1
|
Jauss RT, Popp B, Bachmann J, Abou Jamra R, Platzer K. The MorbidGenes panel: a monthly updated list of diagnostically relevant rare disease genes derived from diverse sources. Hum Genet 2024:10.1007/s00439-024-02711-z. [PMID: 39465390 DOI: 10.1007/s00439-024-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE With exome sequencing now standard, diagnostic labs are in need of a, in principle, to-the-day-accurate list of genes associated with rare diseases. Manual curation efforts are slow and often disease specific, while efforts relying on single sources are too inaccurate and may result in false-positive or false-negative genes. METHODS We established the MorbidGenes panel based on a list of publicly available databases: OMIM, PanelApp, SysNDD, ClinVar, HGMD and GenCC. A simple logic allows inclusion of genes that are supported by at least one of these sources, providing a list of all genes with diagnostic relevance. RESULTS The panel is freely available at https://morbidgenes.uni-leipzig.de and currently includes 5037 genes (as of October 2024) with minimally sufficient evidence on disease causality to classify them as diagnostically relevant. CONCLUSION The MorbidGenes panel is an open and comprehensive overview of diagnostically relevant rare disease genes based on a diverse set of resources. The panel is updated monthly to keep up with the ever increasing number of rare disease genes.
Collapse
Affiliation(s)
- Robin-Tobias Jauss
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
- Center of Functional Genomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, 10115, Berlin, Germany
| | - Joachim Bachmann
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Nakamura A, Nomura S, Hara S, Thamamongood T, Maehara T, Nariai T, Khairullah S, Tan KS, Azuma K, Chida-Nagai A, Furutani Y, Hori T, Yamaguchi K, Kawamata T, Roder C, Akagawa H. Whole-exome sequencing reveals the genetic causes and modifiers of moyamoya syndrome. Sci Rep 2024; 14:22720. [PMID: 39367156 PMCID: PMC11452616 DOI: 10.1038/s41598-024-72043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Moyamoya vasculopathy secondary to various genetic disorders is classified as moyamoya syndrome (MMS). Recent studies indicate MMS occurs due to a combination of genetic modifiers and causative mutations for the primary genetic disorders. We performed whole-exome sequencing (WES) in 13 patients with various genetic disorders who developed MMS. WES successfully revealed the genetic diagnoses of neurofibromatosis type 1 (NF-1), Down syndrome, multisystemic smooth muscle dysfunction syndrome, Noonan syndrome, and alpha thalassemia. The previously reported modifier genes, RNF213 and MRVI1, were confirmed in the NF-1 and Down syndrome cases. Further analysis revealed rare hypomorphic variants in the causative genes of the primary disorders underlying MMS, such as Alagille syndrome and Rasopathies, conferred susceptibility to MMS. Genes involved in the development of pulmonary arterial hypertension (PAH), such as ABCC8 and BMPR2, were also identified as potential modifiers. The rare variants in the MMS and PAH genes were significantly enriched in the eight Japanese patients with MMS compared with the 104 Japanese individuals from the 1000 Genomes Project. Disease genes associated with the arterial occlusive conditions represented by those of Rasopathies and PAH may provide novel diagnostic markers and future therapeutic targets for MMS as well as moyamoya disease with an unknown cause.
Collapse
Affiliation(s)
- Akikazu Nakamura
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Nomura
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
- Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shasha Khairullah
- Haematology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kay Sin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kenko Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ayako Chida-Nagai
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiyuki Furutani
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takahiro Hori
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Koji Yamaguchi
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Constantin Roder
- Department of Neurosurgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan.
