1
|
Nagy N, Pal M, Kun J, Galik B, Urban P, Medvecz M, Fabos B, Neller A, Abdolreza A, Danis J, Szabo V, Yang Z, Fenske S, Biel M, Gyenesei A, Adam E, Szell M. Missing Heritability in Albinism: Deep Characterization of a Hungarian Albinism Cohort Raises the Possibility of the Digenic Genetic Background of the Disease. Int J Mol Sci 2024; 25:1271. [PMID: 38279271 PMCID: PMC10817051 DOI: 10.3390/ijms25021271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Albinism is characterized by a variable degree of hypopigmentation affecting the skin and the hair, and causing ophthalmologic abnormalities. Its oculocutaneous, ocular and syndromic forms follow an autosomal or X-linked recessive mode of inheritance, and 22 disease-causing genes are implicated in their development. Our aim was to clarify the genetic background of a Hungarian albinism cohort. Using a 22-gene albinism panel, the genetic background of 11 of the 17 Hungarian patients was elucidated. In patients with unidentified genetic backgrounds (n = 6), whole exome sequencing was performed. Our investigations revealed a novel, previously unreported rare variant (N687S) of the two-pore channel two gene (TPCN2). The N687S variant of the encoded TPC2 protein is carried by a 15-year-old Hungarian male albinism patient and his clinically unaffected mother. Our segregational analysis and in vitro functional experiments suggest that the detected novel rare TPCN2 variant alone is not a disease-causing variant in albinism. Deep genetic analyses of the family revealed that the patient also carries a phenotype-modifying R305W variant of the OCA2 protein, and he is the only family member harboring this genotype. Our results raise the possibility that this digenic combination might contribute to the observed differences between the patient and the mother, and found the genetic background of the disease in his case.
Collapse
Affiliation(s)
- Nikoletta Nagy
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetic Research Group, 6720 Szeged, Hungary
| | - Margit Pal
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetic Research Group, 6720 Szeged, Hungary
| | - Jozsef Kun
- Hungarian Centre for Genomics and Bioinformatics, Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (J.K.); (B.G.); (P.U.); (A.G.)
| | - Bence Galik
- Hungarian Centre for Genomics and Bioinformatics, Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (J.K.); (B.G.); (P.U.); (A.G.)
| | - Peter Urban
- Hungarian Centre for Genomics and Bioinformatics, Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (J.K.); (B.G.); (P.U.); (A.G.)
| | - Marta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1095 Budapest, Hungary;
- ERN-Skin Reference Centre, Semmelweis University, 1095 Budapest, Hungary
| | - Beata Fabos
- Mor Kaposi Teaching Hospital of Somogy County, 7400 Kaposvar, Hungary;
| | - Alexandra Neller
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
| | - Aliasgari Abdolreza
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
| | - Judit Danis
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary;
- Department of Immunology, University of Szeged, 6720 Szeged, Hungary
| | - Viktoria Szabo
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Zhuo Yang
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany (M.B.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany (M.B.)
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany (M.B.)
| | - Attila Gyenesei
- Hungarian Centre for Genomics and Bioinformatics, Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (J.K.); (B.G.); (P.U.); (A.G.)
