1
|
Ben Said M, Jallouli O, Ben Aissa A, Souissi A, Kamoun F, Fakhfakh F, Masmoudi S, Ben Ayed I, Charfi Triki C. Customized targeted massively parallel sequencing enables the identification of novel pathogenic variants in Tunisian patients with developmental and epileptic encephalopathy. Epilepsia Open 2024; 9:1697-1709. [PMID: 37867425 PMCID: PMC11450609 DOI: 10.1002/epi4.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE To develop a high-throughput sequencing panel for the diagnosis of developmental and epileptic encephalopathy in Tunisia and to clarify the frequency of disease-causing genes in this region. METHODS We developed a custom panel for next-generation sequencing of the coding sequences of 116 genes in individuals with developmental and epileptic encephalopathy from the Tunisian population. Segregation analyses and in silico studies have been conducted to assess the identified variants' pathogenicity. RESULTS We report 12 pathogenic variants in SCN1A, CHD2, CDKL5, SZT2, KCNT1, GNAO1, PCDH19, MECP2, GRIN2A, and SYNGAP1 in patients with developmental and epileptic encephalopathy. Five of these variants are novel: "c.149delA, p.(Asn50MetfsTer26)" in CDKL5; "c.3616C > T, p.(Arg1206Ter)" in SZT2; "c.111_113del, p.(Leu39del)" in GNAO1; "c.1435G>C, p.(Asp479His)" in PCDH19; and "c.2143delC, p.(Arg716GlyfsTer10)" in SYNGAP1. Additionally, for four of our patients, the genetic result facilitated the choice of the appropriate treatment. SIGNIFICANCE This is the first report of a custom gene panel to identify genetic variants implicated in developmental and epileptic encephalopathy in the Tunisian population as well as the North African region (Tunisia, Egypt, Libya, Algeria, Morocco) with a diagnostic rate of 30%. This high-throughput sequencing panel has considerably improved the rate of positive diagnosis of developmental and epileptic encephalopathy in the Tunisian population, which was less than 15% using Sanger sequencing. The benefit of genetic testing in these patients was approved by both physicians and parents.
Collapse
Affiliation(s)
- Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Olfa Jallouli
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Abir Ben Aissa
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Fatma Kamoun
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Faiza Fakhfakh
- Molecular Genetics and Functional Laboratory, Faculty of Science of SfaxUniversity of SfaxSfaxTunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Chahnez Charfi Triki
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| |
Collapse
|
2
|
Orak SA, Gün Bilgiç D, Çerçi Kubur Ç, Atasever AK, Yılmaz C, Polat M. Epileptic Encephalopathy of Unknown Cause in Turkey Indicates a New Homozygous NAPB Gene Variant. Mol Syndromol 2024; 15:437-442. [PMID: 39359942 PMCID: PMC11444707 DOI: 10.1159/000538741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/04/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction As with many genetic diseases, the diagnostic role of next-generation sequencing is invaluable for early-onset epileptic encephalopathies. SNARE proteins in synaptic vesicles (synaptobrevin-2) and synaptic plasma membrane (syntaxin-1, SNAP-25) are involved in synaptic exocytosis and recycling. Patient Presentation Here, we report a patient that started in early childhood with seizures resistant to antiepileptic drugs, then developed epileptic encephalopathy. Discussion/Conclusion The NAPB gene encodes proteins in the SNARE complex. A previously unidentified homozygous missense variant in the NAPB gene may have contributed significantly to the etiology of our patient with epileptic encephalopathy. We also summarize the clinical, radiological, laboratory, and genetic findings of previously published patients with NAPB variants.