- Medical AI Center, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
3
|
Weymann D, Buckell J, Fahr P, Loewen R, Ehman M, Pollard S, Friedman JM, Stockler-Ipsiroglu S, Elliott AM, Wordsworth S, Buchanan J, Regier DA. Health Care Costs After Genome-Wide Sequencing for Children With Rare Diseases in England and Canada. JAMA Netw Open 2024; 7:e2420842. [PMID: 38985473 PMCID: PMC11238031 DOI: 10.1001/jamanetworkopen.2024.20842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Importance Etiologic diagnoses for rare diseases can involve a diagnostic odyssey, with repeated health care interactions and inconclusive diagnostics. Prior studies reported cost savings associated with genome-wide sequencing (GWS) compared with cytogenetic or molecular testing through rapid genetic diagnosis, but there is limited evidence on whether diagnosis from GWS is associated with reduced health care costs. Objective To measure changes in health care costs after diagnosis from GWS for Canadian and English children with suspected rare diseases. Design, Setting, and Participants This cohort study was a quasiexperimental retrospective analysis across 3 distinct English and Canadian cohorts, completed in 2023. Mixed-effects generalized linear regression was used to estimate associations between GWS and costs in the 2 years before and after GWS. Difference-in-differences regression was used to estimate associations of genetic diagnosis and costs. Costs are in 2019 US dollars. GWS was conducted in a research setting (Genomics England 100 000 Genomes Project [100KGP] and Clinical Assessment of the Utility of Sequencing and Evaluation as a Service [CAUSES] Research Clinic) or clinical outpatient setting (publicly reimbursed GWS in British Columbia [BC], Canada). Participants were children with developmental disorders, seizure disorders, or both undergoing GWS between 2014 and 2019. Data were analyzed from April 2021 to September 2023. Exposures GWS and genetic diagnosis. Main Outcomes and Measures Annual health care costs and diagnostic costs per child. Results Study cohorts included 7775 patients in 100KGP, among whom 788 children had epilepsy (mean [SD] age at GWS, 11.6 [11.1] years; 400 female [50.8%]) and 6987 children had an intellectual disability (mean [SD] age at GWS, 8.2 [8.4] years; 2750 female [39.4%]); 77 patients in CAUSES (mean [SD] age at GWS, 8.5 [4.4] years; 33 female [42.9%]); and 118 publicly reimbursed GWS recipients from BC (mean [SD] age at GWS, 5.5 [5.2] years; 58 female [49.2%]). GWS diagnostic yield was 143 children (18.1%) for those with epilepsy and 1323 children (18.9%) for those with an intellectual disability in 100KGP, 47 children (39.8%) in the BC publicly reimbursed setting, and 42 children (54.5%) in CAUSES. Mean annual per-patient spending over the study period was $5283 (95% CI, $5121-$5427) for epilepsy and $3373 (95% CI, $3322-$3424) for intellectual disability in the 100KGP, $724 (95% CI, $563-$886) in CAUSES, and $1573 (95% CI, $1372-$1773) in the BC reimbursed setting. Receiving a genetic diagnosis from GWS was not associated with changed costs in any cohort. Conclusions and Relevance In this study, receiving a genetic diagnosis was not associated with cost savings. This finding suggests that patient benefit and cost-effectiveness should instead drive GWS implementation.
Collapse
Affiliation(s)
- Deirdre Weymann
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John Buckell
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Patrick Fahr
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Rosalie Loewen
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Morgan Ehman
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Samantha Pollard
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sylvia Stockler-Ipsiroglu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Biochemical Genetics, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Alison M. Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - James Buchanan
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Dean A. Regier
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Amin S, Møller RS, Aledo‐Serrano A, Arzimanoglou A, Bager P, Jóźwiak S, Kluger GJ, López‐Cabeza S, Nabbout R, Partridge C, Schubert‐Bast S, Specchio N, Kälviäinen R. Providing quality care for people with CDKL5 deficiency disorder: A European expert panel opinion on the patient journey. Epilepsia Open 2024; 9:832-849. [PMID: 38450883 PMCID: PMC11145618 DOI: 10.1002/epi4.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/21/2024] [Indexed: 03/08/2024] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental and epileptic encephalopathy caused by variants in the CDKL5 gene. The disorder is characterized by intractable early-onset seizures, severe neurodevelopmental delay, hypotonia, motor disabilities, cerebral (cortical) visual impairment and microcephaly. With no disease-modifying therapies available for CDD, treatment is symptomatic with an initial focus on seizure control. Another unmet need in the management of people with CDD is the lack of evidence to aid standardized care and guideline development. To address this gap, experts in CDD and representatives from patient advocacy groups from Denmark, Finland, France, Germany, Italy, Poland, Spain, and the United Kingdom convened to form an Expert Working Group. The aim was to provide an expert opinion consensus on how to ensure quality care in routine clinical practice within the European setting, including in settings with limited experience or resources for multidisciplinary care of CDD and other developmental and epileptic encephalopathies. By means of one-to-one interviews around the current treatment landscape in CDD, insights from the Expert Working Group were collated and developed into a Europe-specific patient journey for individuals with CDD, which was later validated by the group. Further discussions followed to gain consensus of opinions on challenges and potential solutions for achieving quality care in this setting. The panel recognized the benefit of early genetic testing, a holistic personalized approach to seizure control (taking into consideration various factors such as concomitant medications and comorbidities), and age- and comorbidity-dependent multidisciplinary care for optimizing patient outcomes and quality of life. However, their insights and experiences also highlighted much disparity in management approaches and resources across different European countries. Development of standardized European recommendations is required to align realistic diagnostic criteria, treatment goals, and management approaches that can be adapted for different settings. PLAIN LANGUAGE SUMMARY: Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare condition caused by a genetic mutation with a broad range of symptoms apparent from early childhood, including epileptic seizures that do not respond to medication and severe delays in development. Due to the lack of guidance on managing CDD, international experts and patient advocates discussed best practices in the care of people with CDD in Europe. The panel agreed that early testing, a personalized approach to managing seizures, and access to care from different disciplines are beneficial. Development of guidelines to ensure that care is standardized would also be valuable.
