1
|
Chang KJ, Wu HY, Chiang PH, Hsu YT, Weng PY, Yu TH, Li CY, Chen YH, Dai HJ, Tsai HY, Chang YJ, Wu YR, Yang YP, Li CT, Hsu CC, Chen SJ, Chen YC, Cheng CY, Hsieh AR, Chiou SH. Decoding and reconstructing disease relations between dry eye and depression: a multimodal investigation comprising meta-analysis, genetic pathways and Mendelian randomization. J Adv Res 2025; 69:197-213. [PMID: 38548265 DOI: 10.1016/j.jare.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION The clinical presentations of dry eye disease (DED) and depression (DEP) often comanifest. However, the robustness and the mechanisms underlying this association were undetermined. OBJECTIVES To this end, we set up a three-segment study that employed multimodality results (meta-analysis, genome-wide association study [GWAS] and Mendelian randomization [MR]) to elucidate the association, common pathways and causality between DED and DEP. METHODS A meta-analysis comprising 26 case-control studies was first conducted to confirm the DED-DEP association. Next, we performed a linkage disequilibrium (LD)-adjusted GWAS and targeted phenotype association study (PheWAS) in East Asian TW Biobank (TWB) and European UK Biobank (UKB) populations. Single-nucleotide polymorphisms (SNPs) were further screened for molecular interactions and common pathways at the functional gene level. To further elucidate the activated pathways in DED and DEP, a systemic transcriptome review was conducted on RNA sequencing samples from the Gene Expression Omnibus. Finally, 48 MR experiments were implemented to examine the bidirectional causation between DED and DEP. RESULTS Our meta-analysis showed that DED patients are associated with an increased DEP prevalence (OR = 1.83), while DEP patients have a concurrent higher risk of DED (OR = 2.34). Notably, cross-disease GWAS analysis revealed that similar genetic architecture (rG = 0.19) and pleiotropic functional genes contributed to phenotypes in both diseases. Through protein-protein interaction and ontology convergence, we summarized the pleiotropic functional genes under the ontology of immune activation, which was further validated by a transcriptome systemic review. Importantly, the inverse variance-weighted (IVW)-MR experiments in both TWB and UKB populations (p value <0.001) supported the bidirectional exposure-outcome causation for DED-to-DEP and DEP-to-DED. Despite stringent LD-corrected instrumental variable re-selection, the bidirectional causation between DED and DEP remained. CONCLUSION With the multi-modal evidence combined, we consolidated the association and causation between DED and DEP.
Collapse
Affiliation(s)
- Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Medical Education, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Hsin-Yu Wu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Pin-Hsuan Chiang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - Yu-Tien Hsu
- Department of Social & Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, 02115 No.677 Huntington Avenue, MA, USA
| | - Pei-Yu Weng
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Ting-Han Yu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Cheng-Yi Li
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Yu-Hsiang Chen
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - He-Jhen Dai
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Han-Ying Tsai
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - Yu-Jung Chang
- Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - You-Ren Wu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Cognitive Neuroscience, National Central University, 320317 No. 300, Zhongda Rd., Zhongli District, Jhongli, Taiwan
| | - Chih-Chien Hsu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Shih-Jen Chen
- Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Yu-Chun Chen
- School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751 No.11 Third Hospital Ave, Singapore; Department of Ophthalmology, Yong Loo Lin school of Medicine, National University of Singapore, 119228 No.21 Lower Kent Ridge Road, Singapore
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan.