Collapse
Affiliation(s)
- Sibğatullah Ali Orak
- Celal Bayar University School of Medicine, Department of Child Neurology, Manisa, Turkey
| | - Dilek Gün Bilgiç
- Celal Bayar University School of Medicine, Department of Medical Genetics, Manisa, Turkey
| | - Çisil Çerçi Kubur
- Celal Bayar University School of Medicine, Department of Child Neurology, Manisa, Turkey
| | - Aslı Kübra Atasever
- Celal Bayar University School of Medicine, Department of Child Neurology, Manisa, Turkey
| | - Celil Yılmaz
- Celal Bayar University School of Medicine, Department of Child Neurology, Manisa, Turkey
| | - Muzaffer Polat
- Celal Bayar University School of Medicine, Department of Child Neurology, Manisa, Turkey
| |
Collapse
|
3
|
Tao H, Wu Z, Liu Y, Zhang X, Li K, Zhou X. Abnormal Weakening of DNA Methylation around the SLC6A1 Gene Promoter in Temporal Lobe Epilepsy. J Integr Neurosci 2024; 23:181. [PMID: 39344240 DOI: 10.31083/j.jin2309181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The solute carrier (SLC) superfamily, which transports solutes across biological membranes, includes four members (SLC2A1, SLC6A1, SLC9A64, and SLC35A2) that have been linked to epilepsy. This study sought to examine the DNA methylation patterns near the promoters of these genes in temporal lobe epilepsy (TLE), as DNA methylation is a crucial epigenetic modification that can impact gene expression. METHODS The study comprised 38 individuals with TLE and 38 healthy controls. Methylation experiments were performed using peripheral blood, while demethylation experiments were carried out using SH-SY5Y cells with the DNA methylation inhibitor decitabine. RESULTS A significant difference was observed in the DNA methylation rate of SLC6A1 between TLE patients and controls, with TLE patients showing a lower rate (4.81% vs. 5.77%, p = 0.0000), which remained significant even after Bonferroni correction (p = 0.0000). Based on the hypomethylated SLC6A1 in TLE, a predictive model was established that showed promise in distinguishing and calibrating TLE. In the TLE group, there were differences in DNA methylation rates of SLC6A1 between the young patients and the older controls (4.42% vs. 5.22%, p = 0.0004). A similar trend (p = 0.0436) was noted after adjusting for sex, age at onset, and drug response. In addition, the study found that DNA methylation had a silencing impact on the expression of the SLC6A1 gene in SH-SY5Y cells, which were treated with decitabine at a set dose gradient. CONCLUSIONS The evidence suggests that lower methylation of SLC6A1 may stimulate transcription in TLE, however, further investigation is necessary to confirm the exact mechanism.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong, China
| | - Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong, China
| | - Keshen Li
- Neurology & Neurosurgery Division, First Affiliated Hospital of Jinan University, 510630 Guangzhou, Guangdong, China
| | - Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Kubota K, Adachi M, Fujii H, Saitsu H, Ohnishi H. Spontaneous Remission of Epileptic Seizures Following Norovirus Infection in a Patient With DNM1 Encephalopathy. Cureus 2024; 16:e60748. [PMID: 38903324 PMCID: PMC11188033 DOI: 10.7759/cureus.60748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Epileptic seizures can be worsened by infections; however, they sometimes disappear or decrease after an acute viral infection, although this is rare. We report the spontaneous remission of epileptic seizures following norovirus-induced viral gastroenteritis in a boy with DNM1 encephalopathy. He had clonic seizures daily from the age of two months and developed epileptic spasms at 14 months of age; he was admitted to the hospital at this time. A physical examination revealed hypotonia, strabismus, tongue protrusion with drooping, and widely spaced teeth. Although brain magnetic resonance imaging was unremarkable, electroencephalography revealed frequent occipital spikes. Three days after admission, the patient developed frequent diarrhea without a fever. A rapid immunochromatographic test of norovirus in a stool sample was positive. Immediately after the appearance of diarrhea, the epileptic seizures disappeared. Currently, at the age of five years, the patient has a profound psychomotor developmental delay; he has no verbal expression and is unable to walk. He has experienced involuntary movements of the myoclonus since 10 months of age. Whole-exome sequencing of the patient's DNA revealed the presence of a heterozygous de novo variant of DNM1: c.709C>T (p.Arg237Trp). Although the findings from our patient suggest that underlying neural network abnormalities were ameliorated by immunological mechanisms as a result of the viral infection, further research is needed to clarify the mechanisms behind this spontaneous remission of seizures.