Collapse
Affiliation(s)
- Sam Amin
- University Hospitals BristolBristolUK
| | - Rikke S. Møller
- The Danish Epilepsy Centre, FiladelfiaDianalundDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Angel Aledo‐Serrano
- Vithas Madrid La Milagrosa University HospitalVithas Hospital GroupMadridSpain
| | | | | | | | - Gerhard Josef Kluger
- Epilepsy Center for Children and AdolescentsVogtareuthGermany
- Paracelsus Medical University SalzburgSalzburgAustria
| | | | - Rima Nabbout
- Necker‐Enfants Malades HospitalUniversité Paris Cité, Imagine InstituteParisFrance
| | | | - Susanne Schubert‐Bast
- Center of Neurology and NeurosurgeryEpilepsy Center Frankfurt Rhine‐MainGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐UniversityFrankfurt am MainGermany
- University Children's HospitalGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
| | | | - Reetta Kälviäinen
- University of Eastern Finland and Epilepsy CenterKuopio University HospitalKuopioFinland
| |
Collapse
|
5
|
Dreikorn EN, Munro C, Robin Berman N, Kunovac A, Bellissimo D, Massart MB. Case report: Early use of whole exome sequencing unveils HNRNPU-related neurodevelopmental disorder and answers additional clinical questions through reanalysis. Front Genet 2024; 15:1380552. [PMID: 38846959 PMCID: PMC11153700 DOI: 10.3389/fgene.2024.1380552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
This case report chronicles the diagnostic odyssey and resolution of a 27-year-old female with a complex neurodevelopmental disorder (NDD) using Whole Exome Sequencing (WES). The patient presented to a precision medicine clinic with multiple diagnoses including intellectual disability, autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), tics, seizures, and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Although this patient previously had chromosomal microarray and several single-gene tests, the underlying cause of this patient's symptoms remained elusive. WES revealed a pathogenic missense mutation in the HNRNPU gene, associated with HNRNPU-related neurodevelopmental disorder (HNRNPU-NDD) and developmental and epileptic encephalopathy-54 (DEE54, OMIM: # 617391). Following this diagnoses, other treating clinicians identified additional indications for genetic testing, however, as the WES data was readily available, the clinical team was able to re-analyze the WES data to address their inquiries without requiring additional tests. This emphasizes the pivotal role of WES in expediting diagnoses, reducing costs, and providing ongoing clinical utility throughout a patient's life. Accessible WES data in primary care settings can enhance patient care by informing future genetic inquiries, enhancing coordination of care, and facilitating precision medicine interventions, thereby mitigating the burden on families and the healthcare system.
Collapse
Affiliation(s)
- Erika Nicole Dreikorn
- Primary Care Precision Medicine Clinic, UPMC, Pittsburgh, PA, United States
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christine Munro
- Primary Care Precision Medicine Clinic, UPMC, Pittsburgh, PA, United States
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Natasha Robin Berman
- Primary Care Precision Medicine Clinic, UPMC, Pittsburgh, PA, United States
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | |
Collapse
|
6
|
Regier DA, Loewen R, Chan B, Ehman M, Pollard S, Friedman JM, Stockler-Ipsiroglu S, van Karnebeek C, Race S, Elliott AM, Dragojlovic N, Lynd LD, Weymann D. Real-world diagnostic outcomes and cost-effectiveness of genome-wide sequencing for developmental and seizure disorders: Evidence from Canada. Genet Med 2024; 26:101069. [PMID: 38205742 DOI: 10.1016/j.gim.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
PURPOSE To determine real-world diagnostic rates, cost trajectories, and cost-effectiveness of exome sequencing (ES) and genome sequencing (GS) for children with developmental and/or seizure disorders in British Columbia, Canada. METHODS Based on medical records review, we estimated real-world costs and outcomes for 491 patients who underwent standard of care (SOC) diagnostic testing at British Columbia Children's Hospital. Results informed a state-transition Markov model examining cost-effectiveness of 3 competing diagnostic strategies: (1) SOC with last-tier access to ES, (2) streamlined ES access, and (3) first-tier GS. RESULTS Through SOC, 49.4% (95% CI: 40.6, 58.2) of patients were diagnosed at an average cost of C$11,683 per patient (95% CI: 9200, 14,166). Compared with SOC, earlier ES or GS access yielded similar or improved diagnostic rates and shorter times to genetic diagnosis, with 94% of simulations demonstrating cost savings for streamlined ES and 60% for first-tier GS. Net benefit from the perspective of the health care system was C$2956 (95% CI: -608, 6519) for streamlined ES compared with SOC. CONCLUSION Using real-world data, we found earlier access to ES may yield more rapid genetic diagnosis of childhood developmental and seizure disorders and cost savings compared with current practice in a Canadian health care system.
