1
|
Zhu L, Liu Y, Wang K, Wang N. Regulated cell death in acute myocardial infarction: Molecular mechanisms and therapeutic implications. Ageing Res Rev 2024; 104:102629. [PMID: 39644925 DOI: 10.1016/j.arr.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Acute myocardial infarction (AMI), primarily caused by coronary atherosclerosis, initiates a series of events that culminate in the obstruction of coronary arteries, resulting in severe myocardial ischemia and hypoxia. The subsequent myocardial ischemia/reperfusion (I/R) injury further aggravates cardiac damage, leading to a decline in heart function and the risk of life-threatening complications. The complex interplay of multiple regulated cell death (RCD) pathways plays a pivotal role in the pathogenesis of AMI. Each RCD pathway is orchestrated by a symphony of molecular regulatory mechanisms, highlighting the dynamic changes and critical roles of key effector molecules. Strategic disruption or inhibition of these molecular targets offers a tantalizing prospect for mitigating or even averting the onset of RCD, thereby limiting the extensive loss of cardiomyocytes and the progression of detrimental myocardial fibrosis. This review systematically summarizes the mechanisms underlying various forms of RCD, provides an in-depth exploration of the pathogenesis of AMI through the lens of RCD, and highlights a range of promising therapeutic targets that hold the potential to revolutionize the management of AMI.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yiyang Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Fu Y, Han Q, Wang F, Dong X. Bibliometric analysis of youth myocardial infarction research (1980-2023). Front Cardiovasc Med 2024; 11:1478158. [PMID: 39660115 PMCID: PMC11628501 DOI: 10.3389/fcvm.2024.1478158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Cardiovascular diseases include myocardial infarction, a high mortality disease. Myocardial infarction patients are becoming younger, typically defined as patients under 45 years of age. This study analyzes the relevant papers on myocardial infarction in youth in the Web of Science Core Collection (WoSCC) between 1980 and 2023. Methods It uses bibliometric methods to systematically understand the current status and development trend of research in this field. We searched the WoSCC between 1980 and 2023 for research papers and reviews on myocardial infarction in youth. We set the screening criteria for language as English and used tools such as Citespace, SCImago Graphica, and VOS Viewer to analyze the selected literature exhaustively. This comprehensive approach helped us gain a comprehensive understanding of research hotspots, academic partnerships, and trends in the field. Results From the WoSCC, we identified 790 publications related to myocardial infarction in youth. First, the United States, Italy, and China are major contributors to international cooperation. The United States plays a vital bridging role. Next, in the scholars' combined contribution power analysis, Krumholz and Donfrio were the key contributors in this field. In addition, popular research directions are based on age. As a result of the literature cluster analysis, we found that myocardial infarction in youth is associated with gender, smoking, coagulation factors, apolipoproteins, and gene polymorphisms. Conclusion This is the first comprehensive bibliometric study of myocardial infarction in youth. It aims to examine the current status and trends in myocardial infarction in youth. As a result, the study results will provide researchers with an overview of emerging trends.
Collapse
Affiliation(s)
- Yang Fu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, China
- Department of Cardiology, Cardiovascular Disease Hospital of Shanxi Medical University, Taiyuan, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fei Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, China
- Department of Cardiology, Cardiovascular Disease Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuyun Dong
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, China
- Department of Cardiology, Cardiovascular Disease Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Kuveljic J, Djordjevic A, Zivotic I, Dekleva M, Kolakovic A, Zivkovic M, Stankovic A, Djuric T. Expression of HMGB1, TGF-β1, BIRC3, ADAM17, CDKN1A, and FTO in Relation to Left Ventricular Remodeling in Patients Six Months after the First Myocardial Infarction: A Prospective Study. Genes (Basel) 2024; 15:1296. [PMID: 39457420 PMCID: PMC11507197 DOI: 10.3390/genes15101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: After myocardial infarction (MI), adverse left ventricular (LV) remodeling may occur. This is followed by LV hypertrophy and eventually heart failure. The remodeling process is complex and goes through multiple phases. The aim of this study was to investigate the expression of HMGB1, TGF-β1, BIRC3, ADAM17, CDKN1A, and FTO, each involved in a specific step of LV remodeling, in association with the change in the echocardiographic parameters of LV structure and function used to assess the LV remodeling process in the peripheral blood mononuclear cells (PBMCs) of patients six months after the first MI. The expression of selected genes was also determined in PBMCs of controls. Methods: The study group consisted of 99 MI patients, who were prospectively followed-up for 6 months, and 25 controls. Cardiac parameters, measured via conventional 2D echocardiography, were evaluated at two time points: 3-5 days and 6 months after MI. The mRNA expression six-months-post-MI was detected using TaqMan® technology (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA). Results:HMGB1 mRNA was significantly higher in patients with adverse LV remodeling six-months-post-MI than in patients without adverse LV remodeling (p = 0.04). HMGB1 mRNA was significantly upregulated in patients with dilated LV end-diastolic diameter (LVEDD) (p = 0.03); dilated LV end-diastolic volume index (LVEDVi) (p = 0.03); severely dilated LV end-systolic volume index (LVESVi) (p = 0.006); impaired LV ejection fraction (LVEF) (p = 0.01); and LV enlargement (p = 0.03). It was also significantly upregulated in PBMCs from patients compared to controls (p = 0.005). TGF-β1 and BIRC3 mRNA were significantly lower in patients compared to controls (p = 0.02 and p = 0.05, respectively). Conclusions: Our results suggest that HMGB1 is involved in adverse LV remodeling six-months-post-MI, even on the mRNA level. Further research and validation are needed.
