basel) 2024; 16:2017. [PMID: 38893137 PMCID: PMC11171256 DOI: 10.3390/cancers16112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
As next-generation sequencing (NGS) has become more widely used, germline and rare genetic variations responsible for inherited illnesses, including cancer predisposition syndromes (CPSs) that account for up to 10% of childhood malignancies, have been found. The CPSs are a group of germline genetic disorders that have been identified as risk factors for pediatric cancer development. Excluding a few "classic" CPSs, there is no agreement regarding when and how to conduct germline genetic diagnostic studies in children with cancer due to the constant evolution of knowledge in NGS technologies. Various clinical screening tools have been suggested to aid in the identification of individuals who are at greater risk, using diverse strategies and with varied outcomes. We present here an overview of the primary clinical and molecular characteristics of various CPSs and summarize the existing clinical genomics data on the prevalence of CPSs in pediatric cancer patients. Additionally, we discuss several ethical issues, challenges, limitations, cost-effectiveness, and integration of genomic newborn screening for CPSs into a healthcare system. Furthermore, we assess the effectiveness of commonly utilized decision-support tools in identifying patients who may benefit from genetic counseling and/or direct genetic testing. This investigation highlights a tailored and systematic approach utilizing medical newborn screening tools such as the genome sequencing of high-risk newborns for CPSs, which could be a practical and cost-effective strategy in pediatric cancer care.
Collapse
Affiliation(s)
- BalaSubramani Gattu Linga
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | | | - Thomas Farrell
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | - Nader Al-Dewik
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha 0974, Qatar
- Faculty of Health and Social Care Sciences, Kingston University and St George’s University of London, Kingston upon Thames, Surrey, London KT1 2EE, UK
| | - M. Walid Qoronfleh
- Healthcare Research & Policy Division, Q3 Research Institute (QRI), Ann Arbor, MI 48197, USA
| |
Collapse
|
6
|
Kratz CP, Lupo PJ, Zelley K, Schienda J, Nichols KE, Stewart DR, Malkin D, Brodeur GM, Maxwell K, Plon SE, Walsh MF. Adult-Onset Cancer Predisposition Syndromes in Children and Adolescents-To Test or not to Test? Clin Cancer Res 2024; 30:1733-1738. [PMID: 38411636 DOI: 10.1158/1078-0432.ccr-23-3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
With the increasing use of comprehensive germline genetic testing of children and adolescents with cancer, it has become evident that pathogenic variants (PV) in adult-onset cancer predisposition genes (aoCPG) underlying adult-onset cancer predisposition syndromes, such as Lynch syndrome or hereditary breast and ovarian cancer, are enriched and reported in 1% to 2% of children and adolescents with cancer. However, the causal relationship between PVs in aoCPGs and childhood cancer is still under investigation. The best-studied examples include heterozygous PVs in mismatch repair genes associated with Lynch syndrome in children with mismatch repair deficient high-grade glioma, heterozygous PVs in BARD1 in childhood neuroblastoma, and heterozygous PVs in BRCA2 in children with rhabdomyosarcoma. The low penetrance for pediatric cancers is considered to result from a combination of the low baseline risk of cancer in childhood and the report of only a modest relative risk of disease in childhood. Therefore, we do not advise that healthy children empirically be tested for PVs in an aoCPG before adulthood outside a research study. However, germline panel testing is increasingly being performed in children and adolescents with cancer, and exome and genome sequencing may be offered more commonly in this population in the future. The precise pediatric cancer risks and spectra associated with PVs in aoCPGs, underlying cellular mechanisms and somatic mutational signatures, as well as treatment response, second neoplasm risks, and psycho-oncological aspects require further research.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Kristin Zelley
- Division of Oncology at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kara Maxwell
- Department of Medicine, Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharon E Plon
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
7
|
Stoltze UK, Foss-Skiftesvik J, Hansen TVO, Rasmussen S, Karczewski KJ, Wadt KAW, Schmiegelow K. The evolutionary impact of childhood cancer on the human gene pool. Nat Commun 2024; 15:1881. [PMID: 38424437 PMCID: PMC10904397 DOI: 10.1038/s41467-024-45975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Germline pathogenic variants associated with increased childhood mortality must be subject to natural selection. Here, we analyze publicly available germline genetic metadata from 4,574 children with cancer [11 studies; 1,083 whole exome sequences (WES), 1,950 whole genome sequences (WGS), and 1,541 gene panel] and 141,456 adults [125,748 WES and 15,708 WGS]. We find that pediatric cancer predisposition syndrome (pCPS) genes [n = 85] are highly constrained, harboring only a quarter of the loss-of-function variants that would be expected. This strong indication of selective pressure on pCPS genes is found across multiple lines of germline genomics data from both pediatric and adult cohorts. For six genes [ELP1, GPR161, VHL and SDHA/B/C], a clear lack of mutational constraint calls the pediatric penetrance and/or severity of associated cancers into question. Conversely, out of 23 known pCPS genes associated with biallelic risk, two [9%, DIS3L2 and MSH2] show significant constraint, indicating that they may monoallelically increase childhood cancer risk. In summary, we show that population genetic data provide empirical evidence that heritable childhood cancer leads to natural selection powerful enough to have significantly impacted the present-day gene pool.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA.
| | - Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Neurosurgery, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark.
| |
Collapse
|
8
|
Wagener R, Brandes D, Jung M, Huetzen MA, Bergmann AK, Panier S, Picard D, Fischer U, Jachimowicz RD, Borkhardt A, Brozou T. Optical genome mapping identifies structural variants in potentially new cancer predisposition candidate genes in pediatric cancer patients. Int J Cancer 2024; 154:607-614. [PMID: 37776287 DOI: 10.1002/ijc.34721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 10/02/2023]
Abstract
Genetic predisposition is one of the major risk factors for pediatric cancer, with ~10% of children being carriers of a predisposing germline alteration. It is likely that this is the tip of the iceberg and many children are underdiagnosed, as most of the analysis focuses on single or short nucleotide variants, not considering the full spectrum of DNA alterations. Hence, we applied optical genome mapping (OGM) to our cohort of 34 pediatric cancer patients to perform an unbiased germline screening and analyze the frequency of structural variants (SVs) and their impact on cancer predisposition. All children were clinically highly suspicious for germline alterations (concomitant conditions or congenital anomalies, positive family cancer history, particular cancer type, synchronous or metachronous tumors), but whole exome sequencing (WES) had failed to detect pathogenic variants in cancer predisposing genes. OGM detected a median of 49 rare SVs (range 27-149) per patient. By analysis of 18 patient-parent trios, we identified three de novo SVs. Moreover, we discovered a likely pathogenic deletion of exon 3 in the known cancer predisposition gene BRCA2, and identified a duplication in RPA1, which might represent a new cancer predisposition gene. We conclude that optical genome mapping is a suitable tool for detecting potentially predisposing SVs in addition to WES in pediatric cancer patients.