Collapse
Affiliation(s)
- Dean A Regier
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Rosalie Loewen
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Brandon Chan
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Morgan Ehman
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Samantha Pollard
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sylvia Stockler-Ipsiroglu
- BC Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Division of Biochemical Genetics, BC Children's Hospital, Vancouver, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Simone Race
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, Canada
| | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Nick Dragojlovic
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Larry D Lynd
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Centre for Health Evaluation and Outcomes Sciences, Providence Health Research Institute, Vancouver, Canada
| | - Deirdre Weymann
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada.
| |
Collapse
|
7
|
Herbst C, Bothe V, Wegler M, Axer-Schaefer S, Audebert-Bellanger S, Gecz J, Cogne B, Feldman HB, Horn AHC, Hurst ACE, Kelly MA, Kruer MC, Kurolap A, Laquerriere A, Li M, Mark PR, Morawski M, Nizon M, Pastinen T, Polster T, Saugier-Veber P, SeSong J, Sticht H, Stieler JT, Thifffault I, van Eyk CL, Marcorelles P, Vezain-Mouchard M, Abou Jamra R, Oppermann H. Heterozygous loss-of-function variants in DOCK4 cause neurodevelopmental delay and microcephaly. Hum Genet 2024; 143:455-469. [PMID: 38526744 PMCID: PMC11043173 DOI: 10.1007/s00439-024-02655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024]
Abstract
Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.
Collapse
Affiliation(s)
- Charlotte Herbst
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Viktoria Bothe
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Meret Wegler
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Susanne Axer-Schaefer
- Department of Epileptology, Krankenhaus Mara Bethel Epilepsy Center Medical School OWL, Bielefeld University, Campus Bethel, Bielefeld, Germany
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, 44000, Nantes, France
- l'institut du Thorax, Nantes Université, CHU Nantes, CNRS, INSERM, 44000, Nantes, France
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anselm H C Horn
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen National High Performance Computing Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melissa A Kelly
- HudsonAlpha Clinical Services Lab, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital University of Arizona College of Medicine, Phoenix, USA
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Annie Laquerriere
- Department of Anatomy, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Megan Li
- Invitae Corp, San Francisco, CA, USA
| | - Paul R Mark
- Division of Medical Genetics, Helen DeVos Children's Hospital, Corewell Health, Grand Rapids, MI, USA
| | - Markus Morawski
- Center of Neuropathology and Brain Research, Medical Faculty, Paul Flechsig Institute, University of Leipzig, Leipzig, Germany
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44000, Nantes, France
- l'institut du Thorax, Nantes Université, CHU Nantes, CNRS, INSERM, 44000, Nantes, France
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, USA
- University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Tilman Polster
- Department of Epileptology, Krankenhaus Mara Bethel Epilepsy Center Medical School OWL, Bielefeld University, Campus Bethel, Bielefeld, Germany
| | - Pascale Saugier-Veber
- Department of Genetics and Reference Center for Developmental Disorders, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Jang SeSong
- Genomic Medicine Institute, Seoul National University, Seoul, Republic of Korea
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens T Stieler
- Center of Neuropathology and Brain Research, Medical Faculty, Paul Flechsig Institute, University of Leipzig, Leipzig, Germany
| | - Isabelle Thifffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, USA
- University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Clare L van Eyk
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Myriam Vezain-Mouchard
- Department of Genetics and Reference Center for Developmental Disorders, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| |
Collapse
|
8
|
Rezende RC, Menezes de Andrade NL, Branco Dantas NC, de Polli Cellin L, Victorino Krepischi AC, Lerario AM, de Lima Jorge AA. Exome Sequencing Identifies Multiple Genetic Diagnoses in Children with Syndromic Growth Disorders. J Pediatr 2024; 265:113841. [PMID: 37995928 DOI: 10.1016/j.jpeds.2023.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To evaluate the presence of multiple genetic diagnoses in syndromic growth disorders. STUDY DESIGN We carried out a cross-sectional study to evaluate 115 patients with syndromic tall (n = 24) or short stature (n = 91) of unknown cause from a tertiary referral center for growth disorders. Exome sequencing was performed to assess germline single nucleotide, InDel, and copy number variants. All variants were classified according to ACMG/AMP guidelines. The main outcome measured was the frequency of multiple genetic diagnoses in a cohort of children with syndromic growth disorders. RESULTS The total diagnostic yield of the cohort was 54.8% (63/115). Six patients had multiple genetic diagnoses (tall stature group = 2; short stature group = 4). The proportion of multiple diagnoses within total cases was 5.2% (6/115), and within solved cases was 9.5% (6/63). No characteristics were significantly more frequent when compared with patients with single or multiple genetic findings. Among patients with multiple diagnoses, 3 had syndromes with overlapping clinical features, and the others had syndromes with distinct phenotypes. CONCLUSION Recognition of multiple genetic diagnoses as a possibility in complex cases of syndromic growth disorders opens a new perspective on treatment and genetic counseling for affected patients, defying the medical common sense of trying to fit all findings into one diagnosis.