Collapse
Affiliation(s)
- Jovana Kuveljic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Ivan Zivotic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Milica Dekleva
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ana Kolakovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| |
Collapse
|
4
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
5
|
Wu X, Zhang W. TRIM11 expression levels was downregulated and prevents ferroptosis of cardiomyocyte by Dusp6 in acute myocardial infarction. Anticancer Drugs 2024; 35:720-731. [PMID: 38718254 DOI: 10.1097/cad.0000000000001614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Acute myocardial infarction (AMI) is the high incidence rate and mortality of common cardiovascular disease. Herein, we explored the critical role of TRIM11 in AMI and its underlying mechanism. Serum from patients with AMI were collected from our hospital. Mice of model group received angiotensin II. Mice of model + TRIM11 group received with Ang II and TRIM11 vectors. Mice of sham group received normal saline. H9c2 cells were performed transfections using Lipofectamine 2000 (Thermo Fisher Scientific Inc, Shanghai, China), and treated with Ang II. TRIM11 mRNA expression was reduced, was negative correlation with collagen I/III mRNA expression, systolic blood pressure, diastolic blood pressure, left anteroposterior atrial diameter, right atrial diameter, or left ventricular ejection fraction in patient with AMI. TRIM11 mRNA and protein expression were also suppressed. METTL3 regulates TRIM11 methylation to reduce TRIM11 gene stability in model of AMI. TRIM11 gene ameliorated AMI in mice model. TRIM11 gene reduced reactive oxygen species production level of cardiomyocyte in-vitro model. TRIM11 gene reduced ferroptosis of cardiomyocyte in-vitro model. TRIM11 gene reduced ferroptosis by the inhibition of mitochondrial damage of cardiomyocyte in model of AMI. TRIM11 induced Dusp6 protein expression. Bioluminescence imaging showed that TRIM11 virus increased Dusp6 expression in heart tissue of mice model. The inhibition of Dusp6 reduced the effects of TRIM11 on ferroptosis of cardiomyocyte in model of AMI. In conclusion, this study demonstrates that TRIM11 improves AMI by regulating Dusp6 to inhibit ferroptosis of cardiomyocyte, and suggest a novel target for AMI.