Collapse
Affiliation(s)
- Kazuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, JPN
| | - Miho Adachi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, JPN
| | - Hidehiko Fujii
- Department of Pediatrics, Ogaki Municipal Hospital, Ogaki, JPN
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, JPN
| |
Collapse
|
5
|
Yang JH, Liu ZG, Liu CL, Zhang MR, Jia YL, Zhai QX, He MF, He N, Qiao JD. MED12 variants associated with X-linked recessive partial epilepsy without intellectual disability. Seizure 2024; 116:30-36. [PMID: 36894399 DOI: 10.1016/j.seizure.2023.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES The MED12 gene encodes mediator complex subunit 12, which is a component of the mediator complex involved in the transcriptional regulation of nearly all RNA polymerase II-dependent genes. MED12 variants have previously been associated with developmental disorders with or without nonspecific intellectual disability. This study aims to explore the association between MED12 variants and epilepsy. MATERIALS AND METHODS Trios-based whole-exome sequencing was performed in a cohort of 349 unrelated cases with partial (focal) epilepsy without acquired causes. The genotype-phenotype correlations of MED12 variants were analyzed. RESULTS Five hemizygous missense MED12 variants, including c.958A>G/p.Ile320Val, c.1757G>A/p.Ser586Asn, c.2138C>T/p.Pro713Leu, c.3379T>C/p.Ser1127Pro, and c.4219A>C/p.Met1407Leu were identified in five unrelated males with partial epilepsy. All patients showed infrequent focal seizures and achieved seizure free without developmental abnormalities or intellectual disability. All the hemizygous variants were inherited from asymptomatic mothers (consistent with the X-linked recessive inheritance pattern) and were absent in the general population. The two variants with damaging hydrogen bonds were associated with early-onset seizures. Further genotype-phenotype analysis revealed that congenital anomaly disorder (Hardikar syndrome) was associated with (de novo) destructive variants in an X-linked dominant inheritance pattern, whereas epilepsy was associated with missense variants in an X-linked recessive inheritance pattern. Phenotypic features of intellectual disability appeared as the intermediate phenotype in terms of both genotype and inheritance. Epilepsy-related variants were located at the MED12-LCEWAV domain and the regions between MED12-LCEWAV and MED12-POL. CONCLUSION MED12 is a potentially causative gene for X-linked recessive partial epilepsy without developmental or intellectual abnormalities. The genotype-phenotype correlation of MED12 variants explains the phenotypic variations and can help the genetic diagnosis.
Collapse
Affiliation(s)
- Jie-Hua Yang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Chun-Ling Liu
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Lu Jia
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong-Xiang Zhai
- Department of pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Ye ZL, Yan HJ, Guo QH, Zhang SQ, Luo S, Lian YJ, Ma YQ, Lu XG, Liu XR, Shen NX, Gao LD, Chen Z, Shi YW. NEXMIF variants are associated with epilepsy with or without intellectual disability. Seizure 2024; 116:93-99. [PMID: 37643945 DOI: 10.1016/j.seizure.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVES Variants in NEXMIF had been reported associated with intellectual disability (ID) without epilepsy or developmental epileptic encephalopathy (DEE). It is unkown whether NEXMIF variants are associated with epilepsy without ID. This study aims to explore the phenotypic spectrum of NEXMIF and the genotype-phenotype correlations. MATERIALS AND METHODS Trio-based whole-exome sequencing was performed in patients with epilepsy. Previously reported NEXMIF variants were systematically reviewed to analyze the genotype-phenotype correlations. RESULTS Six variants were identified in seven unrelated cases with epilepsy, including two de novo null variants and four hemizygous missense variants. The two de novo variants were absent in all populations of gnomAD and four hemizygous missense variants were absent in male controls of gnomAD. The two patients with de novo null variants exhibited severe developmental epileptic encephalopathy. While, the patients with hemizygous missense variants had mild focal epilepsy with favorable outcome. Analysis of previously reported cases revealed that males with missense variants presented significantly higher percentage of normal intellectual development and later onset age of seizure than those with null variants, indicating a genotype-phenotype correlation. CONCLUSION This study suggested that NEXMIF variants were potentially associated with pure epilepsy with or without intellectual disability. The spectrum of epileptic phenotypes ranged from the mild epilepsy to severe developmental epileptic encephalopathy, where the epileptic phenotypes variability are potentially associated with patients' gender and variant type.