Collapse
Affiliation(s)
- Raissa Carneiro Rezende
- Laboratorio de Endocrinologia Celular e Molecular LIM25, Unidade de Endocrinologia Genetica/Faculdade de Medicina da Universidade de Sao Paulo (FMUSP)/Hospital das Clinicas da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nathalia Liberatoscioli Menezes de Andrade
- Laboratorio de Endocrinologia Celular e Molecular LIM25, Unidade de Endocrinologia Genetica/Faculdade de Medicina da Universidade de Sao Paulo (FMUSP)/Hospital das Clinicas da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Naiara Castelo Branco Dantas
- Laboratorio de Endocrinologia Celular e Molecular LIM25, Unidade de Endocrinologia Genetica/Faculdade de Medicina da Universidade de Sao Paulo (FMUSP)/Hospital das Clinicas da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Laurana de Polli Cellin
- Laboratorio de Endocrinologia Celular e Molecular LIM25, Unidade de Endocrinologia Genetica/Faculdade de Medicina da Universidade de Sao Paulo (FMUSP)/Hospital das Clinicas da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Antonio Marcondes Lerario
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alexander Augusto de Lima Jorge
- Laboratorio de Endocrinologia Celular e Molecular LIM25, Unidade de Endocrinologia Genetica/Faculdade de Medicina da Universidade de Sao Paulo (FMUSP)/Hospital das Clinicas da Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
9
|
Li H, Ch'ih Y, Li M, Luo Y, Liu H, Xu J, Song W, Ma Q, Shao Z. Newborn screening for G6PD deficiency in HeFei, FuYang and AnQing, China: Prevalence, cut-off value, variant spectrum. J Med Biochem 2024; 43:86-96. [PMID: 38496015 PMCID: PMC10943458 DOI: 10.5937/jomb0-43078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/14/2023] [Indexed: 03/19/2024] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive Mendelian genetic disorder characterized by neonatal jaundice and hemolytic anemia, affecting more than 400 million people worldwide. The purpose of this research was to investigate prevalence rates of G6PD deficiency and to evaluate and establish specific cut-off values in early prediction of G6PD deficiency by regions (HeFei, FuYang, AnQing) on different seasons, as well as to investigate the frequencies of G6PD gene mutations among three regions mentioned above. Methods A total of 31,482 neonates (21,402, 7680, and 2340 for HeFei, FuYang, and AnQing cities, respectively) were recruited. Positive subjects were recalled to attend genetic tests for diagnosis. G6PD activity on the Genetic screening processor (GSP analyzer, 2021-0010) was measured following the manufactureržs protocol. The cut-off value was first set to 35 U/dL. The receiver operating characteristics (ROC) curve was employed to assess and compare the efficiency in predicting G6PD deficiency among HeFei, FuYang, and AnQing cities in different seasons.
