1
|
Bhagat A, Lyerly HK, Morse MA, Hartman ZC. CEA vaccines. Hum Vaccin Immunother 2023; 19:2291857. [PMID: 38087989 PMCID: PMC10732609 DOI: 10.1080/21645515.2023.2291857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Carcinoembryonic antigen (CEA) is a glycosylated cell surface oncofetal protein involved in adhesion, proliferation, and migration that is highly upregulated in multiple carcinomas and has long been a promising target for cancer vaccination. This review summarizes the progress to date in the development of CEA vaccines, examining both pre-clinical and clinical studies across a variety of vaccine platforms that in aggregate, begin to reveal some critical insights. These studies demonstrate the ability of CEA vaccines to break immunologic tolerance and elicit CEA-specific immunity, which associates with improved clinical outcomes in select individuals. Approaches that have combined replicating viral vectors, with heterologous boosting and different adjuvant strategies have been particularly promising but, these early clinical trial results will require confirmatory studies. Collectively, these studies suggest that clinical efficacy likely depends upon harnessing a potent vaccine combination in an appropriate clinical setting to fully realize the potential of CEA vaccination.
Collapse
Affiliation(s)
- Anchit Bhagat
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Michael A. Morse
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Zanetti BF, Ferreira CP, Vasconcelos JRC, Han SW. Adjuvant properties of IFN-γ and GM-CSF in the scFv6.C4 DNA vaccine against CEA-expressing tumors. Gene Ther 2023; 30:41-50. [PMID: 34108629 DOI: 10.1038/s41434-021-00270-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
Tumor-associated carcinoembryonic antigen (CEA) is a natural target for vaccines against colorectal cancers. Our previous experience with a DNA vaccine with scFv6.C4, a CEA surrogate, showed a CEA-specific immune response with 40% of tumor-free mice after challenge with B16F10-CEA and 47% with MC38-CEA cells. These percentages increased to 63% after using FrC as an adjuvant. To further enhance the vaccine efficacy, we tested GM-CSF and IFNγ as adjuvants. C57BL/6J-CEA2682 mice were immunized 4 times with uP-PS/scFv6.C4, uP-PS/scFv6.C4 + uP-IFNγ, or uP-PS/scFv6.C4 + uP-GMCSF. After one week, the mice were challenged with MC38-CEA, and tumor growth was monitored over 100 days. Immunization with scFv6.C4 and scFv6.C4 + GM-CSF resulted in a gradual increase in the anti-CEA antibody titer, while scFv6.C4 + IFNγ immunization led to a rapid and sustained increase in the titer. The addition of IFNγ also induced higher CD4 + and CD8 + responses. When challenged, almost 80% of the scFv6.C4 + IFNγ-vaccinated mice did not develop tumors, while the others had a significant tumor growth delay. The probability of being tumor-free was 2700% higher using scFv6.C4 + IFNγ than scFv6.C4. The addition of GM-CSF had no additional effect on tumor protection. DNA immunization with scFv6.C4 + IFNγ, but not GM-CSF, increased the antitumor effect via readily sustained specific humoral and cytotoxic responses to CEA.
Collapse
Affiliation(s)
- Bianca Ferrarini Zanetti
- Research Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Camila Pontes Ferreira
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - José Ronnie Carvalho Vasconcelos
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sang Won Han
- Research Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil. .,Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Hassannia H, Amiri MM, Ghaedi M, Sharifian RA, Golsaz-Shirazi F, Jeddi-Tehrani M, Shokri F. Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model. Cancers (Basel) 2022; 14:5827. [PMID: 36497309 PMCID: PMC9738141 DOI: 10.3390/cancers14235827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a new tumor associated antigen (TAA) which is overexpressed in several hematopoietic and solid malignancies. The present study aimed to produce and evaluate different fusion proteins of mouse ROR1 (mROR1) to enhance immunogenicity and protective efficacy of ROR1. Four ROR1 fusion proteins composed of extracellular region of mROR1, immunogenic fragments of TT as well as Fc region of mouse IgG2a were produced and employed to immunize Balb/C mice. Humoral and cellular immune responses and anti-tumor effects of these fusion proteins were evaluated using two different syngeneic murine ROR1+ tumor models. ROR1-specific antibodies were induced in all groups of mice. The levels of IFN-γ, IL-17 and IL-22 cytokines in culture supernatants of stimulated splenocytes were increased in all groups of immunized mice, particularly mice immunized with TT-mROR1-Fc fusion proteins. The frequency of ROR1-specific CTLs was higher in mice immunized with TT-mROR1-Fc fusion proteins. Finally, results of tumor challenge in immunized mice showed that immunization with TT-mROR1-Fc fusion proteins completely inhibited ROR1+ tumor cells growth in two different syngeneic tumor models until day 120 post tumor challenge. Our preclinical findings, for the first time, showed that our fusion proteins could be considered as a potential candidate vaccine for active immunotherapy of ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari P.O. Box 48157-33971, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mojgan Ghaedi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Ramezan-Ali Sharifian
- Department of Hematology and Oncology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 14197-33141, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran P.O. Box 19839-69412, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| |
Collapse
|
4
|
scFv6.C4 DNA vaccine with fragment C of tetanus toxin increases protective immunity against CEA-expressing tumor. Gene Ther 2021; 28:287-289. [PMID: 32483214 DOI: 10.1038/s41434-020-0161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/29/2023]
|
5
|