Collapse
Affiliation(s)
- Xiaofu Wu
- The First Ward of Department of Cardiology, The Fifth People's Hospital of Jinan, Jinan City, China
| | | |
Collapse
|
6
|
Liu G, Wang M, Lv X, Guan Y, Li J, Xie J. Identification of mitochondria-related gene biomarkers associated with immune infiltration in acute myocardial infarction. iScience 2024; 27:110275. [PMID: 39040073 PMCID: PMC11261152 DOI: 10.1016/j.isci.2024.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
Mitochondrial dysfunction has been known to contribute to the worsening of acute myocardial infarction (AMI). We screened differentially expressed genes (DEGs) between AMI and healthy individuals based on the GSE66360 dataset. We took the intersection of the obtained DEGs with 1,136 mitochondria-related genes. Finally, we screened out mitochondria-related DEGs (MitoDEGs). Eight MitoDEGs were identified as hub genes based on the random forest algorithm. Two mitochondria-related robust molecular clusters were identified by consensus clustering. Immune infiltration analysis showed that immune cell infiltration was significantly increased in the high-expression group of MitoDEGs. We obtained the potential drugs targeted at ALDH2, PMAIP1, and BCL2A1, such as disulfiram, obatoclax mesylate, and bortezomib. Quantitative reverse-transcription polymerase chain reaction further validated the expression of the MitoDEGs in the cell model of AMI. These findings reveal the potential role of MitoDEGs in AMI and provide new insights into risk stratification and individualized treatment of AMI patients.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Min Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Xiangwen Lv
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuting Guan
- Guangxi Medical University, Nanning, Guangxi, China
| | - Jingqi Li
- Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| |
Collapse
|
7
|
Yang M, Wang Y, He L, Shi X, Huang S. Comprehensive bioinformatics analysis reveals the role of cuproptosis-related gene Ube2d3 in myocardial infarction. Front Immunol 2024; 15:1353111. [PMID: 38440726 PMCID: PMC10909922 DOI: 10.3389/fimmu.2024.1353111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Myocardial infarction (MI) caused by severe coronary artery disease has high incidence and mortality rates, making its prevention and treatment a central and challenging aspect of clinical work for cardiovascular practitioners. Recently, researchers have turned their attention to a novel mechanism of cell death caused by Cu2+, cuproptosis. Methods This study integrated data from three MI-related bulk datasets downloaded from the Gene Expression Omnibus (GEO) database, and identified 16 differentially expressed genes (DEGs) related to cuproptosis by taking intersection of the 6378 DEGs obtained by differential analysis with 49 cuproptosis-related genes. Four hub genes, Dbt, Dlat, Ube2d1 and Ube2d3, were screened out through random forest analysis and Lasso analysis. In the disease group, Dbt, Dlat, and Ube2d1 showed low expression, while Ube2d3 exhibited high expression. Results Focusing on Ube2d3 for subsequent functional studies, we confirmed its high expression in the MI group through qRT-PCR and Western Blot detection after successful construction of a MI mouse model by left anterior descending (LAD) coronary artery ligation, and further clarified the correlation of cuproptosis with MI development by detecting the levels of cuproptosis-related proteins. Moreover, through in vitro experiments, Ube2d3 was confirmed to be highly expressed in oxygen-glucose deprivation (OGD)-treated cardiomyocytes AC16. In order to further clarify the role of Ube2d3, we knocked down Ube2d3 expression in OGD-treated AC16 cells, and confirmed Ube2d3's promoting role in the hypoxia damage of AC16 cells by inducing cuproptosis, as evidenced by the detection of MTT, TUNEL, LDH release and cuproptosis-related proteins. Conclusion In summary, our findings indicate that Ube2d3 regulates cuproptosis to affect the progression of MI.
Collapse
Affiliation(s)
- Ming Yang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinxin Shi
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| |
Collapse
|
8
|
Jia F, Zhang B, Yu W, Chen Z, Xu W, Zhao W, Wang Z. Exploring the cuproptosis-related molecular clusters in the peripheral blood of patients with amyotrophic lateral sclerosis. Comput Biol Med 2024; 168:107776. [PMID: 38056214 DOI: 10.1016/j.compbiomed.2023.107776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive and lethal neurodegenerative disease. Several studies have suggested the involvement of cuproptosis in its pathogenesis. In this research, we intend to explore the cuproptosis-related molecular clusters in ALS and develop a novel cuproptosis-related genes prediction model. METHODS The peripheral blood gene expression data was downloaded from the Gene Expression Omnibus (GEO) online database. Based on the GSE112681 dataset, we investigated the critical cuproptosis-related genes (CuRGs) and pathological clustering of ALS. The immune microenvironment features of the peripheral blood in ALS patients were also examined using the CIBERSORT algorithm. Cluster-specific hub genes were determined by the WGCNA. The most accurate prediction model was selected by comparing the performance of four machine learning techniques. ROC curves and two independent datasets were applied to validate the prediction accuracy. The available compounds targeting these hub genes were filtered to investigate their efficacy in treating ALS. RESULTS We successfully determined four critical cuproptosis-related genes and two pathological clusters with various immune profiles and biological characteristics in ALS. Functional analysis showed that genes in Cluster1 were primarily enriched in pathways closely associated with immunity. The Support Vector Machine (SVM) model exhibited the best discrimination properties with a large area under the curve (AUC = 0.862). Five hub prediction genes (BAP1, SMG1, BCLAF1, DHX15, EIF4G2) were selected to establish a nomogram model, suggesting significant risk prediction potential for ALS. The accuracy of this model in predicting ALS incidence was also demonstrated through calibration curves, nomograms, and decision curve analysis. Finally, three drugs targeting BAP1 were determined through drug-gene interactions. CONCLUSION This study elucidated the complex associations between cuproptosis and ALS and constructed a satisfactory predictive model to explore the pathological characteristics of different clusters in ALS patients.