Collapse
Affiliation(s)
- Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marie Jung
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maxim A Huetzen
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Stephanie Panier
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Ron D Jachimowicz
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne and Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Kim J, Vaksman Z, Egolf LE, Kaufman R, Evans JP, Conkrite KL, Danesh A, Lopez G, Randall MP, Dent MH, Farra LM, Menghani NL, Dymek M, Desai H, Hausler R, Hicks B, Auvil JG, Gerhard DS, Hakonarson H, Maxwell KN, Cole KA, Pugh TJ, Bosse KR, Khan J, Wei JS, Maris JM, Stewart DR, Diskin SJ. Germline pathogenic variants in neuroblastoma patients are enriched in BARD1 and predict worse survival. J Natl Cancer Inst 2024; 116:149-159. [PMID: 37688579 PMCID: PMC10777667 DOI: 10.1093/jnci/djad183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Neuroblastoma is an embryonal cancer of the developing sympathetic nervous system. The genetic contribution of rare pathogenic or likely pathogenic germline variants in patients without a family history remains unclear. METHODS Germline DNA sequencing was performed on 786 neuroblastoma patients. The frequency of rare cancer predisposition gene pathogenic or likely pathogenic variants in patients was compared with 2 cancer-free control cohorts. Matched tumor DNA sequencing was evaluated for second hits, and germline DNA array data from 5585 neuroblastoma patients and 23 505 cancer-free control children were analyzed to identify rare germline copy number variants. Patients with germline pathogenic or likely pathogenic variants were compared with those without to test for association with clinical characteristics, tumor features, and survival. RESULTS We observed 116 pathogenic or likely pathogenic variants involving 13.9% (109 of 786) of neuroblastoma patients, representing a statistically significant excess burden compared with cancer-free participants (odds ratio [OR] = 1.60, 95% confidence interval [CI] = 1.27 to 2.00). BARD1 harbored the most statistically significant enrichment of pathogenic or likely pathogenic variants (OR = 32.30, 95% CI = 6.44 to 310.35). Rare germline copy number variants disrupting BARD1 were identified in patients but absent in cancer-free participants (OR = 29.47, 95% CI = 1.52 to 570.70). Patients harboring a germline pathogenic or likely pathogenic variant had a worse overall survival compared with those without (P = 8.6 x 10-3). CONCLUSIONS BARD1 is an important neuroblastoma predisposition gene harboring both common and rare germline pathogenic or likely pathogenic variations. The presence of any germline pathogenic or likely pathogenic variant in a cancer predisposition gene was independently predictive of worse overall survival. As centers move toward paired tumor-normal sequencing at diagnosis, efforts should be made to centralize data and provide an infrastructure to support cooperative longitudinal prospective studies of germline pathogenic variation.
Collapse
Affiliation(s)
- Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Zalman Vaksman
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura E Egolf
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Kaufman
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karina L Conkrite
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, ON, Canada
| | - Gonzalo Lopez
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael P Randall
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maiah H Dent
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance M Farra
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil L Menghani
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malwina Dymek
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Hausler
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Belynda Hicks
- Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina A Cole
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kristopher R Bosse
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John M Maris
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Sharon J Diskin
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Zipper L, Wagener R, Fischer U, Hoffmann A, Yasin L, Brandes D, Soura S, Anwar A, Walter C, Varghese J, Hauer J, Auer F, Bhatia S, Dugas M, Junk SV, Stanulla M, Haas OA, Borkhardt A, Reiff T, Brozou T. Hyperdiploid acute lymphoblastic leukemia in children with LZTR1 germline variants. Hemasphere 2024; 8:e26. [PMID: 38434521 PMCID: PMC10878188 DOI: 10.1002/hem3.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
- Lisa Zipper
- Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
- German Cancer Consortium (DKTK)partner site Essen/DüsseldorfDüsseldorfGermany
| | - Anna Hoffmann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stavrieta Soura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Ammarah Anwar
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Carolin Walter
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Julian Varghese
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Julia Hauer
- Department of PediatricsSchool of Medicine, Technical University of MunichMunichGermany
| | - Franziska Auer
- Department of PediatricsSchool of Medicine, Technical University of MunichMunichGermany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Martin Dugas
- Institute of Medical InformaticsHeidelberg University HospitalHeidelbergGermany
| | - Stefanie V. Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Pediatric Hematology and OncologyHannover Medical SchoolHannoverGermany
| | - Martin Stanulla
- Department of Pediatric Hematology and OncologyHannover Medical SchoolHannoverGermany
| | - Oskar A. Haas
- St. Anna Children's Hospital, Pediatric ClinicMedical UniversityViennaAustria
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
- German Cancer Consortium (DKTK)partner site Essen/DüsseldorfDüsseldorfGermany
| | - Tobias Reiff
- Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
11
|
Freycon C, Lupo PJ, Witkowski L, Budd C, Foulkes WD, Goudie C. A systematic review of the prevalence of pathogenic or likely pathogenic germline variants in individuals with FOXO1 fusion-positive rhabdomyosarcoma. Pediatr Blood Cancer 2023; 70:e30651. [PMID: 37638828 DOI: 10.1002/pbc.30651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Several cancer predisposition syndromes (CPS) are reported to predispose to rhabdomyosarcoma, most frequently in children with embryonal rhabdomyosarcoma. There are lingering questions over the role of CPS in individuals with alveolar rhabdomyosarcoma (ARMS), which are frequently driven by FOXO1 fusion oncoproteins. We conducted a systematic review to identify patients with FOXO1 fusion-positive ARMS (FP-ARMS) who underwent germline DNA sequencing. We estimated the prevalence of pathogenic/likely pathogenic (P/LP) variants in cancer predisposing genes (CPGs) and of CPSs. We included 19 publications reporting on 191 patients with FP-ARMS. P/LP variants in CPGs were identified in 26/191 (13.6%) patients, nine (4.9%) of which were associated with a CPS diagnosis. Evidence for causal associations between CPSs and FP-ARMS could not be assessed with available data from this review. Only one patient was affected with a CPS known to predispose to rhabdomyosarcoma, Li-Fraumeni syndrome. Typical CPS associations with rhabdomyosarcoma are rare, but not nonexistent, in patients with FP-ARMS. FOXO1 fusion status, alone, is insufficient for clinicians to rely on to distinguish between patients with/without CPS.
Collapse
Affiliation(s)
- Claire Freycon
- Department of Pediatrics, Division of Hematology-Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Philip J Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Leora Witkowski
- Department of Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Crystal Budd
- Department of Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Catherine Goudie
- Department of Pediatrics, Division of Hematology-Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Schroeder C, Faust U, Krauße L, Liebmann A, Abele M, Demidov G, Schütz L, Kelemen O, Pohle A, Gauß S, Sturm M, Roggia C, Streiter M, Buchert R, Armenau-Ebinger S, Nann D, Beschorner R, Handgretinger R, Ebinger M, Lang P, Holzer U, Skokowa J, Ossowski S, Haack TB, Mau-Holzmann UA, Dufke A, Riess O, Brecht IB. Clinical trio genome sequencing facilitates the interpretation of variants in cancer predisposition genes in paediatric tumour patients. Eur J Hum Genet 2023; 31:1139-1146. [PMID: 37507557 PMCID: PMC10545765 DOI: 10.1038/s41431-023-01423-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The prevalence of pathogenic and likely pathogenic (P/LP) variants in genes associated with cancer predisposition syndromes (CPS) is estimated to be 8-18% for paediatric cancer patients. In more than half of the carriers, the family history is unsuspicious for CPS. Therefore, broad genetic testing could identify germline predisposition in additional children with cancer resulting in important implications for themselves and their families. We thus evaluated clinical trio genome sequencing (TGS) in a cohort of 72 paediatric patients with solid cancers other than retinoblastoma or CNS-tumours. The most prevalent cancer types were sarcoma (n = 26), neuroblastoma (n = 15), and nephroblastoma (n = 10). Overall, P/LP variants in CPS genes were identified in 18.1% of patients (13/72) and P/LP variants in autosomal-dominant CPS genes in 9.7% (7/72). Genetic evaluation would have been recommended for the majority of patients with P/LP variants according to the Jongmans criteria. Four patients (5.6%, 4/72) carried P/LP variants in autosomal-dominant genes known to be associated with their tumour type. With the immediate information on variant inheritance, TGS facilitated the identification of a de novo P/LP in NF1, a gonadosomatic mosaic in WT1 and two pathogenic variants in one patient (DICER1 and PALB2). TGS allows a more detailed characterization of structural variants with base-pair resolution of breakpoints which can be relevant for the interpretation of copy number variants. Altogether, TGS allows comprehensive identification of children with a CPS and supports the individualised clinical management of index patients and high-risk relatives.