Fidelle M, Yonekura S, Picard M, Cogdill A, Hollebecque A, Roberti MP, Zitvogel L. Resolving the Paradox of Colon Cancer Through the Integration of Genetics, Immunology, and the Microbiota. Front Immunol 2020; 11:600886. [PMID: 33381121 PMCID: PMC7768083 DOI: 10.3389/fimmu.2020.600886] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
While colorectal cancers (CRC) are paradigmatic tumors invaded by effector memory lymphocytes, the mechanisms accounting for the relative resistance of MSI negative CRC to immunogenic cell death mediated by oxaliplatin and immune checkpoint inhibitors has remained an open conundrum. Here, we propose the viewpoint where its microenvironmental contexture could be explained -at least in part- by macroenvironmental cues constituted by the complex interplay between the epithelial barrier, its microbial ecosystem, and the local immune system. Taken together this dynamic ménage-à-trois offers novel coordinated actors of the humoral and cellular immune responses actionable to restore sensitivity to immune checkpoint inhibition. Solving this paradox involves breaking tolerance to crypt stem cells by inducing the immunogenic apoptosis of ileal cells in the context of an ileal microbiome shifted towards immunogenic bacteria using cytotoxicants. This manoeuver results in the elicitation of a productive Tfh and B cell dialogue in mesenteric lymph nodes culminating in tumor-specific memory CD8+ T cell responses sparing the normal epithelium.
Collapse
Affiliation(s)
- Marine Fidelle
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Satoru Yonekura
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Marion Picard
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Unit Biology and Genetics of the Bacterial Cell Wall, Institut Pasteur, Paris, France
| | - Alexandria Cogdill
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Antoine Hollebecque
- Gustave Roussy, Villejuif, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Maria Paula Roberti
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| |
Collapse
|
6
|
Yarmarkovich M, Warrington JM, Farrel A, Maris JM. Identification of SARS-CoV-2 Vaccine Epitopes Predicted to Induce Long-Term Population-Scale Immunity. Cell Rep Med 2020; 1:100036. [PMID: 32835302 PMCID: PMC7276303 DOI: 10.1016/j.xcrm.2020.100036] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Here we propose a SARS-CoV-2 vaccine design concept based on identification of highly conserved regions of the viral genome and newly acquired adaptations, both predicted to generate epitopes presented on major histocompatibility complex (MHC) class I and II across the vast majority of the population. We further prioritize genomic regions that generate highly dissimilar peptides from the human proteome and are also predicted to produce B cell epitopes. We propose sixty-five 33-mer peptide sequences, a subset of which can be tested using DNA or mRNA delivery strategies. These include peptides that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor and within a newly evolved furin cleavage site thought to increase membrane fusion. Validation and implementation of this vaccine concept could specifically target specific vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the population.
Collapse
Affiliation(s)
- Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John M. Warrington
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alvin Farrel
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Yarmarkovich M, Warrington JM, Farrel A, Maris JM. A SARS-CoV-2 Vaccination Strategy Focused on Population-Scale Immunity. SSRN 2020:3575161. [PMID: 32714112 PMCID: PMC7366814 DOI: 10.2139/ssrn.3575161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/05/2020] [Indexed: 11/15/2022]
Abstract
Here we propose a vaccination strategy for SARS-CoV-2 based on identification of both highly conserved regions of the virus and newly acquired adaptations that are presented by MHC class I and II across the vast majority of the population, are highly dissimilar from the human proteome, and are predicted B cell epitopes. We present 65 peptide sequences that we expect to result in a safe and effective vaccine which can be rapidly tested in DNA, mRNA, or synthetic peptide constructs. These include epitopes that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor, and within a novel furin cleavage site thought to increase membrane fusion. This vaccination strategy specifically targets unique vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the human population.
Collapse
Affiliation(s)
- Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - John M. Warrington
- Division of Oncology and Center for Childhood Cancer Research; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Alvin Farrel
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
- Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, 19104
| |
Collapse
|
8
|
Yarmarkovich M, Warrington JM, Farrel A, Maris JM. A SARS-CoV-2 Vaccination Strategy Focused on Population-Scale Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.31.018978. [PMID: 32511347 PMCID: PMC7255782 DOI: 10.1101/2020.03.31.018978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we propose a vaccination strategy for SARS-CoV-2 based on identification of both highly conserved regions of the virus and newly acquired adaptations that are presented by MHC class I and II across the vast majority of the population, are highly dissimilar from the human proteome, and are predicted B cell epitopes. We present 65 peptide sequences that we expect to result in a safe and effective vaccine which can be rapidly tested in DNA, mRNA, or synthetic peptide constructs. These include epitopes that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor, and within a novel furin cleavage site thought to increase membrane fusion. This vaccination strategy specifically targets unique vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the human population.
Collapse
|