1
|
Mahajan N, Luo Q, Abhyankar S, Bhatwadekar AD. Transcriptomic Profile of Lin -Sca1 +c-kit (LSK) cells in db/db mice with long-standing diabetes. BMC Genomics 2024; 25:782. [PMID: 39134978 PMCID: PMC11318115 DOI: 10.1186/s12864-024-10679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The Lin-Sca1+c-Kit+ (LSK) fraction of the bone marrow (BM) comprises multipotent hematopoietic stem cells (HSCs), which are vital to tissue homeostasis and vascular repair. While diabetes affects HSC homeostasis overall, the molecular signature of mRNA and miRNA transcriptomic under the conditions of long-standing type 2 diabetes (T2D;>6 months) remains unexplored. METHODS In this study, we assessed the transcriptomic signature of HSCs in db/db mice, a well-known and widely used model for T2D. LSK cells of db/db mice enriched using a cell sorter were subjected to paired-end mRNA and single-end miRNA seq library and sequenced on Illumina NovaSeq 6000. The mRNA sequence reads were mapped using STAR (Spliced Transcripts Alignment to a Reference), and the miRNA sequence reads were mapped to the designated reference genome using the Qiagen GeneGlobe RNA-seq Analysis Portal with default parameters for miRNA. RESULTS We uncovered 2076 out of 13,708 mRNAs and 35 out of 191 miRNAs that were expressed significantly in db/db animals; strikingly, previously unreported miRNAs (miR-3968 and miR-1971) were found to be downregulated in db/db mice. Furthermore, we observed a molecular shift in the transcriptome of HSCs of diabetes with an increase in pro-inflammatory cytokines (Il4, Tlr4, and Tnf11α) and a decrease in anti-inflammatory cytokine IL10. Pathway mapping demonstrated inflammation mediated by chemokine, cytokine, and angiogenesis as one of the top pathways with a significantly higher number of transcripts in db/db mice. These molecular changes were reflected in an overt defect in LSK mobility in the bone marrow. miRNA downstream target analysis unveils several mRNAs targeting leukocyte migration, microglia activation, phagosome formation, and macrophage activation signaling as their primary pathways, suggesting a shift to an inflammatory phenotype. CONCLUSION Our findings highlight that chronic diabetes adversely alters HSCs' homeostasis at the transcriptional level, thus potentially contributing to the inflammatory phenotype of HSCs under long-term diabetes. We also believe that identifying HSCs-based biomarkers in miRNAs or mRNAs could serve as diagnostic markers and potential therapeutic targets for diabetes and associated vascular complications.
Collapse
Affiliation(s)
- Neha Mahajan
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Qianyi Luo
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Surabhi Abhyankar
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Mahajan N, Luo Q, Abhyankar S, Bhatwadekar AD. Transcriptomic Profile of Lin - Sca1 + c-kit (LSK) cells in db/db mice with long-standing diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576754. [PMID: 38328165 PMCID: PMC10849703 DOI: 10.1101/2024.01.22.576754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The Lin - Sca1 + c-Kit + (LSK) fraction comprises multipotent hematopoietic stem cells (HSCs), vital to tissue homeostasis and vascular repair. While HSC homeostasis is impaired in diabetes, it is not known how chronic (>6 months) type 2 diabetes (T2D) alters the HSC transcriptome. Herein, we assessed the transcriptomic signature of HSCs in db/db mice employing mRNA and miRNA sequencing. We uncovered 2076 mRNAs and 35 miRNAs differentially expressed in db/db mice, including two novel miRNAs previously unreported in T2D. Further analysis of these transcripts showed a molecular shift with an increase in the pro-inflammatory cytokines and a decrease in anti-inflammatory cytokine expression. Also, pathway mapping unveiled inflammation and angiogenesis as one of the top pathways. These effects were reflected in bone marrow mobilopathy, retinal microglial inflammation, and neurovascular deficits in db/db mice. In conclusion, our study highlights that chronic diabetes alters HSCs' at the transcriptomic level, thus potentially contributing to overall homeostasis and neurovascular deficits of diabetes, such as diabetic retinopathy. Highlights Bone marrow mobilopathy with long-standing diabetesSwitch in LSK transcriptomic profile towards inflammation and angiogenesisDiscovered 35 miRNAs, including two novel miRNAs, miR-3968 and miR-1971LSK dysfunction reflected in inflammation and neurovascular deficits of the retina.