| |
Collapse
|
2
|
Li J, Liao Y, Zhang SY, Jin L, Congdon N, Fan Z, Zeng Y, Zheng Y, Liu Z, Liu Y, Liang L. Effect of laughter exercise versus 0.1% sodium hyaluronic acid on ocular surface discomfort in dry eye disease: non-inferiority randomised controlled trial. BMJ 2024; 386:e080474. [PMID: 39260878 DOI: 10.1136/bmj-2024-080474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To assess efficacy and safety of laughter exercise in patients with symptomatic dry eye disease. DESIGN Non-inferiority randomised controlled trial. SETTING Recruitment was from clinics and community and the trial took place at Zhongshan Ophthalmic Center, Sun Yat-sen University, the largest ophthalmic centre in China, between 18 June 2020 to 8 January 2021. PARTICIPANTS People with symptomatic dry eye disease aged 18-45 years with ocular surface disease index scores ranging from 18 to 80 and tear film break-up time of eight seconds or less. INTERVENTIONS Participants were randomised 1:1 to receive laughter exercise or artificial tears (0.1% sodium hyaluronic acid eyedrop, control group) four times daily for eight weeks. The laughter exercise group viewed an instructional video and participants were requested to vocalise the phrases "Hee hee hee, hah hah hah, cheese cheese cheese, cheek cheek cheek, hah hah hah hah hah hah" 30 times per five minute session. Investigators assessing study outcomes were masked to group assignment but participants were unmasked for practical reasons. MAIN OUTCOME MEASURES The primary outcome was the mean change in the ocular surface disease index (0-100, higher scores indicating worse ocular surface discomfort) from baseline to eight weeks in the per protocol population. The non-inferiority margin was 6 points of this index score. Main secondary outcomes included the proportion of patients with a decrease from baseline in ocular surface disease index score of at least 10 points and changes in dry eye disease signs, for example, non-invasive tear break up time at eight weeks. RESULTS 299 participants (mean age 28.9 years; 74% female) were randomly assigned to receive laughter exercise (n=149) or 0.1% sodium hyaluronic acid (n=150). 283 (95%) completed the trial. The mean change in ocular surface disease index score at eight weeks was -10.5 points (95% confidence interval (CI) -13.1 to -7.82) in the laughter exercise group and -8.83 (-11.7 to -6.02) in the control group. The upper boundary of the CI for difference in change between groups was lower than the non-inferiority margin (mean difference -1.45 points (95% CI -5.08 to 2.19); P=0.43), supporting non-inferiority. Among secondary outcomes, the laughter exercise was better in improving non-invasive tear break up time (mean difference 2.30 seconds (95% CI 1.30 to 3.30), P<0.001); other secondary outcomes showed no significant difference. No adverse events were noted in either study group. CONCLUSIONS The laughter exercise was non-inferior to 0.1% sodium hyaluronic acid in relieving subjective symptoms in patients with dry eye disease with limited corneal staining over eight weeks intervention. TRIAL REGISTRATION ClinicalTrials.gov NCT04421300.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yinglin Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Shi-Yao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Ling Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Nathan Congdon
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
- Centre for Public Health, Queen's University Belfast, Belfast, Belfast, UK
- Orbis International, New York, NY, USA
| | - Zixin Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yangfa Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zuguo Liu
- Xiamen University affiliated with Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Hu M, Wang C, Li Y, Zhang H, Li H, Dai Q, Lian H, Zhao YE, Fu Y. Quantitative Assessment of Lid Margin Vascularity Using Swept-Source Optical Coherence Tomography Angiography. Transl Vis Sci Technol 2024; 13:6. [PMID: 38874976 PMCID: PMC11182367 DOI: 10.1167/tvst.13.6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Purpose To evaluate the ability of swept-source optical coherence tomography angiography (SS-OCTA) to assess lid margin vascularity. Methods This prospective, cross-sectional trial enrolled 125 participants, including 15 control subjects and 110 meibomian gland dysfunction (MGD) patients. Lid margin blood flow density (LMBFD) was obtained using SS-OCTA. LMBFD was assessed for repeatability in 54 of 125 participants and for reproducibility in 23 of 125 participants. The efficacy of LMBFD was validated in the 125 participants, who were divided into mild (n = 46), moderate (n = 42), and severe groups (n = 37) according to the lid margin vascularity severity shown in the slit-lamp photographs. Correlations between LMBFD and MG-related parameters, such as ocular surface disease index (OSDI), fluorescein tear break-up time (FTBUT), cornea fluorescein staining (CFS), lid margin score (LMS), and meibomian gland expressibility (ME), were analyzed in all 125 participants. Results Repeatability and reproducibility coefficients were satisfactorily high in the scan mode with a scan area of 6 mm × 6 mm (intraclass correlation coefficient [ICC] repeatability = 0.905; ICC reproducibility = 0.986) and a scan area of 9 mm × 9 mm (ICC repeatability = 0.888; ICC reproducibility = 0.988). The LMBFD gradually increased in the mild, moderate, and severe groups (P < 0.001). LMBFD was significant correlated with OSDI (r = 0.290, P = 0.001), FTBUT (r = -0.195, P = 0.030), CFS (r = 0.352, P < 0.001), ME (r = 0.191, P = 0.033), and LMS (r = 0.370, P < 0.001). Conclusions LMBFD may be a noninvasive, repeatable, reproducible, and efficient index for the quantitative evaluation of eyelid margin vascularity in the future. Translational Relevance We demonstrated that SS-OCTA has the potential to evaluate the eyelid margin vascularity in MGD patients and guide future treatment strategies in clinics.