Collapse
Affiliation(s)
- Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
- Centre for Personalized Cancer Prevention, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Luisa Krauße
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Michael Abele
- Department of Paediatric Haematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Leon Schütz
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Olga Kelemen
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Alexandra Pohle
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Silja Gauß
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Cristiana Roggia
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Monika Streiter
- Department of Paediatric Haematology and Oncology, Children's Hospital Heilbronn, Heilbronn, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Sorin Armenau-Ebinger
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Dominik Nann
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Rudi Beschorner
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Paediatric Haematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Department of Paediatric Haematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Peter Lang
- Department of Paediatric Haematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ursula Holzer
- Department of Paediatric Haematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Department of Oncology, Haematology, Immunology, Rheumatology, and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike A Mau-Holzmann
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
- Centre for Personalized Cancer Prevention, University Hospital Tübingen, Tübingen, Germany
- NGS Core Centre Tübingen, University Tübingen, Tübingen, Germany
| | - Ines B Brecht
- Department of Paediatric Haematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Wang Y, Ding Q, Prokopec S, Farncombe KM, Bruce J, Casalino S, McCuaig J, Szybowska M, van Engelen K, Lerner-Ellis J, Pugh TJ, Kim RH. Germline whole genome sequencing in adults with multiple primary tumors. Fam Cancer 2023; 22:513-520. [PMID: 37481477 DOI: 10.1007/s10689-023-00343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 07/24/2023]
Abstract
Multiple primary tumors (MPTs) are a harbinger of hereditary cancer syndromes. Affected individuals often fit genetic testing criteria for a number of hereditary cancer genes and undergo multigene panel testing. Other genomic testing options, such as whole exome (WES) and whole genome sequencing (WGS) are available, but the utility of these genomic approaches as a second-tier test for those with uninformative multigene panel testing has not been explored. Here, we report our germline sequencing results from WGS in 9 patients with MPTs who had non-informative multigene panel testing. Following germline WGS, sequence (agnostic or 735 selected genes) and copy number variant (CNV) analysis was performed according to the American College of Medical Genetics (ACMG) standards and guidelines for interpreting sequence variants and reporting CNVs. In this cohort, WGS, as a second-tier test, did not identify additional pathogenic or likely pathogenic variants in cancer predisposition genes. Although we identified a CHEK2 likely pathogenic variant and a MUTYH pathogenic variant, both were previously identified in the multigene panels and were not explanatory for the presented type of tumors. CNV analysis also failed to identify any pathogenic or likely pathogenic variants in cancer predisposition genes. In summary, after multigene panel testing, WGS did not reveal any additional pathogenic variants in patients with MPTs. Our study, based on a small cohort of patients with MPT, suggests that germline gene panel testing may be sufficient to investigate these cases. Future studies with larger sample sizes may further elucidate the additional utility of WGS in MPTs.
Collapse
Affiliation(s)
- Yiming Wang
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Qiliang Ding
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephenie Prokopec
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Kirsten M Farncombe
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jeffrey Bruce
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Selina Casalino
- Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jeanna McCuaig
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marta Szybowska
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kalene van Engelen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- London Health Science Centre, London, Canada
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | - Jordan Lerner-Ellis
- Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Raymond H Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.
- Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
McGee RB, Oak N, Harrison L, Xu K, Nuccio R, Blake AK, Mostafavi R, Lewis S, Taylor LM, Kubal M, Ouma A, Hines-Dowell SJ, Cheng C, Furtado LV, Nichols KE. Pathogenic Variants in Adult-Onset Cancer Predisposition Genes in Pediatric Cancer: Prevalence and Impact on Tumor Molecular Features and Clinical Management. Clin Cancer Res 2023; 29:1243-1251. [PMID: 36693186 PMCID: PMC10642481 DOI: 10.1158/1078-0432.ccr-22-2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Clinical genomic sequencing of pediatric tumors is increasingly uncovering pathogenic variants in adult-onset cancer predisposition genes (aoCPG). Nevertheless, it remains poorly understood how often aoCPG variants are of germline origin and whether they influence tumor molecular profiles and/or clinical care. In this study, we examined the prevalence, spectrum, and impacts of aoCPG variants on tumor genomic features and patient management at our institution. EXPERIMENTAL DESIGN This is a retrospective study of 1,018 children with cancer who underwent clinical genomic sequencing of their tumors. Tumor genomic data were queried for pathogenic variants affecting 24 preselected aoCPGs. Available tumor whole-genome sequencing (WGS) data were evaluated for second hit mutations, loss of heterozygosity (LOH), DNA mutational signatures, and homologous recombination deficiency (HRD). Patients whose tumors harbored one or more pathogenic aoCPG variants underwent subsequent germline testing based on hereditary cancer evaluation and family or provider preference. RESULTS Thirty-three patients (3%) had tumors harboring pathogenic variants affecting one or more aoCPGs. Among 21 tumors with sufficient WGS sequencing data, six (29%) harbored a second hit or LOH affecting the remaining aoCPG allele with four of these six tumors (67%) also exhibiting a DNA mutational signature consistent with the altered aoCPG. Two additional tumors demonstrated HRD, of uncertain relation to the identified aoCPG variant. Twenty-one of 26 patients (81%) completing germline testing were positive for the aoCPG variant in the germline. All germline-positive patients were counseled regarding future cancer risks, surveillance, and risk-reducing measures. No patients had immediate cancer therapy changed due to aoCPG data. CONCLUSIONS AoCPG variants are rare in pediatric tumors; however, many originate in the germline. Almost one third of tumor aoCPG variants examined exhibited a second hit and/or conferred an abnormal DNA mutational profile suggesting a role in tumor formation. aoCPG information aids in cancer risk prediction but is not commonly used to alter the treatment of pediatric cancers.
Collapse
Affiliation(s)
- Rose B. McGee
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lynn Harrison
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ke Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Regina Nuccio
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Alise K. Blake
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Roya Mostafavi
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sara Lewis
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie M. Taylor
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Manish Kubal
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Annastasia Ouma
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Larissa V. Furtado
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
15
|
Wagener R, Walter C, Auer F, Alzoubi D, Hauer J, Fischer U, Varghese J, Dugas M, Borkhardt A, Brozou T. The CHK2 kinase is recurrently mutated and functionally impaired in the germline of pediatric cancer patients. Int J Cancer 2023; 152:1388-1398. [PMID: 36468172 DOI: 10.1002/ijc.34390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/11/2022]
Abstract
Predisposing CHEK2 germline variants are associated with various adult-type malignancies, whereas their impact on cancer susceptibility in childhood cancer is unclear. To understand the frequency of germline variants in the CHEK2 gene and their impact on pediatric malignancies, we used whole-exome sequencing to search for CHEK2 variants in the germlines of 418 children diagnosed with cancer in our clinics. Moreover, we performed functional analysis of the pathogenic CHEK2 variants to analyze the effect of the alterations on CHK2 protein function. We detected a CHEK2 germline variant in 32/418 (7.7%) pediatric cancer patients and 46.8% of them had leukemia. Functional analysis of the pathogenic variants revealed that 5 pathogenic variants impaired CHK2 protein function. 6/32 patients carried one of these clearly damaging CHEK2 variants and two of them harbored a matching family history of cancer. In conclusion, we detected germline CHEK2 variants in 7.7% of all pediatric cancer patients, of which a minority but still relevant fraction of approximately 20% had a profound impact on protein expression or its phosphorylation after irradiation-induced DNA damage. Accordingly, we conclude that CHEK2 variants increase the risk for not only adult-onset but also pediatric cancer.