Collapse
|
3
|
Somuncular E, Su TY, Dumral Ö, Johansson AS, Luc S. Combination of CD49b and CD229 Reveals a Subset of Multipotent Progenitors With Short-Term Activity Within the Hematopoietic Stem Cell Compartment. Stem Cells Transl Med 2023; 12:720-726. [PMID: 37706539 PMCID: PMC10630077 DOI: 10.1093/stcltm/szad057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Hematopoiesis is maintained by hematopoietic stem cells (HSCs) that replenish all blood lineages throughout life. It is well-established that the HSC pool is functionally heterogeneous consisting of cells differing in longevity, self-renewal ability, cell proliferation, and lineage differentiation. Although HSCs can be identified through the Lineage-Sca-1+c-Kit+CD48-CD34-CD150+ immunophenotype, the cell surface marker combination does not permit absolute purification of functional HSCs with long-term reconstituting ability. Therefore, prospective isolation of long-term HSCs is crucial for mechanistic understanding of the biological functions of HSCs and for resolving functional heterogeneity within the HSC population. Here, we show that the combination of CD229 and CD49b cell surface markers within the phenotypic HSC compartment identifies a subset of multipotent progenitor (MPP) cells with high proliferative activity and short-term reconstituting ability. Thus, the addition of CD229 and CD49b to conventional HSC markers permits prospective isolation of functional HSCs by distinguishing MPPs in the HSC compartment.
Collapse
Affiliation(s)
- Ece Somuncular
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tsu-Yi Su
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Özge Dumral
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Favaro P, Glass DR, Borges L, Baskar R, Reynolds W, Ho D, Bruce T, Tebaykin D, Scanlon VM, Shestopalov I, Bendall SC. Unravelling human hematopoietic progenitor cell diversity through association with intrinsic regulatory factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555623. [PMID: 37693547 PMCID: PMC10491219 DOI: 10.1101/2023.08.30.555623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation is an essential therapy for hematological conditions, but finer definitions of human HSPC subsets with associated function could enable better tuning of grafts and more routine, lower-risk application. To deeply phenotype HSPCs, following a screen of 328 antigens, we quantified 41 surface proteins and functional regulators on millions of CD34+ and CD34- cells, spanning four primary human hematopoietic tissues: bone marrow, mobilized peripheral blood, cord blood, and fetal liver. We propose more granular definitions of HSPC subsets and provide new, detailed differentiation trajectories of erythroid and myeloid lineages. These aspects of our revised human hematopoietic model were validated with corresponding epigenetic analysis and in vitro clonal differentiation assays. Overall, we demonstrate the utility of using molecular regulators as surrogates for cellular identity and functional potential, providing a framework for description, prospective isolation, and cross-tissue comparison of HSPCs in humans.
Collapse
Affiliation(s)
- Patricia Favaro
- Department of Pathology, Stanford University
- These authors contributed equally
| | - David R. Glass
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Present address: Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- These authors contributed equally
| | - Luciene Borges
- Department of Pathology, Stanford University
- Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
- These authors contributed equally
| | - Reema Baskar
- Department of Pathology, Stanford University
- Present address: Genome Institute of Singapore
| | | | - Daniel Ho
- Department of Pathology, Stanford University
| | | | | | - Vanessa M. Scanlon
- Department of Laboratory Medicine, Yale School of Medicine
- Present address: Center for Regenerative Medicine and Skeletal Biology, University of Connecticut Health
| | | | - Sean C. Bendall
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Lead author
| |
Collapse
|
5
|
Ghersi JJ, Baldissera G, Hintzen J, Luff SA, Cheng S, Xia IF, Sturgeon CM, Nicoli S. Haematopoietic stem and progenitor cell heterogeneity is inherited from the embryonic endothelium. Nat Cell Biol 2023; 25:1135-1145. [PMID: 37460694 PMCID: PMC10415179 DOI: 10.1038/s41556-023-01187-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/09/2023] [Indexed: 08/12/2023]
Abstract
Definitive haematopoietic stem and progenitor cells (HSPCs) generate erythroid, lymphoid and myeloid lineages. HSPCs are produced in the embryo via transdifferentiation of haemogenic endothelial cells in the aorta-gonad-mesonephros (AGM). HSPCs in the AGM are heterogeneous in differentiation and proliferative output, but how these intrinsic differences are acquired remains unanswered. Here we discovered that loss of microRNA (miR)-128 in zebrafish leads to an expansion of HSPCs in the AGM with different cell cycle states and a skew towards erythroid and lymphoid progenitors. Manipulating miR-128 in differentiating haemogenic endothelial cells, before their transition to HSPCs, recapitulated the lineage skewing in both zebrafish and human pluripotent stem cells. miR-128 promotes Wnt and Notch signalling in the AGM via post-transcriptional repression of the Wnt inhibitor csnk1a1 and the Notch ligand jag1b. De-repression of cskn1a1 resulted in replicative and erythroid-biased HSPCs, whereas de-repression of jag1b resulted in G2/M and lymphoid-biased HSPCs with long-term consequence on the respective blood lineages. We propose that HSPC heterogeneity arises in the AGM endothelium and is programmed in part by Wnt and Notch signalling.