Collapse
Affiliation(s)
- Hui Li
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Yah Ch'ih
- Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou City, Zhejiang Province, China
| | - Meiling Li
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Yulei Luo
- FuYang Maternal and Child Health Family Planning Service Center, FuYang City, Anhui Province, China
| | - Hao Liu
- AnQing Maternal and Child Health Family Planning Service Center, AnQing City, Anhui Province, China
| | - Junyang Xu
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Wangsheng Song
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Qingqing Ma
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Ziyu Shao
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| |
Collapse
|
10
|
Roman-Naranjo P, Parra-Perez AM, Lopez-Escamez JA. A systematic review on machine learning approaches in the diagnosis and prognosis of rare genetic diseases. J Biomed Inform 2023:104429. [PMID: 37352901 DOI: 10.1016/j.jbi.2023.104429] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND The diagnosis of rare genetic diseases is often challenging due to the complexity of the genetic underpinnings of these conditions and the limited availability of diagnostic tools. Machine learning (ML) algorithms have the potential to improve the accuracy and speed of diagnosis by analyzing large amounts of genomic data and identifying complex multiallelic patterns that may be associated with specific diseases. In this systematic review, we aimed to identify the methodological trends and the ML application areas in rare genetic diseases. METHODS We performed a systematic review of the literature following the PRISMA guidelines to search studies that used ML approaches to enhance the diagnosis of rare genetic diseases. Studies that used DNA-based sequencing data and a variety of ML algorithms were included, summarized, and analyzed using bibliometric methods, visualization tools, and a feature co-occurrence analysis. FINDINGS Our search identified 22 studies that met the inclusion criteria. We found that exome sequencing was the most frequently used sequencing technology (59%), and rare neoplastic diseases were the most prevalent disease scenario (59%). In rare neoplasms, the most frequent applications of ML models were the differential diagnosis or stratification of patients (38.5%) and the identification of somatic mutations (30.8%). In other rare diseases, the most frequent goals were the prioritization of rare variants or genes (55.5%) and the identification of biallelic or digenic inheritance (33.3%). The most employed method was the random forest algorithm (54.5%). In addition, the features of the datasets needed for training these algorithms were distinctive depending on the goal pursued, including the mutational load in each gene for the differential diagnosis of patients, or the combination of genotype features and sequence-derived features (such as GC-content) for the identification of somatic mutations. CONCLUSIONS ML algorithms based on sequencing data are mainly used for the diagnosis of rare neoplastic diseases, with random forest being the most common approach. We identified key features in the datasets used for training these ML models according to the objective pursued. These features can support the development of future ML models in the diagnosis of rare genetic diseases.
Collapse
Affiliation(s)
- P Roman-Naranjo
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain; Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, Junta de Andalucía, PTS, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
| | - A M Parra-Perez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain; Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, Junta de Andalucía, PTS, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - J A Lopez-Escamez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain; Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, Junta de Andalucía, PTS, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain; Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Albanghali MA. Prevalence of Consanguineous Marriage among Saudi Citizens of Albaha, a Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3767. [PMID: 36834460 PMCID: PMC9966201 DOI: 10.3390/ijerph20043767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Consanguineous marriage (CM) is a prevalent kind of relationship in Muslim and Arab countries, and this type of relationship is linked to several health risks. This study was conducted to determine the prevalence of (CM), its associated hereditary diseases, and health-related issues among Saudi citizens in Albaha. This cross-sectional study was conducted between March 2021 to April 2021. Saudi citizens in Albaha who were aged ≥ 18 years and willing to participate were eligible for the study. A total of 1010 participants were included in this study. In total, 757 participants were married, widowed, or divorced. CM partnerships comprised 40% (N = 302) of the marriages among participants, of which first- and second-cousin marriages comprised 72% and 28%, respectively. The prevalence of CM among the participants' parents was lower than that among the participants (31% versus 40%, respectively). Children of participants in a CM were more likely to have cardiovascular diseases (p < 0.001), blood diseases (anaemia, thalassemia) (p < 0.001), cancer (p = 0.046), hearing loss and speech disorder (p = 0.003), and ophthalmic diseases (p = 0.037). Albaha showed a high percentage of consanguinity. An educational program must be established to enhance the population's knowledge of the consequences of CM. The current national premarital screening program should be extended to involve more screening tests for common hereditary diseases that result from CM.
Collapse
Affiliation(s)
- Mohammad A Albanghali
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia
| |
Collapse
|
12
|
Pei XM, Yeung MHY, Wong ANN, Tsang HF, Yu ACS, Yim AKY, Wong SCC. Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells 2023; 12:493. [PMID: 36766834 PMCID: PMC9913990 DOI: 10.3390/cells12030493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The outbreak of COVID-19 has positively impacted the NGS market recently. Targeted sequencing (TS) has become an important routine technique in both clinical and research settings, with advantages including high confidence and accuracy, a reasonable turnaround time, relatively low cost, and fewer data burdens with the level of bioinformatics or computational demand. Since there are no clear consensus guidelines on the wide range of next-generation sequencing (NGS) platforms and techniques, there is a vital need for researchers and clinicians to develop efficient approaches, especially for the molecular diagnosis of diseases in the emergency of the disease and the global pandemic outbreak of COVID-19. In this review, we aim to summarize different methods of TS, demonstrate parameters for TS assay designs, illustrate different TS panels, discuss their limitations, and present the challenges of TS concerning their clinical application for the molecular diagnosis of human diseases.