Collapse
Affiliation(s)
- Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Franziska Auer
- TUM School of Medicine, Department of Pediatrics, Technical University of Munich, Munchen, Germany
| | - Deya Alzoubi
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Hauer
- TUM School of Medicine, Department of Pediatrics, Technical University of Munich, Munchen, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Functional damaging germline variants in ETV6, IKZF1, PAX5 and RUNX1 predisposing to B-cell precursor acute lymphoblastic leukemia. Eur J Med Genet 2023; 66:104725. [PMID: 36764385 DOI: 10.1016/j.ejmg.2023.104725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/29/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Recent genome-wide studies have demonstrated that a significant proportion of children with cancer carry predisposing germline variants, with varying incidence according to cancer type. In general, there is a lower incidence of underlying germline predisposing variants among patients with B-cell acute lymphoblastic leukemia (B-ALL) compared to other types of cancer, but higher rates may be found in patients with specific leukemia subtypes. Two categories of ALL-predisposing variants have been described: common polymorphisms, conferring low-penetrance ALL susceptibility, and rare variants, conferring high-penetrance ALL susceptibility. Variants in genes encoding hematopoietic transcription factors are an example of the latter, and include ETV6, IKZF1, PAX5 and RUNX1. Here, we present an overview of the germline variants detected in patients with B-ALL in these four genes and a summary of functional studies analyzing the impacts of these variants upon protein function, and hence their effects with regard to leukemia predisposition. Furthermore, we review specific clinical characteristics of patients with B-ALL, including specific features of the patient or family history and associated somatic genetic characteristics, which are suggestive of underlying germline alterations in one of these genes. This review may be of assistance in the interpretation of patient genetic germline findings, made even more challenging by the absence of a suggestive family history or by an unknown familial cancer history. Despite a low incidence of underlying germline alterations in ETV6, IKZF1, PAX5 and RUNX1 in patients with B-ALL, identification of an underlying ALL predisposition syndrome is relevant to the clinical management of patients and their relatives, as the latter are also at risk of developing cancer.
Collapse
|
17
|
Wagener R, Walter C, Surowy HM, Brandes D, Soura S, Alzoubi D, Yasin L, Fischer U, Dugas M, Borkhardt A, Brozou T. Noncancer-related Secondary Findings in a Cohort of 231 Children With Cancer and Their Parents. J Pediatr Hematol Oncol 2023; 45:e244-e248. [PMID: 35537032 DOI: 10.1097/mph.0000000000002475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Application of next-generation sequencing may lead to the detection of secondary findings (SF) not related to the initially analyzed disease but to other severe medically actionable diseases. However, the analysis of SFs is not yet routinely performed. We mined whole-exome sequencing data of 231 pediatric cancer patients and their parents who had been treated in our center for the presence of SFs. By this approach, we identified in 6 children (2.6%) pathogenic germline variants in 5 of the noncancer-related genes on the American College of Medical Genetics and Genomics (ACMG) SF v3.0 list, of which the majority were related to cardiovascular diseases ( RYR2 , MYBPC3 , KCNQ1 ). Interestingly, only the patient harboring the KCNQ1 variant showed at the time point of the analysis signs of the related Long QT syndrome. Moreover, we report 3 variants of unknown significance which, although not classified as pathogenic, have been reported in the literature to occur in individuals with the respective disease. While the frequency of patients with SFs is low, the impact of such findings on the patients' life is enormous, with regard to the potential prevention of life-threatening diseases. Hence, we are convinced that such actionable SF should be routinely analyzed.
Collapse
Affiliation(s)
- Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Carolin Walter
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf
| | - Harald M Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf
| | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Stavrieta Soura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Deya Alzoubi
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| |
Collapse
|
18
|
Würtemberger J, Ripperger T, Vokuhl C, Bauer S, Teichert-von Lüttichau I, Wardelmann E, Niemeyer CM, Kratz CP, Schlegelberger B, Hettmer S. Genetic susceptibility in children, adolescents, and young adults diagnosed with soft-tissue sarcomas. Eur J Med Genet 2023; 66:104718. [PMID: 36764384 DOI: 10.1016/j.ejmg.2023.104718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 10/30/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Soft tissue sarcomas (STS) may arise as a consequence of germline variants in cancer predisposition genes (CPGs). We believe that elucidating germline sarcoma predisposition is critical for understanding disease biology and therapeutic requirements. Participation in surveillance programs may allow for early tumor detection, early initiation of therapy and, ultimately, better outcomes. Among children, adolescents, and adults diagnosed with soft-tissue sarcomas and examined as part of published germline sequencing studies, pathogenic/likely pathogenic (P/LP) variants in CPGs were reported in 7-33% of patients. P/LP germline variants were detected most frequently in TP53, NF1 and BRCA1/2. In this review, we describe reported associations between soft tissue sarcomas and germline variants in CPGs, with mentioning of locally aggressive and benign soft tissue tumors that have important associations with cancer predisposition syndromes. We also discuss recommendations for diagnostic germline genetic testing. Testing for sarcoma-predisposing germline variants should be considered as part of the routine clinical workup and care of any child, adolescent, or adult diagnosed with STS and take into account consequences for the whole family.
Collapse
Affiliation(s)
- Julia Würtemberger
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Vokuhl
- Institute of Pathology, University Hospital Bonn, 53127, Bonn, Germany
| | - Sebastian Bauer
- Department of Oncology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Irene Teichert-von Lüttichau
- Technical University of Munich, School of Medicine, Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Munich, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany.
| |
Collapse
|
19
|
Villani A, Davidson S, Kanwar N, Lo WW, Li Y, Cohen-Gogo S, Fuligni F, Edward LM, Light N, Layeghifard M, Harripaul R, Waldman L, Gallinger B, Comitani F, Brunga L, Hayes R, Anderson ND, Ramani AK, Yuki KE, Blay S, Johnstone B, Inglese C, Hammad R, Goudie C, Shuen A, Wasserman JD, Venier RE, Eliou M, Lorenti M, Ryan CA, Braga M, Gloven-Brown M, Han J, Montero M, Spatare F, Whitlock JA, Scherer SW, Chun K, Somerville MJ, Hawkins C, Abdelhaleem M, Ramaswamy V, Somers GR, Kyriakopoulou L, Hitzler J, Shago M, Morgenstern DA, Tabori U, Meyn S, Irwin MS, Malkin D, Shlien A. The clinical utility of integrative genomics in childhood cancer extends beyond targetable mutations. NATURE CANCER 2023; 4:203-221. [PMID: 36585449 PMCID: PMC9970873 DOI: 10.1038/s43018-022-00474-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/02/2022] [Indexed: 12/31/2022]
Abstract
We conducted integrative somatic-germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset. Therapeutically targetable variants (54% of patients) were of unanticipated timing and type, with over 20% derived from the germline. Corroborating mutational signatures (SBS3/BRCAness) in patients with germline homologous recombination defects demonstrates the potential utility of PARP inhibitors. Mutational burden was significantly elevated in 9% of patients. Sequential sampling identified changes in therapeutically targetable drivers in over one-third of patients, suggesting benefit from rebiopsy for genomic analysis at the time of relapse. Comprehensive cancer genomic profiling is useful at multiple points in the care trajectory for children and adolescents/young adults with cancer, supporting its integration into early clinical management.