| | - Eva Adam
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetic Research Group, 6720 Szeged, Hungary
| | - Marta Szell
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetic Research Group, 6720 Szeged, Hungary
| |
Collapse
|
2
|
Horackova K, Janatova M, Kleiblova P, Kleibl Z, Soukupova J. Early-Onset Ovarian Cancer <30 Years: What Do We Know about Its Genetic Predisposition? Int J Mol Sci 2023; 24:17020. [PMID: 38069345 PMCID: PMC10707471 DOI: 10.3390/ijms242317020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of cancer-related deaths in women. Most patients are diagnosed with advanced epithelial OC in their late 60s, and early-onset adult OC diagnosed ≤30 years is rare, accounting for less than 5% of all OC cases. The most significant risk factor for OC development are germline pathogenic/likely pathogenic variants (GPVs) in OC predisposition genes (including BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, Lynch syndrome genes, or BRIP1), which contribute to the development of over 20% of all OC cases. GPVs in BRCA1/BRCA2 are the most prevalent. The presence of a GPV directs tailored cancer risk-reducing strategies for OC patients and their relatives. Identification of OC patients with GPVs can also have therapeutic consequences. Despite the general assumption that early cancer onset indicates higher involvement of hereditary cancer predisposition, the presence of GPVs in early-onset OC is rare (<10% of patients), and their heritability is uncertain. This review summarizes the current knowledge on the genetic predisposition to early-onset OC, with a special focus on epithelial OC, and suggests other alternative genetic factors (digenic, oligogenic, polygenic heritability, genetic mosaicism, imprinting, etc.) that may influence the development of early-onset OC in adult women lacking GPVs in known OC predisposition genes.
Collapse
Affiliation(s)
- Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| |
Collapse
|
3
|
McNeill A. 2022: the year that was in the European Journal of Human Genetics. Eur J Hum Genet 2023; 31:131-133. [PMID: 36750730 PMCID: PMC9905485 DOI: 10.1038/s41431-023-01283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, The University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Department, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
4
|
Yao Q, Gorevic P, Shen B, Gibson G. Genetically transitional disease: a new concept in genomic medicine. Trends Genet 2023; 39:98-108. [PMID: 36564319 DOI: 10.1016/j.tig.2022.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Traditional classification of genetic diseases as monogenic and polygenic has lagged far behind scientific progress. In this opinion article, we propose and define a new terminology, genetically transitional disease (GTD), referring to cases where a large-effect mutation is necessary, but not sufficient, to cause disease. This leads to a working disease nosology based on gradients of four types of genetic architecture: monogenic, polygenic, GTD, and mixed. We present four scenarios under which GTD may occur; namely, subsets of traditionally Mendelian disease, modifiable Tier 1 monogenic conditions, variable penetrance, and situations where a genetic mutational spectrum produces qualitatively divergent pathologies. The implications of the new nosology in precision medicine are discussed, in which therapeutic options may target the molecular cause or the disease phenotype.
Collapse
Affiliation(s)
- Qingping Yao
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA.
| | - Peter Gorevic
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Bo Shen
- Center for Inflammatory Bowel Diseases, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Greg Gibson
- Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
Papadimitriou S, Gravel B, Nachtegael C, De Baere E, Loeys B, Vikkula M, Smits G, Lenaerts T. Toward reporting standards for the pathogenicity of variant combinations involved in multilocus/oligogenic diseases. HGG ADVANCES 2022; 4:100165. [PMID: 36578772 PMCID: PMC9791921 DOI: 10.1016/j.xhgg.2022.100165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although standards and guidelines for the interpretation of variants identified in genes that cause Mendelian disorders have been developed, this is not the case for more complex genetic models including variant combinations in multiple genes. During a large curation process conducted on 318 research articles presenting oligogenic variant combinations, we encountered several recurring issues concerning their proper reporting and pathogenicity assessment. These mainly concern the absence of strong evidence that refutes a monogenic model and the lack of a proper genetic and functional assessment of the joint effect of the involved variants. With the increasing accumulation of such cases, it has become essential to develop standards and guidelines on how these oligogenic/multilocus variant combinations should be interpreted, validated, and reported in order to provide high-quality data and supporting evidence to the scientific community.
Collapse
Affiliation(s)
- Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium,Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium,Corresponding author
| | - Barbara Gravel
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium,Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bart Loeys
- Center for Medical Genetics, Antwerp University Hospital/University of Antwerp, 2650 Antwerp, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium,Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium,Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium,Corresponding author
| |
Collapse
|
6
|
McNeill A. The utility of population level genomic research. Eur J Hum Genet 2022; 30:1307-1308. [PMID: 36450941 PMCID: PMC9712669 DOI: 10.1038/s41431-022-01228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, The University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Department, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|