Collapse
Affiliation(s)
- Joey J Ghersi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyuan Cheng
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ivan Fan Xia
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, Duru AD, Spanholtz J, Raimo M. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol 2022; 15:164. [DOI: 10.1186/s13045-022-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNatural killer (NK) cells are unique immune effectors able to kill cancer cells by direct recognition of surface ligands, without prior sensitization. Allogeneic NK transfer is a highly valuable treatment option for cancer and has recently emerged with hundreds of clinical trials paving the way to finally achieve market authorization. Advantages of NK cell therapies include the use of allogenic cell sources, off-the-shelf availability, and no risk of graft-versus-host disease (GvHD). Allogeneic NK cell therapies have reached the clinical stage as ex vivo expanded and differentiated non-engineered cells, as chimeric antigen receptor (CAR)-engineered or CD16-engineered products, or as combination therapies with antibodies, priming agents, and other drugs. This review summarizes the recent clinical status of allogeneic NK cell-based therapies for the treatment of hematological and solid tumors, discussing the main characteristics of the different cell sources used for NK product development, their use in cell manufacturing processes, the engineering methods and strategies adopted for genetically modified products, and the chosen approaches for combination therapies. A comparative analysis between NK-based non-engineered, engineered, and combination therapies is presented, examining the choices made by product developers regarding the NK cell source and the targeted tumor indications, for both solid and hematological cancers. Clinical trial outcomes are discussed and, when available, assessed in comparison with preclinical data. Regulatory challenges for product approval are reviewed, highlighting the lack of specificity of requirements and standardization between products. Additionally, the competitive landscape and business field is presented. This review offers a comprehensive overview of the effort driven by biotech and pharmaceutical companies and by academic centers to bring NK cell therapies to pivotal clinical trial stages and to market authorization.
Collapse
|
7
|
Delgado M, Lennon-Duménil AM. How cell migration helps immune sentinels. Front Cell Dev Biol 2022; 10:932472. [PMID: 36268510 PMCID: PMC9577558 DOI: 10.3389/fcell.2022.932472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The immune system relies on the migratory capacity of its cellular components, which must be mobile in order to defend the host from invading micro-organisms or malignant cells. This applies in particular to immune sentinels from the myeloid lineage, i.e. macrophages and dendritic cells. Cell migration is already at work during mammalian early development, when myeloid cell precursors migrate from the yolk sac, an extra embryonic structure, to colonize tissues and form the pool of tissue-resident macrophages. Later, this is accompanied by a migration wave of precursors and monocytes from the bone marrow to secondary lymphoid organs and the peripheral tissues. They differentiate into DCs and monocyte-derived macrophages. During adult life, cell migration endows immune cells with the ability to patrol their environment as well as to circulate between peripheral tissues and lymphoid organs. Hence migration of immune cells is key to building an efficient defense system for an organism. In this review, we will describe how cell migratory capacity regulates the various stages in the life of myeloid cells from development to tissue patrolling, and migration to lymph nodes. We will focus on the role of the actin cytoskeletal machinery and its regulators, and how it contributes to the establishment and function of the immune system.
Collapse
|
8
|
Tsujimura M, Kusamori K, Takamura K, Ito T, Kaya T, Shimizu K, Konishi S, Nishikawa M. Quality evaluation of cell spheroids for transplantation by monitoring oxygen consumption using an on-chip electrochemical device. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 36:e00766. [PMID: 36245695 PMCID: PMC9562952 DOI: 10.1016/j.btre.2022.e00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
Abstract
Three-dimensional cell spheroids are superior cell-administration form for cell-based therapy which generally exhibit superior functionality and long-term survival after transplantation. Here, we nondestructively measured the oxygen consumption rate of cell spheroids using an on-chip electrochemical device (OECD) and examined whether this rate can be used as a marker to estimate the quality of cell spheroids. Cell spheroids containing NanoLuc luciferase-expressing mouse mesenchymal stem cell line C3H10T1/2 (C3H10T1/2/Nluc) were prepared. Spheroids of high or low quality were prepared by altering the medium change frequency. After transplantation into mice, the high-quality C3H10T1/2/Nluc spheroids exhibited a higher survival rate than the low-quality ones. The oxygen consumption rate of the high-quality C3H10T1/2/Nluc spheroids was maintained at high levels, whereas that of the low-quality spheroids decreased with time. These results indicate that OECD-based measurement of the oxygen consumption rate can be used to estimate the quality of cell spheroids without destructive analysis of the spheroids.