Collapse
Affiliation(s)
- Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Scott Davidson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nisha Kanwar
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Winnie W Lo
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yisu Li
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah Cohen-Gogo
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fabio Fuligni
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Nicholas Light
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Mehdi Layeghifard
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ricardo Harripaul
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Larissa Waldman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Cancer Genetics and High-Risk Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Bailey Gallinger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Genetic Counselling, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Federico Comitani
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ledia Brunga
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Reid Hayes
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Nathaniel D Anderson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Arun K Ramani
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Center for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kyoko E Yuki
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Sasha Blay
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Brittney Johnstone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Cancer Genetics and High-Risk Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Cara Inglese
- Department of Genetic Counselling, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rawan Hammad
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Catherine Goudie
- Division of Hematology-Oncology, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Andrew Shuen
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jonathan D Wasserman
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosemarie E Venier
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Genetic Counselling, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Eliou
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Miranda Lorenti
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carol Ann Ryan
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Braga
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meagan Gloven-Brown
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jianan Han
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maria Montero
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Famida Spatare
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James A Whitlock
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Kathy Chun
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin J Somerville
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed Abdelhaleem
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Gino R Somers
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lianna Kyriakopoulou
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Mary Shago
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel A Morgenstern
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Meyn
- Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Meredith S Irwin
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada. .,Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada. .,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Bakhuizen JJ, Hopman SMJ, Bosscha MI, Dommering CJ, van den Heuvel-Eibrink MM, Hol JA, Kester LA, Koudijs MJ, Langenberg KPS, Loeffen JLC, van der Lugt J, Moll AC, van Noesel MM, Smetsers SE, de Vos-Kerkhof E, Merks JHM, Kuiper RP, Jongmans MCJ. Assessment of Cancer Predisposition Syndromes in a National Cohort of Children With a Neoplasm. JAMA Netw Open 2023; 6:e2254157. [PMID: 36735256 PMCID: PMC9898819 DOI: 10.1001/jamanetworkopen.2022.54157] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
IMPORTANCE To improve diagnostics of cancer predisposition syndromes (CPSs) in children with cancer, it is essential to evaluate the effect of CPS gene sequencing among all children with cancer and compare it with genetic testing based on clinical selection. However, a reliable comparison is difficult because recent reports on a phenotype-first approach in large, unselected childhood cancer cohorts are lacking. OBJECTIVE To describe a national children's cancer center's experience in diagnosing CPSs before introducing routine next-generation sequencing. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was conducted at the National Retinoblastoma Treatment Center (Amsterdam, the Netherlands) and the Princess Máxima Center for Pediatric Oncology (Utrecht, Netherlands) and included Dutch pediatric patients with a new diagnosis of neoplasm between June 1, 2018, and December 31, 2019. Follow-up was at least 18 months after neoplasm diagnosis. Data analysis was conducted from July 2021 to February 2022. EXPOSURES As part of routine diagnostics, pediatric oncologists and ophthalmologists checked for characteristics of CPSs and selected children for referral to clinical geneticists and genetic testing. MAIN OUTCOMES AND MEASURES Detected cancer predisposition syndromes. RESULTS A total of 824 patients (median [range] age at diagnosis 7.5 [0-18.9] years; 361 girls [44%]) were assessed, including 335 children with a hematological neoplasm (41%) and 489 (59%) with a solid tumor. In 71 of 824 children (8.6%), a CPS was identified, of which most (96%) were identified by a phenotype-driven approach. Down syndrome and neurofibromatosis type 1 were the most common CPSs diagnosed. In 42 of 71 patients (59%), a CPS was identified after these children developed a neoplasm. The specific type of neoplasm was the most frequent indicator for genetic testing, whereas family history played a minor role. CONCLUSIONS AND RELEVANCE In this cohort study of children with a neoplasm, the prevalence of CPSs identified by a phenotype-driven approach was 8.6%. The diagnostic approach for identifying CPSs is currently shifting toward a genotype-first approach. Future studies are needed to determine the diagnostic value, as well as possible disadvantages of CPS gene sequencing among all children with cancer compared with the phenotype-driven approach.
Collapse
Affiliation(s)
- Jette J. Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia M. J. Hopman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Machteld I. Bosscha
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Charlotte J. Dommering
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center-Wilhelmina Children’s Hospital, Utrecht, the Netherlands
| | - Janna A. Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lennart A. Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marco J. Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Jan L. C. Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Annette C. Moll
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Johannes H. M. Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
21
|
Identification of Germline Variants in Patients with Hereditary Cancer Syndromes in Northeast Mexico. Genes (Basel) 2023; 14:genes14020341. [PMID: 36833268 PMCID: PMC9957276 DOI: 10.3390/genes14020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Hereditary cancer syndromes (HCS) are genetic diseases with an increased risk of developing cancer. This research describes the implementation of a cancer prevention model, genetic counseling, and germline variants testing in an oncologic center in Mexico. A total of 315 patients received genetic counseling, genetic testing was offered, and 205 individuals were tested for HCS. In 6 years, 131 (63.90%) probands and 74 (36.09%) relatives were tested. Among the probands, we found that 85 (63.9%) had at least one germline variant. We identified founder mutations in BRCA1 and a novel variant in APC that led to the creation of an in-house detection process for the whole family. The most frequent syndrome was hereditary breast and ovarian cancer syndrome (HBOC) (41 cases with BRCA1 germline variants in most of the cases), followed by eight cases of hereditary non-polyposic cancer syndrome (HNPCC or Lynch syndrome) (with MLH1 as the primarily responsible gene), and other high cancer risk syndromes. Genetic counseling in HCS is still a global challenge. Multigene panels are an essential tool to detect the variants frequency. Our program has a high detection rate of probands with HCS and pathogenic variants (40%), compared with other reports that detect 10% in other populations.
Collapse
|
22
|
Kim J, Vaksman Z, Egolf LE, Kaufman R, Evans JP, Conkrite KL, Danesh A, Lopez G, Randall MP, Dent MH, Farra LM, Menghani N, Dymek M, Desai H, Hausler R, Auvil JG, Gerhard DS, Hakonarson H, Maxwell KN, Cole KA, Pugh TJ, Bosse KR, Khan J, Wei JS, Maris JM, Stewart DR, Diskin SJ. Germline pathogenic variants in 786 neuroblastoma patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.23.23284864. [PMID: 36747619 PMCID: PMC9901064 DOI: 10.1101/2023.01.23.23284864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Importance Neuroblastoma accounts for 12% of childhood cancer deaths. The genetic contribution of rare pathogenic germline variation in patients without a family history remains unclear. Objective To define the prevalence, spectrum, and clinical significance of pathogenic germline variation in cancer predisposition genes (CPGs) in neuroblastoma patients. Design Setting and Participants Germline DNA sequencing was performed on the peripheral blood from 786 neuroblastoma patients unselected for family history. Rare variants mapping to CPGs were evaluated for pathogenicity and the percentage of cases harboring pathogenic (P) or likely pathogenic (LP) variants was quantified. The frequency of CPG P-LP variants in neuroblastoma cases was compared to two distinct cancer-free control cohorts to assess enrichment. Matched tumor DNA sequencing was evaluated for "second hits" at CPGs and germline DNA array data from 5,585 neuroblastoma cases and 23,505 cancer-free control children was analyzed to identify rare germline copy number variants (CNVs) affecting genes with an excess burden of P-LP variants in neuroblastoma. Neuroblastoma patients with germline P-LP variants were compared to those without P-LP variants to test for association with clinical characteristics, tumor features, and patient survival. Main Outcomes and Measures Rare variant prevalence, pathogenicity, enrichment, and association with clinical characteristics, tumor features, and patient survival. Results We observed 116 P-LP variants in CPGs involving 13.9% (109/786) of patients, representing a significant excess burden of P-LP variants compared to controls (9.1%; P = 5.14 × 10-5, Odds Ratio: 1.60, 95% confidence interval: 1.27-2.00). BARD1 harbored the most significant burden of P-LP variants compared to controls (1.0% vs. 0.03%; P = 8.18 × 10-7; Odds Ratio: 32.30, 95% confidence interval: 6.44-310.35). Rare germline CNVs disrupting BARD1 were also identified in neuroblastoma patients (0.05%) but absent in controls (P = 7.08 × 10-3; Odds Ratio: 29.47, 95% confidence interval: 1.52 - 570.70). Overall, P-LP variants in DNA repair genes in this study were enriched in cases compared to controls (8.1% vs. 5.7%; P = 0.01; Odds Ratio: 1.45, 95% confidence interval: 1.08-1.92). Neuroblastoma patients harboring a germline P-LP variant had a worse overall survival when compared to patients without P-LP variants (P = 8.6 × 10-3), and this remained significant in a multivariate Cox proportional-hazards model (P = 0.01). Conclusions and Relevance Neuroblastoma patients harboring germline P-LP variants in CPGs have worse overall survival and BARD1 is an important predisposition gene affected by both common and rare pathogenic variation. Germline sequencing should be performed for all neuroblastoma patients at diagnosis to inform genetic counseling and support future longitudinal and mechanistic studies. Patients with a germline P-LP variant should be closely monitored, regardless of risk group assignment.