Collapse
Affiliation(s)
- Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qing-Hui Guo
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shu-Qian Zhang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ya-Jun Lian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun-Qing Ma
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Nan-Xiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
7
|
Ohori S, Miyauchi A, Osaka H, Lourenco CM, Arakaki N, Sengoku T, Ogata K, Honjo RS, Kim CA, Mitsuhashi S, Frith MC, Seyama R, Tsuchida N, Uchiyama Y, Koshimizu E, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Saito K, Fujita A, Matsumoto N. Biallelic structural variations within FGF12 detected by long-read sequencing in epilepsy. Life Sci Alliance 2023; 6:e202302025. [PMID: 37286232 PMCID: PMC10248215 DOI: 10.26508/lsa.202302025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
We discovered biallelic intragenic structural variations (SVs) in FGF12 by applying long-read whole genome sequencing to an exome-negative patient with developmental and epileptic encephalopathy (DEE). We also found another DEE patient carrying a biallelic (homozygous) single-nucleotide variant (SNV) in FGF12 that was detected by exome sequencing. FGF12 heterozygous recurrent missense variants with gain-of-function or heterozygous entire duplication of FGF12 are known causes of epilepsy, but biallelic SNVs/SVs have never been described. FGF12 encodes intracellular proteins interacting with the C-terminal domain of the alpha subunit of voltage-gated sodium channels 1.2, 1.5, and 1.6, promoting excitability by delaying fast inactivation of the channels. To validate the molecular pathomechanisms of these biallelic FGF12 SVs/SNV, highly sensitive gene expression analyses using lymphoblastoid cells from the patient with biallelic SVs, structural considerations, and Drosophila in vivo functional analysis of the SNV were performed, confirming loss-of-function. Our study highlights the importance of small SVs in Mendelian disorders, which may be overlooked by exome sequencing but can be detected efficiently by long-read whole genome sequencing, providing new insights into the pathomechanisms of human diseases.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Genetics, Kitasato University Hospital, Sagamihara, Japan
| | - Akihiko Miyauchi
- Department of Pediatrics, Jichi Medical School, Shimotsuke, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical School, Shimotsuke, Japan
| | - Charles Marques Lourenco
- Neurogenetics Department, Faculdade de Medicina de São José do Rio Preto, São Jose do Rio Preto, Brazil
- Personalized Medicine Department, Special Education Sector at DLE/Grupo Pardini, Belo Horizonte, Brazil
| | - Naohiro Arakaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Rachel Sayuri Honjo
- Unidade de Genética Médica do Instituto da Criança, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genética Médica do Instituto da Criança, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Pablo JLB, Cornett SL, Wang LA, Jo S, Brünger T, Budnik N, Hegde M, DeKeyser JM, Thompson CH, Doench JG, Lal D, George AL, Pan JQ. Scanning mutagenesis of the voltage-gated sodium channel Na V1.2 using base editing. Cell Rep 2023; 42:112563. [PMID: 37267104 PMCID: PMC10592450 DOI: 10.1016/j.celrep.2023.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/24/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023] Open
Abstract
It is challenging to apply traditional mutational scanning to voltage-gated sodium channels (NaVs) and functionally annotate the large number of coding variants in these genes. Using a cytosine base editor and a pooled viability assay, we screen a library of 368 guide RNAs (gRNAs) tiling NaV1.2 to identify more than 100 gRNAs that change NaV1.2 function. We sequence base edits made by a subset of these gRNAs to confirm specific variants that drive changes in channel function. Electrophysiological characterization of these channel variants validates the screen results and provides functional mechanisms of channel perturbation. Most of the changes caused by these gRNAs are classifiable as loss of function along with two missense mutations that lead to gain of function in NaV1.2 channels. This two-tiered strategy to functionally characterize ion channel protein variants at scale identifies a large set of loss-of-function mutations in NaV1.2.