Collapse
Affiliation(s)
- Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Allen Chi Shing Yu
- Codex Genetics Limited, Unit 212, 2/F., Building 16W, No. 16 Science Park West Avenue, The Hong Kong Science Park, Hong Kong 852, China
| | - Aldrin Kay Yuen Yim
- Codex Genetics Limited, Unit 212, 2/F., Building 16W, No. 16 Science Park West Avenue, The Hong Kong Science Park, Hong Kong 852, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
13
|
McNeill A. 2022: the year that was in the European Journal of Human Genetics. Eur J Hum Genet 2023; 31:131-133. [PMID: 36750730 PMCID: PMC9905485 DOI: 10.1038/s41431-023-01283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, The University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Department, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
14
|
Jauss RT, Schließke S, Abou Jamra R. Routine Diagnostics Confirm Novel Neurodevelopmental Disorders. Genes (Basel) 2022; 13:2305. [PMID: 36553572 PMCID: PMC9778535 DOI: 10.3390/genes13122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Routine diagnostics is biased towards genes and variants with satisfactory evidence, but rare disorders with only little confirmation of their pathogenicity might be missed. Many of these genes can, however, be considered relevant, although they may have less evidence because they lack OMIM entries or comprise only a small number of publicly available variants from one or a few studies. Here, we present 89 individuals harbouring variants in 77 genes for which only a small amount of public evidence on their clinical significance is available but which we still found to be relevant enough to be reported in routine diagnostics. For 21 genes, we present case reports that confirm the lack or provisionality of OMIM associations (ATP6V0A1, CNTN2, GABRD, NCKAP1, RHEB, TCF7L2), broaden the phenotypic spectrum (CC2D1A, KCTD17, YAP1) or substantially strengthen the confirmation of genes with limited evidence in the medical literature (ADARB1, AP2M1, BCKDK, BCORL1, CARS2, FBXO38, GABRB1, KAT8, PRKD1, RAB11B, RUSC2, ZNF142). Routine diagnostics can provide valuable information on disease associations and support for genes without requiring tremendous research efforts. Thus, our results validate and delineate gene-disorder associations with the aim of motivating clinicians and scientists in diagnostic departments to provide additional evidence via publicly available databases or by publishing short case reports.
Collapse
Affiliation(s)
- Robin-Tobias Jauss
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | | | | |
Collapse
|
15
|
Children, Adolescents, and Young Adults with Borderline Intellectual Functioning: Etiological, Neurophysiological, and Mri Findings in a Cohort of 651 Patients. Neurol Int 2022; 14:1007-1017. [PMID: 36548185 PMCID: PMC9785934 DOI: 10.3390/neurolint14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
This retrospective chart review study explored the etiology, use, and yield of the etiological investigations of 651 children and adolescents diagnosed with borderline intellectual functioning (BIF). Neurological, neurodevelopmental, or neuropsychiatric comorbidities were frequent, and in 23%, the BIF diagnosis evolved into an intellectual disability (ID) by the time of discharge. A primary etiological cause was found in 37.6%, the most prevalent causes being pre- or perinatal conditions, genetic syndromes/chromosomal abnormalities, fetal exposure to maternal substance use, cerebral dysgenesis, and neurological diseases. In total, 79.1% of patients went through one or more investigations during their follow-up. The best etiologic yield leading to a diagnosis in this study population was with exome sequencing, a specific gene panel, microarrays, electroneuromyography, and brain magnetic resonance imaging (MRI). Etiological investigations were performed more frequently among those children receiving an ID diagnosis. Yet, there was no statistically significant difference in the proportion of abnormal findings between the BIF and ID groups. This may mean that the current strategy for determining the need for etiological investigations or current means to gain an etiology is still indecisive. Considering that BIF is defined to include individuals performing between normal cognitive functioning and mild ID, this implies that the prevalence would be anywhere between 7 and 14%. Thus, it could be argued whether in-depth etiological investigations may be justified in cases other than ID in this age group of children over five. With these children and adolescents, the clinicians have to discern between those with a normal variation and those having major difficulties in adaptive behavior affecting everyday life in order to specify and prescribe the rehabilitation or other measures needed. We advocate for a targeted etiological search after careful history-taking and neurological examination. National guidelines that take into account the severity of developmental delay are warranted.