Collapse
Affiliation(s)
- Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Zalman Vaksman
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura E. Egolf
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Kaufman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J. Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karina L. Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, ON, M5S Canada
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael P. Randall
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maiah H. Dent
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance M. Farra
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Menghani
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malwina Dymek
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Hausler
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Penn Medicine BioBank
- Penn Medicine BioBank, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina A. Cole
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, ON, M5S Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S Canada
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jun S. Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Sharon J. Diskin
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Kratz CP, Smirnov D, Autry R, Jäger N, Waszak SM, Großhennig A, Berutti R, Wendorff M, Hainaut P, Pfister SM, Prokisch H, Ripperger T, Malkin D. Heterozygous BRCA1 and BRCA2 and Mismatch Repair Gene Pathogenic Variants in Children and Adolescents With Cancer. J Natl Cancer Inst 2022; 114:1523-1532. [PMID: 35980168 DOI: 10.1093/jnci/djac151] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/21/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Genetic predisposition is has been identified as a cause of cancer, yet little is known about the role of adult cancer predisposition syndromes in childhood cancer. We examined the extent to which heterozygous pathogenic germline variants in BRCA1, BRCA2, PALB2, ATM, CHEK2, MSH2, MSH6, MLH1, and PMS2 contribute to cancer risk in children and adolescents. METHODS We conducted a meta-analysis of 11 studies that incorporated comprehensive germline testing for children and adolescents with cancer. ClinVar pathogenic or likely pathogenic variants (PVs) in genes of interest were compared with 2 control groups. Results were validated in a cohort of mainly European patients and controls. We employed the Proxy External Controls Association Test to account for different pipelines. RESULTS Among 3975 children and adolescents with cancer, statistically significant associations with cancer risk were observed for PVs in BRCA1 and 2 (26 PVs vs 63 PVs among 27 501 controls, odds ratio = 2.78, 95% confidence interval = 1.69 to 4.45; P < .001) and mismatch repair genes (19 PVs vs 14 PVs among 27 501 controls, odds ratio = 7.33, 95% confidence interval = 3.64 to 14.82; P <.001). Associations were seen in brain and other solid tumors but not in hematologic neoplasms. We confirmed similar findings in 1664 pediatric cancer patients primarily of European descent. CONCLUSION These data suggest that heterozygous PVs in BRCA1 and 2 and mismatch repair genes contribute with reduced penetrance to cancer risk in children and adolescents. No changes to predictive genetic testing and surveillance recommendations are required.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dmitrii Smirnov
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert Autry
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Anika Großhennig
- Institute of Biostatistics, Hannover Medical School, Hannover, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Pierre Hainaut
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000, Grenoble, France
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Foss-Skiftesvik J, Stoltze UK, van Overeem Hansen T, Ahlborn LB, Sørensen E, Ostrowski SR, Kullegaard SMA, Laspiur AO, Melchior LC, Scheie D, Kristensen BW, Skjøth-Rasmussen J, Schmiegelow K, Wadt K, Mathiasen R. Redefining germline predisposition in children with molecularly characterized ependymoma: a population-based 20-year cohort. Acta Neuropathol Commun 2022; 10:123. [PMID: 36008825 PMCID: PMC9404601 DOI: 10.1186/s40478-022-01429-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Ependymoma is the second most common malignant brain tumor in children. The etiology is largely unknown and germline DNA sequencing studies focusing on childhood ependymoma are limited. We therefore performed germline whole-genome sequencing on a population-based cohort of children diagnosed with ependymoma in Denmark over the past 20 years (n = 43). Single nucleotide and structural germline variants in 457 cancer related genes and 2986 highly evolutionarily constrained genes were assessed in 37 children with normal tissue available for sequencing. Molecular ependymoma classification was performed using DNA methylation profiling for 39 children with available tumor tissue. Pathogenic germline variants in known cancer predisposition genes were detected in 11% (4/37; NF2, LZTR1, NF1 & TP53). However, DNA methylation profiling resulted in revision of the histopathological ependymoma diagnosis to non-ependymoma tumor types in 8% (3/39). This included the two children with pathogenic germline variants in TP53 and NF1 whose tumors were reclassified to a diffuse midline glioma and a rosette-forming glioneuronal tumor, respectively. Consequently, 50% (2/4) of children with pathogenic germline variants in fact had other tumor types. A meta-analysis combining our findings with pediatric pan-cancer germline sequencing studies showed an overall frequency of pathogenic germline variants of 3.4% (7/207) in children with ependymoma. In summary, less than 4% of childhood ependymoma is explained by genetic predisposition, virtually restricted to pathogenic variants in NF2 and NF1. For children with other cancer predisposition syndromes, diagnostic reconsideration is recommended for ependymomas without molecular classification. Additionally, LZTR1 is suggested as a novel putative ependymoma predisposition gene.
Collapse
Affiliation(s)
- Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark. .,Department of Neurosurgery, Rigshospitalet University Hospital, Copenhagen, Denmark. .,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Neurosurgery, Section 6031, Rigshospitalet University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark. .,The Pediatric Oncology Research Laboratory, Section 5704, Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Henrik Harpestrengs Vej 6A, 2100, Copenhagen, Denmark.
| | - Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Department of Genomic Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | - Adrian Otamendi Laspiur
- Department of Health Technology, Cancer Systems Biology and Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | | | - David Scheie
- Department of Pathology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet University Hospital, Copenhagen, Denmark.,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| |
Collapse
|
25
|
Escudero A, Takagi M, Auer F, Friedrich UA, Miyamoto S, Ogawa A, Imai K, Pascual B, Vela M, Stepensky P, Yasin L, Elitzur S, Borkhardt A, Pérez-Martínez A, Hauer J. Clinical and immunophenotypic characteristics of familial leukemia predisposition caused by PAX5 germline variants. Leukemia 2022; 36:2338-2342. [PMID: 35902733 DOI: 10.1038/s41375-022-01661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Adela Escudero
- Department of Genetics, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain.,Translational Research Group in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Franziska Auer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ulrike Anne Friedrich
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital "Carl Gustav Carus", Technical University Dresden (TUD), Dresden, Germany
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Atsushi Ogawa
- Department of Pediatrics, Niigata Cancer Center, Niigata, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Barbara Pascual
- Translational Research Group in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - María Vela
- Translational Research Group in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel-Aviv university, Tel-Aviv, Israel
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Antonio Pérez-Martínez
- Translational Research Group in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Pediatric Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Julia Hauer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
26
|
Derpoorter C, Van Paemel R, Vandemeulebroecke K, Vanhooren J, De Wilde B, Laureys G, Lammens T. Whole genome sequencing and inheritance-based variant filtering as a tool for unraveling missing heritability in pediatric cancer. Pediatr Hematol Oncol 2022; 40:326-340. [PMID: 35876323 DOI: 10.1080/08880018.2022.2101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Survival rates for pediatric cancer have significantly increased the past decades, now exceeding 70-80% for most cancer types. The cause of cancer in children and adolescents remains largely unknown and a genetic susceptibility is considered in up to 10% of the cases, but most likely this is an underestimation. Families with multiple pediatric cancer patients are rare and strongly suggestive for an underlying predisposition to cancer. The absence of identifiable mutations in known cancer predisposing genes in such families could indicate undiscovered heritability. To discover candidate susceptibility variants, whole genome sequencing was performed on germline DNA of a family with two children affected by Burkitt lymphoma. Using an inheritance-based filtering approach, 18 correctly segregating coding variants were prioritized without a biased focus on specific genes or variants. Two variants in FAT4 and DCHS2 were highlighted, both involved in the Hippo signaling pathway, which controls tissue growth and stem cell activity. Similarly, a set of nine non-coding variants was prioritized, which might contribute, in differing degrees, to the increased cancer risk within this family. In conclusion, inheritance-based whole genome sequencing in selected families or cases is a valuable approach to prioritize variants and, thus, to further unravel genetic predisposition in childhood cancer.
Collapse
Affiliation(s)
- Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Ruben Van Paemel
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Katrien Vandemeulebroecke
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jolien Vanhooren
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Bram De Wilde
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Geneviève Laureys
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
27
|
Schedel A, Friedrich UA, Morcos MNF, Wagener R, Mehtonen J, Watrin T, Saitta C, Brozou T, Michler P, Walter C, Försti A, Baksi A, Menzel M, Horak P, Paramasivam N, Fazio G, Autry RJ, Fröhling S, Suttorp M, Gertzen C, Gohlke H, Bhatia S, Wadt K, Schmiegelow K, Dugas M, Richter D, Glimm H, Heinäniemi M, Jessberger R, Cazzaniga G, Borkhardt A, Hauer J, Auer F. Recurrent Germline Variant in RAD21 Predisposes Children to Lymphoblastic Leukemia or Lymphoma. Int J Mol Sci 2022; 23:ijms23095174. [PMID: 35563565 PMCID: PMC9106003 DOI: 10.3390/ijms23095174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous RAD21 germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients. While RAD21 p.P298S/A did not disrupt the formation of the cohesin complex, it altered RAD21 gene expression, DNA damage response and primary patient fibroblasts showed increased G2/M arrest after irradiation and Mitomycin-C treatment. Subsequent single-cell RNA-sequencing analysis of healthy human bone marrow confirmed the upregulation of distinct cohesin gene patterns during hematopoiesis, highlighting the importance of RAD21 expression within proliferating B- and T-cells. Our clinical and functional data therefore suggest that RAD21 germline variants can predispose to childhood lymphoblastic leukemia or lymphoma without displaying a CdLS phenotype.
Collapse
Affiliation(s)
- Anne Schedel
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Ulrike Anne Friedrich
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Mina N. F. Morcos
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Titus Watrin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Claudia Saitta
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Pia Michler
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Carolin Walter
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany; (C.W.); (M.D.)
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.F.); (R.J.A.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Arka Baksi
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.B.); (R.J.)
| | - Maria Menzel
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.H.); (S.F.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Grazia Fazio
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
| | - Robert J Autry
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.F.); (R.J.A.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.H.); (S.F.)
| | - Meinolf Suttorp
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Christoph Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (C.G.); (H.G.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (C.G.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Karin Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Faculty of health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Martin Dugas
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany; (C.W.); (M.D.)
- Institute of Medical Informatics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany; (D.R.); (H.G.)
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany; (D.R.); (H.G.)
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.B.); (R.J.)
| | - Gianni Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
- Medical Genetics, Department of Medicine and Surgery, University of Milan Bicocca, 20900 Monza, Italy
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Julia Hauer
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
- German Cancer Consortium (DKTK), 81675 Munich, Germany
- Correspondence: ; Tel.: +49-(89)-3068-3940
| | - Franziska Auer
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
| |
Collapse
|
28
|
Pfister SM, Reyes-Múgica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, Ferrari A, Jarzembowski JA, Pritchard-Jones K, Hill DA, Jacques TS, Wesseling P, López Terrada DH, von Deimling A, Kratz CP, Cree IA, Alaggio R. A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discov 2022; 12:331-355. [PMID: 34921008 PMCID: PMC9401511 DOI: 10.1158/2159-8290.cd-21-1094] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on "blastomas," which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account.
Collapse
Affiliation(s)
- Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Jason A Jarzembowski
- Department of Pathology, Children's Wisconsin and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - D Ashley Hill
- Department of Pathology, Children's National Hospital, Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Thomas S Jacques
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Pieter Wesseling
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
| | - Dolores H López Terrada
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
29
|
The need for tumor surveillance of children and adolescents with cancer predisposition syndromes: a retrospective cohort study in a tertiary-care children's hospital. Eur J Pediatr 2022; 181:1585-1596. [PMID: 34950979 PMCID: PMC8964590 DOI: 10.1007/s00431-021-04347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
UNLABELLED Expert recommendations for the management of tumor surveillance in children with a variety of cancer predisposition syndromes (CPS) are available. We aimed (1) at identifying and characterizing children who are affected by a CPS and (2) at comparing current practice and consensus recommendations of the American Association for Cancer Research workshop in 2016. We performed a database search in the hospital information system of the University Children's Hospital for CPS in children, adolescents, and young adults and complemented this by review of electronic patients' charts. Between January 1, 2017, and December 3, 2019, 272 patients with 41 different CPS entities were identified in 20 departments (144 [52.9%] male, 128 [47.1%] female, median age 9.1 years, range, 0.4-27.8). Three (1.1%) patients died of non-malignancy-associated complications of the CPS; 49 (18.0%) patients were diagnosed with malignancy and received regular follow-up. For 209 (95.0%) of the remaining 220 patients, surveillance recommendations were available: 30/220 (13.6%) patients received CPS consultations according to existing consensus recommendations, 22/220 (10.0%) institutional surveillance approaches were not complying with recommendations, 84/220 (38.2%) patients were seen for other reasons, and 84/220 (38.2%) were not routinely cared for. Adherence to recommendations differed extensively among CPS entities. CONCLUSION The spectrum of CPS patients at our tertiary-care children's hospital is manifold. For most patients, awareness of cancer risk has to be enhanced and current practice needs to be adapted to consensus recommendations. Offering specialized CPS consultations and establishing education programs for patients, relatives, and physicians may increase adherence to recommendations. WHAT IS KNOWN • A wide spectrum of rare syndromes manifesting in childhood is associated with an increased cancer risk. • For many of these syndromes, expert recommendations for management and tumor surveillance are available, although based on limited evidence. WHAT IS NEW • Evaluating current practice, our data attest significant shortcomings in tumor surveillance of children and adolescents with CPS even in a tertiary-care children's hospital. • We clearly advocate a systematic and consistent integration of tumor surveillance into daily practice.