Collapse
Affiliation(s)
- Mari Tsujimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Corresponding author.
| | - Kodai Takamura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Temmei Ito
- KONICA MINOLTA, INC., No.1 Sakura-machi, Hino-shi, Tokyo, 191-8511, Japan
| | - Takatoshi Kaya
- KONICA MINOLTA, INC., No.1 Sakura-machi, Hino-shi, Tokyo, 191-8511, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Satoshi Konishi
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
9
|
Sivakumar A, Cherqui S. Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia. Front Genome Ed 2022; 4:903139. [PMID: 35663795 PMCID: PMC9157421 DOI: 10.3389/fgeed.2022.903139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited, multisystemic disorder predominantly caused by GAA hyper expansion in intron 1 of frataxin (FXN) gene. This expansion mutation transcriptionally represses FXN, a mitochondrial protein that is required for iron metabolism and mitochondrial homeostasis, leading to neurodegerative and cardiac dysfunction. Current therapeutic options for FRDA are focused on improving mitochondrial function and increasing frataxin expression through pharmacological interventions but are not effective in delaying or preventing the neurodegeneration in clinical trials. Recent research on in vivo and ex vivo gene therapy methods in FRDA animal and cell models showcase its promise as a one-time therapy for FRDA. In this review, we provide an overview on the current and emerging prospects of gene therapy for FRDA, with specific focus on advantages of CRISPR/Cas9-mediated gene editing of FXN as a viable option to restore endogenous frataxin expression. We also assess the potential of ex vivo gene editing in hematopoietic stem and progenitor cells as a potential autologous transplantation therapeutic option and discuss its advantages in tackling FRDA-specific safety aspects for clinical translation.
Collapse
Affiliation(s)
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Oliveira NA, Sevim H. Dendritic cell differentiation from human induced pluripotent stem cells: challenges and progress. Stem Cells Dev 2022; 31:207-220. [PMID: 35316109 DOI: 10.1089/scd.2021.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are the major antigen-presenting cells of the immune system responsible for initiating and coordinating immune responses. These abilities provide potential for several clinical applications, such as the development of immunogenic vaccines. However, difficulty in obtaining DCs from conventional sources, such as bone marrow (BM), peripheral blood (PBMC), and cord blood (CB), is a significantly hinders routine application. The use of human induced pluripotent stem cells (hiPSCs) is a valuable alternative for generating sufficient numbers of DCs to be used in basic and pre-clinical studies. Despite the many challenges that must be overcome to achieve an efficient protocol for obtaining the major DC types from hiPSCs, recent progress has been made. Here we review the current state of developing DCs from hiPSCs, as well as the key elements required to enable the routine use of hiPSC-derived DCs in pre-clinical and clinical assays.
Collapse
Affiliation(s)
- Nelio Aj Oliveira
- Jackson Laboratory - Farmington, 481263, Cell Engineering , Farmington, Connecticut, United States, 06032-2374;
| | - Handan Sevim
- Hacettepe Universitesi, 37515, Faculty of Science Department of Biology, Ankara, Ankara, Turkey;
| |
Collapse
|
11
|
Barone C, Orsenigo R, Meneveri R, Brunelli S, Azzoni E. One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells 2022; 11:1061. [PMID: 35326511 PMCID: PMC8947200 DOI: 10.3390/cells11061061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the complexity of the developing hematopoietic system has dramatically expanded over the course of the last few decades. We now know that, while hematopoietic stem cells (HSCs) firmly reside at the top of the adult hematopoietic hierarchy, multiple HSC-independent progenitor populations play variegated and fundamental roles during fetal life, which reflect on adult physiology and can lead to disease if subject to perturbations. The importance of obtaining a high-resolution picture of the mechanisms by which the developing embryo establishes a functional hematopoietic system is demonstrated by many recent indications showing that ontogeny is a primary determinant of function of multiple critical cell types. This review will specifically focus on exploring the diversity of hematopoietic stem and progenitor cells unique to embryonic and fetal life. We will initially examine the evidence demonstrating heterogeneity within the hemogenic endothelium, precursor to all definitive hematopoietic cells. Next, we will summarize the dynamics and characteristics of the so-called "hematopoietic waves" taking place during vertebrate development. For each of these waves, we will define the cellular identities of their components, the extent and relevance of their respective contributions as well as potential drivers of heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.B.); (R.O.); (R.M.); (S.B.)
| |
Collapse
|
12
|
Spotlight on gene therapy in Germany. Gene Ther 2021; 28:471-472. [PMID: 34548633 PMCID: PMC8455319 DOI: 10.1038/s41434-021-00277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022]
|