Collapse
|
16
|
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 2022; 24:765-786. [PMID: 35830287 PMCID: PMC10752379 DOI: 10.1684/epd.2022.1448] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Epilepsy genetics is a rapidly developing field, in which novel disease-associated genes, novel mechanisms associated with epilepsy, and precision medicine approaches are continuously being identified. In the past decade, advances in genomic knowledge and analysis platforms have begun to make clinical genetic testing accessible for, in principle, people of all ages with epilepsy. For this reason, the Genetics Commission of the International League Against Epilepsy (ILAE) presents this update on clinical genetic testing practice, including current techniques, indications, yield of genetic testing, recommendations for pre- and post-test counseling, and follow-up after genetic testing is completed. We acknowledge that the resources vary across different settings but highlight that genetic diagnostic testing for epilepsy should be prioritized when the likelihood of an informative finding is high. Results of genetic testing, in particular the identification of causative genetic variants, are likely to improve individual care. We emphasize the importance of genetic testing for individuals with epilepsy as we enter the era of precision therapy.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alina Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, VIC, Australia
| | - Ingo Helbig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Building C, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg and Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Holger Lerche
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel Lowenstein
- Department of Neurology, University of California, San Francisco, USA
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology London, UK and Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB-University of Antwerp, VIB, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Paediatric and Child Health, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Yvonne Weber
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
17
|
Krey I, Platzer K, Lemke JR. Monogenetic epilepsies and how to approach them in 2022. MED GENET-BERLIN 2022; 34:201-205. [PMID: 38835882 PMCID: PMC11006248 DOI: 10.1515/medgen-2022-2143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
18
|
Krey I, Johannesen KM, Kohnen O, Lemke JR. Genetic testing in adults with developmental and epileptic encephalopathy - what do we know? MED GENET-BERLIN 2022; 34:207-213. [PMID: 38835877 PMCID: PMC11006368 DOI: 10.1515/medgen-2022-2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Knowledge of underlying genetic causes of developmental and epileptic encephalopathies (DEE) in adults is still limited when compared to the routine diagnostic approach in similarly affected children. A well-documented longitudinal study of adults with DEE is of utmost importance to understand the natural history of the respective entity. This information is of great value especially for genetic counselling of newly diagnosed children with identical genetic diagnoses and may impact treatment and management of affected individuals. In our meta-analysis we provide an overview of the most recurrent genetic findings across an adult DEE cohort (n = 1 , 020 ). The gene mostly associated with a pathogenic or likely pathogenic variant in adult DEE is SCN1A, followed by MECP2 and CHD2. Studies employing exome sequencing and calling of both single nucleotide variants and copy number variants are associated with diagnostic yields of almost 50 %. Finally, we highlight three remarkable cases, each representing the oldest individual ever published with their genetic diagnosis, i. e., Angelman syndrome, Miller-Dieker syndrome, and CAMK2A-related disorder, and describe lessons learned from each of these adults.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Kathrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Oona Kohnen
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
19
|
The Genetic Diagnosis of Ultrarare DEEs: An Ongoing Challenge. Genes (Basel) 2022; 13:genes13030500. [PMID: 35328054 PMCID: PMC8953579 DOI: 10.3390/genes13030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Epileptic encephalopathies (EEs) and developmental and epileptic encephalopathies (DEEs) are a group of severe early-onset neurodevelopmental disorders (NDDs). In recent years, next-generation equencing (NGS) technologies enabled the discovery of numerous genes involved in these conditions. However, more than 50% of patients remained undiagnosed. A major obstacle lies in the high degree of genetic heterogeneity and the wide phenotypic variability that has characterized these disorders. Interpreting a large amount of NGS data is also a crucial challenge. This study describes a dynamic diagnostic procedure used to investigate 17 patients with DEE or EE with previous negative or inconclusive genetic testing by whole-exome sequencing (WES), leading to a definite diagnosis in about 59% of participants. Biallelic mutations caused most of the diagnosed cases (50%), and a pathogenic somatic mutation resulted in 10% of the subjects. The high diagnostic yield reached highlights the relevance of the scientific approach, the importance of the reverse phenotyping strategy, and the involvement of a dedicated multidisciplinary team. The study emphasizes the role of recessive and somatic variants, new genetic mechanisms, and the complexity of genotype–phenotype associations. In older patients, WES results could end invasive diagnostic procedures and allow a more accurate transition. Finally, an early pursued diagnosis is essential for comprehensive care of patients, precision approach, knowledge of prognosis, patient and family planning, and quality of life.
Collapse
|
20
|
McNeill A. New year, new issue. Eur J Hum Genet 2022; 30:1-2. [PMID: 34848845 PMCID: PMC8738724 DOI: 10.1038/s41431-021-01014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Alisdair McNeill
- grid.11835.3e0000 0004 1936 9262Department of Neuroscience, The University of Sheffield, Sheffield, UK ,grid.413991.70000 0004 0641 6082Sheffield Clinical Genetics Department, Sheffield Children’s Hospital NHS Foundation Trust, Sheffield, UK
| |
Collapse
|