Collapse
Affiliation(s)
- Fang Jia
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weijie Yu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zheng Chen
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenbin Xu
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Liao W, Wen Y, Zeng C, Yang S, Duan Y, He C, Liu Z. Integrative analyses and validation of ferroptosis-related genes and mechanisms associated with cerebrovascular and cardiovascular ischemic diseases. BMC Genomics 2023; 24:731. [PMID: 38049739 PMCID: PMC10694919 DOI: 10.1186/s12864-023-09829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND There has been a gradual increase in the occurrence of cardiovascular and cerebrovascular ischemic diseases, particularly as comorbidities. Yet, the mechanisms underlying these diseases remain unclear. Ferroptosis has emerged as a potential contributor to cardio-cerebral ischemic processes. Therefore, this study investigated the shared biological mechanisms between the two processes, as well as the role of ferroptosis genes in cardio-cerebral ischemic damage, by constructing co-expression modules for myocardial ischemia (MI) and ischemic stroke (IS) and a network of protein-protein interactions, mRNA-miRNA, mRNA-transcription factors (TFs), mRNA-RNA-binding proteins (RBPs), and mRNA-drug interactions. RESULTS The study identified seven key genes, specifically ACSL1, TLR4, ADIPOR1, G0S2, PDK4, HP, PTGS2, and subjected them to functional enrichment analysis during ischemia. The predicted miRNAs were found to interact with 35 hub genes, and interactions were observed between 11 hub genes and 30 TF transcription factors. Additionally, 10 RBPs corresponding to 16 hub genes and 163 molecular compounds corresponding to 30 hub genes were identified. This study also clarified the levels of immune infiltration between MI and IS and different subtypes. Finally, we identified four hub genes, including TLR4, by using a diagnostic model constructed by Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis; ADIPOR1, G0S2, and HP were shown to have diagnostic value for the co-pathogenesis of MI and cerebral ischemia by both validation test data and RT-qPCR assay. CONCLUSIONS To the best our knowledge, this study is the first to utilize multiple algorithms to comprehensively analyze the biological processes of MI and IS from various perspectives. The four hub genes, TLR4, ADIPOR1, G0S2, and HP, have proven valuable in offering insights for the investigation of shared injury pathways in cardio-cerebral injuries. Therefore, these genes may serve as diagnostic markers for cardio-cerebral ischemic diseases.
Collapse
Affiliation(s)
- Wei Liao
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuehui Wen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Zeng
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yanyu Duan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chunming He
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Ziyou Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
10
|
Huang Q, Zhou H, Yu S. Long non‑coding RNA PEG13 regulates endothelial cell senescence through the microRNA‑195/IRS1 axis. Exp Ther Med 2023; 26:584. [PMID: 38023368 PMCID: PMC10665998 DOI: 10.3892/etm.2023.12283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction and plaque formation. The present study aimed to elucidate the pathological role of the long non-coding RNA (lncRNA) paternally expressed 13 (PEG13) in the onset and progression of atherosclerosis. Specifically, its effects on human umbilical vein endothelial cell (HUVEC) proliferation, angiogenesis, senescence and senescence-associated secretory phenotype (SASP)-related factors were investigated using cell proliferation, cellular angiogenesis, β-galactosidase staining, reverse transcription-quantitative PCR and enzyme-linked immunosorbent assays. The results showed that oxidized low-density lipoprotein (ox-LDL) inhibited lncRNA PEG13 expression and HUVEC viability in a dose-dependent manner and PEG13 overexpression partially reversed these effects. Additionally, PEG13 overexpression ameliorated the ox-LDL-induced impairment of angiogenesis, cellular senescence and SASP. Furthermore, lncRNA PEG13 directly targeted microRNA (miR/miRNA)-195-5p, suppressing the ox-LDL-induced upregulation of the miRNA. The gene coding for insulin receptor substrate 1 (IRS1), an activator of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, was confirmed as a direct target of miR-195. PEG13 overexpression attenuated the ox-LDL-induced inhibition of IRS1 expression and PI3K/AKT signaling and its protective effects on HUVEC viability, angiogenesis and senescence were partially reversed by small interfering RNAs targeting IRS1. The present study demonstrated that lncRNA PEG13 attenuates ox-LDL-induced senescence in HUVECs by modulating the miR-195/IRS1/PI3K/AKT signaling pathway, suggesting a potential therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Haiwen Zhou
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|