Collapse
Affiliation(s)
- Juan Lorenzo B Pablo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Savannah L Cornett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lei A Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sooyeon Jo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, 51149 Cologne, Germany; Genomic Medicine Institute, Lerner Research Institute, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nikita Budnik
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mudra Hegde
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, 51149 Cologne, Germany; Genomic Medicine Institute, Lerner Research Institute, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Neurology, McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
He N, Li B, Lin ZJ, Zhou P, Su T, Liao WP. Common genetic epilepsies, pathogenicity of genes/variants, and genetic dependence. Seizure 2023; 109:38-39. [PMID: 37207537 DOI: 10.1016/j.seizure.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Affiliation(s)
- Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhi-Jian Lin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Tao Su
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
10
|
Kim SH, Kwon SS, Park MR, Lee HA, Kim JH, Cha J, Kim S, Baek ST, Kim SH, Lee JS, Kim HD, Choi JR, Lee ST, Kang HC. Detecting low-variant allele frequency mosaic pathogenic variants of NF1, TSC2, and AKT3 genes from blood in patients with neurodevelopmental disorders. J Mol Diagn 2023:S1525-1578(23)00080-6. [PMID: 37088138 DOI: 10.1016/j.jmoldx.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
Growing evidence indicates that early, and late postzygotic mosaicism can cause neurodevelopmental disorders (NDD), but detection of low variant allele frequency (VAF) mosaic variants from blood remains a challenge. We reviewed data of 2,162 patients with NDDs who underwent conventional genetic tests and performed a deep sequencing using specifically designed mosaic NGS panel in the patients with negative genetic test results. Forty-four patents with neurocutaneous syndrome, malformation of cortical development or nonlesional epileptic encephalopathies were included. In total, mosaic variants were detected from blood in 1.2% (25/2,162) of the patients. Using conventional NGS panels, 22 mosaic variants (VAF 8.8-29.8%) were identified in 18 different genes including TSC2, DCX, SLC2A1, PCDH19, DNM1, STXBP1, SCN2A, SCN1A, PURA, POGZ, PAFAH1B1, NF1, KIF21A, KCNQ2, GABRA1, EEF1A2, CDKL5, and ARID1B. Using a specifically designed mosaicism NGS panel, three mosaic variants of the NF1, TSC2, and AKT3 genes were identified (VAF 2.0-11.2%). Mosaic variants were found frequently in the patients who had neurocutaneous syndrome (2/7, 28.6%) whereas only one or no mosaic variant was detected for patients who had malformations of cortical development (1/20, 5%) or nonlesional epileptic encephalopathies (0%, 0/17). In summary, mosaic variants contribute to spectrum of NDDs can be detected from blood via the conventional NGS and specifically designed mosaicism NGS panels, and detection of mosaic variants using blood will increase diagnostic yield.
Collapse
Affiliation(s)
- Se Hee Kim
- Pediatric Neurology, Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Republic of Korea
| | - Soon Sung Kwon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ri Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Ah Lee
- Department of Laboratory Medicine, Graduate School of Medical Science, Brain Korea 21 PLUS Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hun Kim
- Pediatric Neurology, Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Republic of Korea
| | - JiHoon Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Soo Lee
- Pediatric Neurology, Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Republic of Korea
| | - Heung Dong Kim
- Pediatric Neurology, Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Republic of Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Dxome, Seoul, Republic of Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Dxome, Seoul, Republic of Korea.
| | - Hoon-Chul Kang
- Pediatric Neurology, Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Silk M, de Sá A, Olshansky M, Ascher DB. Insights from Spatial Measures of Intolerance to Identifying Pathogenic Variants in Developmental and Epileptic Encephalopathies. Int J Mol Sci 2023; 24:ijms24065114. [PMID: 36982187 PMCID: PMC10049344 DOI: 10.3390/ijms24065114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of epilepsies with early onset and severe symptoms that sometimes lead to death. Although previous work successfully discovered several genes implicated in disease outcomes, it remains challenging to identify causative mutations within these genes from the background variation present in all individuals due to disease heterogeneity. Nevertheless, our ability to detect possible pathogenic variants has continued to improve as in silico predictors of deleteriousness have advanced. We investigate their use in prioritising likely pathogenic variants in epileptic encephalopathy patients’ whole exome sequences. We showed that the inclusion of structure-based predictors of intolerance improved upon previous attempts to demonstrate enrichment within epilepsy genes.