Collapse
|
30
|
McNeill A. 2021 at European Journal of Human Genetics: the year in review. Eur J Hum Genet 2022; 30:3-4. [PMID: 34992228 PMCID: PMC8738720 DOI: 10.1038/s41431-021-01009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Alisdair McNeill
- grid.11835.3e0000 0004 1936 9262Department of Neuroscience, The University of Sheffield, Sheffield, UK ,grid.413991.70000 0004 0641 6082Sheffield Clinical Genetics Department, Sheffield Children’s Hospital NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
31
|
Brozou T, Yasin L, Brandes D, Picard D, Walter C, Varghese J, Dugas M, Fischer U, Borkhardt A, Haas OA. Resolving inherited and de novo germline predisposing sequence variants by means of whole exome trio analyses in childhood hematological malignancies. Front Pediatr 2022; 10:1080347. [PMID: 36824296 PMCID: PMC9941195 DOI: 10.3389/fped.2022.1080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 02/10/2023] Open
Abstract
Molecular screening tools have significantly eased the assessment of potential germline susceptibility factors that may underlie the development of pediatric malignancies. Most of the hitherto published studies utilize the comparative analyses of the respective patients' germline and tumor tissues for this purpose. Since this approach is not able to discriminate between de novo and inherited sequence variants, we performed whole exome trio analyses in a consecutive series of 131 children with various forms of hematologic malignancies and their parents. In total, we identified 458 de novo variants with a range from zero to 28 (median value = 3) per patient, although most of them (58%) had only up to three per exome. Overall, we identified bona fide cancer predisposing alterations in five of the investigated 131 (3.8%) patients. Three of them had de novo pathogenic lesions in the SOS1, PTPN11 and TP53 genes and two of them parentally inherited ones in the STK11 and PMS2 genes that are specific for a Peutz-Jeghers and a constitutional mismatch repair deficiency (CMMRD) syndrome, respectively. Notwithstanding that we did not identify a disease-specific alteration in the two cases with the highest number of de novo variants, one of them developed two almost synchronous malignancies: a myelodysplastic syndrome and successively within two months a cerebral astrocytoma. Moreover, we also found that the rate of de novo sequence variants in the offspring increased especially with the age of the father, but less so with that of the mother. We therefore conclude that trio analyses deliver an immediate overview about the inheritance pattern of the entire spectrum of sequence variants, which not only helps to securely identify the de novo or inherited nature of genuinely disease-related lesions, but also of all other less obvious variants that in one or the other way may eventually advance our understanding of the disease process.
Collapse
Affiliation(s)
- Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Martin Dugas
- Insititute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Oskar A Haas
- St. Anna Children's Hospital, Pediatric Clinic, Medical University, Vienna, Austria
| |
Collapse
|
32
|
Schmidt JA, Hornhardt S, Erdmann F, Sánchez-García I, Fischer U, Schüz J, Ziegelberger G. Risk Factors for Childhood Leukemia: Radiation and Beyond. Front Public Health 2021; 9:805757. [PMID: 35004601 PMCID: PMC8739478 DOI: 10.3389/fpubh.2021.805757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Childhood leukemia (CL) is undoubtedly caused by a multifactorial process with genetic as well as environmental factors playing a role. But in spite of several efforts in a variety of scientific fields, the causes of the disease and the interplay of possible risk factors are still poorly understood. To push forward the research on the causes of CL, the German Federal Office for Radiation Protection has been organizing recurring international workshops since 2008 every two to three years. In November 2019 the 6th International Workshop on the Causes of CL was held in Freising and brought together experts from diverse disciplines. The workshop was divided into two main parts focusing on genetic and environmental risk factors, respectively. Two additional special sessions addressed the influence of natural background radiation on the risk of CL and the progress in the development of mouse models used for experimental studies on acute lymphoblastic leukemia, the most common form of leukemia worldwide. The workshop presentations highlighted the role of infections as environmental risk factor for CL, specifically for acute lymphoblastic leukemia. Major support comes from two mouse models, the Pax5+/- and Sca1-ETV6-RUNX1 mouse model, one of the major achievements made in the last years. Mice of both predisposed models only develop leukemia when exposed to common infections. These results emphasize the impact of gene-environment-interactions on the development of CL and warrant further investigation of such interactions - especially because genetic predisposition is detected with increasing frequency in CL. This article summarizes the workshop presentations and discusses the results in the context of the international literature.
Collapse
Affiliation(s)
- Janine-Alison Schmidt
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Sabine Hornhardt
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Friederike Erdmann
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Gunde Ziegelberger
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| |
Collapse
|
33
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
34
|
Michler P, Schedel A, Witschas M, Friedrich UA, Wagener R, Mehtonen J, Brozou T, Menzel M, Walter C, Nabi D, Pearce G, Erlacher M, Göhring G, Dugas M, Heinäniemi M, Borkhardt A, Stölzel F, Hauer J, Auer F. Germline POT1 Deregulation Can Predispose to Myeloid Malignancies in Childhood. Int J Mol Sci 2021; 22:ijms222111572. [PMID: 34769003 PMCID: PMC8583981 DOI: 10.3390/ijms222111572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
While the shelterin complex guards and coordinates the mechanism of telomere regulation, deregulation of this process is tightly linked to malignant transformation and cancer. Here, we present the novel finding of a germline stop-gain variant (p.Q199*) in the shelterin complex gene POT1, which was identified in a child with acute myeloid leukemia. We show that the cells overexpressing the mutated POT1 display increased DNA damage and chromosomal instabilities compared to the wildtype counterpart. Protein and mRNA expression analyses in the primary patient cells further confirm that, physiologically, the variant leads to a nonfunctional POT1 allele in the patient. Subsequent telomere length measurements in the primary cells carrying heterozygous POT1 p.Q199* as well as POT1 knockdown AML cells revealed telomeric elongation as the main functional effect. These results show a connection between POT1 p.Q199* and telomeric dysregulation and highlight POT1 germline deficiency as a predisposition to myeloid malignancies in childhood.
Collapse
Affiliation(s)
- Pia Michler
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus”, TU Dresden, 01307 Dresden, Germany; (P.M.); (A.S.); (M.W.); (U.A.F.); (M.M.)
| | - Anne Schedel
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus”, TU Dresden, 01307 Dresden, Germany; (P.M.); (A.S.); (M.W.); (U.A.F.); (M.M.)
| | - Martha Witschas
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus”, TU Dresden, 01307 Dresden, Germany; (P.M.); (A.S.); (M.W.); (U.A.F.); (M.M.)
| | - Ulrike Anne Friedrich
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus”, TU Dresden, 01307 Dresden, Germany; (P.M.); (A.S.); (M.W.); (U.A.F.); (M.M.)
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (R.W.); (T.B.); (A.B.)
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (R.W.); (T.B.); (A.B.)
| | - Maria Menzel
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus”, TU Dresden, 01307 Dresden, Germany; (P.M.); (A.S.); (M.W.); (U.A.F.); (M.M.)
| | - Carolin Walter
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany;
| | - Dalileh Nabi
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
| | - Glen Pearce
- Institute of Physiological Chemistry, Medical Faculty “Carl Gustav Carus”, TU Dresden, 01307 Dresden, Germany;
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany;
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (R.W.); (T.B.); (A.B.)
| | - Friedrich Stölzel
- Hematology and Oncology, University Hospital “Carl Gustav Carus”, TU Dresden, 01307 Dresden, Germany;
| | - Julia Hauer
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus”, TU Dresden, 01307 Dresden, Germany; (P.M.); (A.S.); (M.W.); (U.A.F.); (M.M.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany;
- Correspondence: ; Tel.: +49-351-458-3522
| | - Franziska Auer
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany;
| |
Collapse
|
35
|
A new impact factor for European Journal of Human Genetics. Eur J Hum Genet 2021; 29:1165. [PMID: 34429525 PMCID: PMC8384554 DOI: 10.1038/s41431-021-00941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|