Collapse
Affiliation(s)
- Man Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| | - Chenchen Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| | - Ying Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| | - Hongfang Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| | - Hongzhe Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| | - Qi Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| | - Hengli Lian
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| | - Yun-e Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| | - Yana Fu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University at Hangzhou, Hangzhou, China
| |
Collapse
|
5
|
Ruan F, Kong WJ, Fan Q, Dong HW, Zhang W, Wei WB, Jie Y. Evaluation of dry eye disease symptomatology and mental health status among patients with different COVID-19 statuses. Int J Ophthalmol 2024; 17:822-830. [PMID: 38766352 PMCID: PMC11074193 DOI: 10.18240/ijo.2024.05.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/29/2024] [Indexed: 05/22/2024] Open
Abstract
AIM To evaluate dry eye disease (DED) symptomatology and mental health status in different COVID-19 patients. METHODS A cross-sectional observational design was used. Totally 123 eligible adults (46.34% of men, age range, 18-59y) with COVID-19 included in the study from August to November, 2022. Ocular Surface Disease Index (OSDI), Five-item Dry Eye Questionnaire (DEQ-5), Hospital Anxiety and Depression Scale (HADS), and Pittsburgh Sleep Quality Index (PSQI) were used in this study. RESULTS OSDI scores were 6.82 (1.25, 15.91) in asymptomatic carriers, 7.35 (2.50, 18.38) in mild cases, and 16.67 (4.43, 28.04) in recurrent cases, with 30.00%, 35.56%, and 57.89%, respectively evaluated as having DED symptoms (χ2=7.049, P=0.029). DEQ-5 score varied from 2.00 (0, 6.00) in asymptomatic carriers, 3.00 (0, 8.00) in mild cases, and 8.00 (5.00, 10.00) in recurrent cases, with 27.50%, 33.33%, and 55.26%, respectively assessed as having DED symptoms (χ2=8.532, P=0.014). The prevalence of clinical anxiety (50.00%) and depression (47.37%) symptoms were also significantly higher in patients with recurrent infection (χ2=24.541, P<0.001; χ2=30.871, P<0.001). Recurrent infection was a risk factor for high OSDI scores [odds ratio, 2.562; 95% confidence interval (CI), 1.631-7.979; P=0.033] and DEQ-5 scores (odds ratio, 3.353; 95%CI, 1.038-8.834; P=0.043), whereas having a fixed occupation was a protective factor for OSDI scores (odds ratio, 0.088; 95%CI, 0.022-0.360; P=0.001) and DEQ-5 scores (odds ratio, 0.126; 95%CI, 0.039-0.405; P=0.001). CONCLUSION Patients with recurrent COVID-19 have more severe symptoms of DED, anxiety, and depression.
Collapse
Affiliation(s)
- Fang Ruan
- Department of Ophthalmology, Beijing You'an Hospital, Capital Medical University, Beijing Infectious Eye Disease Diagnosis and Treatment Center, Beijing 100069, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing 100730, China
| | - Wen-Jun Kong
- Department of Ophthalmology, Beijing You'an Hospital, Capital Medical University, Beijing Infectious Eye Disease Diagnosis and Treatment Center, Beijing 100069, China
| | - Qian Fan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University Eye Institute, Nankai University, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Hong-Wei Dong
- Department of Ophthalmology, Beijing You'an Hospital, Capital Medical University, Beijing Infectious Eye Disease Diagnosis and Treatment Center, Beijing 100069, China
| | - Wei Zhang
- Department of Ophthalmology, Beijing You'an Hospital, Capital Medical University, Beijing Infectious Eye Disease Diagnosis and Treatment Center, Beijing 100069, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing 100730, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing 100730, China
| | - Ying Jie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing 100730, China
| |
Collapse
|