Collapse
Affiliation(s)
- Michael Silk
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alex de Sá
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, QLD 4072, Australia
| | - Moshe Olshansky
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - David B. Ascher
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, QLD 4072, Australia
- Correspondence: ; Tel.: +61-7-336-53891
| |
Collapse
|
12
|
Wang S, Yu Y, Wang X, Deng X, Ma J, Liu Z, Gu W, Sun D. Emerging evidence of genotype–phenotype associations of developmental and epileptic encephalopathy due to KCNC2 mutation: Identification of novel R405G. Front Mol Neurosci 2022; 15:950255. [PMID: 36090251 PMCID: PMC9453199 DOI: 10.3389/fnmol.2022.950255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) have high genetic heterogeneity, and DEE due to the potassium voltage-gated channel subfamily C member 2 (KCNC2) variant remains poorly understood, given the scarcity of related case studies. We report on two unrelated Chinese patients, an 11-year-old boy and a 5-year-old girl, diagnosed with global developmental delay (GDD), intellectual disability (ID), and focal impaired awareness seizure characterized by generalized spike and wave complexes on electroencephalogram (EEG) in the absence of significant brain lesions. Whole-exome sequencing (WES) and electrophysiological analysis were performed to detect genetic variants and evaluate functional changes of the mutant KCNC2, respectively. Importantly, we identified a novel gain-of-function KCNC2 variant, R405G, in both patients. Previously reported variants, V471L, R351K, T437A, and T437N, and novel R405G were found in multiple unrelated patients with DEE, showing consistent genotype–phenotype associations. These findings emphasize that the KCNC2 gene is causative for DEE and facilitates treatment and prognosis in patients with DEE due to KCNC2 mutations.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yejing Yu
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Neurology, Changchun Children’s Hospital, Changchun, China
| | - Xiaolong Deng
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiehui Ma
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhisheng Liu
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., Beijing, China
| | - Dan Sun
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dan Sun,
| |
Collapse
|
13
|
Chidambaram S, Manokaran RK. Favorable Response to "Memantine" in a Child with GRIN2B Epileptic Encephalopathy. Neuropediatrics 2022; 53:287-290. [PMID: 34844267 DOI: 10.1055/s-0041-1739130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
GRIN2B is a gene encoding GluN2B subunit under the family of N-methyl D-aspartate (NMDA) receptors, which is responsible for neurogenesis and cognitive processes. The role of NMDA receptor antagonists like memantine is being explored for therapies in drug-resistant epilepsies. Here, we present a case of a 20-month-old boy who presented with refractory epileptic spasms. Upon failure of multiple antiepileptic drugs, he was started on oral memantine. There was a significant reduction in average seizure episodes by ∼80%. The use of memantine along with antiepileptic drug polytherapy has proved to be beneficial in our case. Our experience with memantine and favorable outcome opens up the scope of more research into the use of NMDA receptor antagonist as a drug option for refractory epilepsies with proven genetic mutation and hence improves the overall neurodevelopmental outcome and survival chance.
Collapse
Affiliation(s)
- Sathya Chidambaram
- Department of Paediatrics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu
| | - Ranjith Kumar Manokaran
- Division of Paediatric Neurology, Department of Neurology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu
| |
Collapse
|
14
|
Campbell C, Leu C, Feng YCA, Wolking S, Moreau C, Ellis C, Ganesan S, Martins H, Oliver K, Boothman I, Benson K, Molloy A, Brody L, Michaud JL, Hamdan FF, Minassian BA, Lerche H, Scheffer IE, Sisodiya S, Girard S, Cosette P, Delanty N, Lal D, Cavalleri GL. The role of common genetic variation in presumed monogenic epilepsies. EBioMedicine 2022; 81:104098. [PMID: 35679801 PMCID: PMC9188960 DOI: 10.1016/j.ebiom.2022.104098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The developmental and epileptic encephalopathies (DEEs) are the most severe group of epilepsies which co-present with developmental delay and intellectual disability (ID). DEEs usually occur in people without a family history of epilepsy and have emerged as primarily monogenic, with damaging rare mutations found in 50% of patients. Little is known about the genetic architecture of patients with DEEs in whom no pathogenic variant is identified. Polygenic risk scoring (PRS) is a method that measures a person's common genetic burden for a trait or condition. Here, we used PRS to test whether genetic burden for epilepsy is relevant in individuals with DEEs, and other forms of epilepsy with ID. METHODS Genetic data on 2,759 cases with DEEs, or epilepsy with ID presumed to have a monogenic basis, and 447,760 population-matched controls were analysed. We compared PRS for 'all epilepsy', 'focal epilepsy', and 'genetic generalised epilepsy' (GGE) between cases and controls. We performed pairwise comparisons between cases stratified for identifiable rare deleterious genetic variants and controls. FINDINGS Cases of presumed monogenic severe epilepsy had an increased PRS for 'all epilepsy' (p<0.0001), 'focal epilepsy' (p<0.0001), and 'GGE' (p=0.0002) relative to controls, which explain between 0.08% and 3.3% of phenotypic variance. PRS was increased in cases both with and without an identified deleterious variant of major effect, and there was no significant difference in PRS between the two groups. INTERPRETATION We provide evidence that common genetic variation contributes to the aetiology of DEEs and other forms of epilepsy with ID, even when there is a known pathogenic variant of major effect. These results provide insight into the genetic underpinnings of the severe epilepsies and warrant a shift in our understanding of the aetiology of the DEEs as complex, rather than monogenic, disorders. FUNDING Science foundation Ireland, Human Genome Research Institute; National Heart, Lung, and Blood Institute; German Research Foundation.
Collapse
Affiliation(s)
- Ciarán Campbell
- The SFI FutureNeuro Research Centre, RCSI Dublin, Republic of Ireland; The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, Bucks, United Kingdom; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, United States of America
| | - Yen-Chen Anne Feng
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, United States of America; Division of Biostatistics, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Stefan Wolking
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Epileptology and Neurology, University of Aachen, Aachen, Germany; Axe Neurosciences, Centre de recherche de l'Université de Montréal, Université de Montréal, Montréal, Canada
| | - Claudia Moreau
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Canada
| | - Colin Ellis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiva Ganesan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Helena Martins
- UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Karen Oliver
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Isabelle Boothman
- The SFI FutureNeuro Research Centre, RCSI Dublin, Republic of Ireland; The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland
| | - Katherine Benson
- The SFI FutureNeuro Research Centre, RCSI Dublin, Republic of Ireland; The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland
| | - Anne Molloy
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - Lawrence Brody
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Berge A Minassian
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Holger Lerche
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ingrid E Scheffer
- University of Melbourne, Austin and Royal Children's Hospitals, Melbourne, Australia; Florey Institute and Murdoch Children's Research Institute, Melbourne, Australia
| | - Sanjay Sisodiya
- UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Simon Girard
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Canada
| | - Patrick Cosette
- Department of Medicine, Neurology Division, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Norman Delanty
- The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland; Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, United States of America; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Gianpiero L Cavalleri
- The SFI FutureNeuro Research Centre, RCSI Dublin, Republic of Ireland; The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland.
| |
Collapse
|
15
|
Ünalp A, Coskunpinar E, Gunduz K, Pekuz S, Baysal BT, Edizer S, Hayretdag C, Gudeloglu E. Detection of Deregulated miRNAs in Childhood Epileptic Encephalopathies. J Mol Neurosci 2022; 72:1234-1242. [PMID: 35461401 DOI: 10.1007/s12031-022-02001-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/15/2022] [Indexed: 01/07/2023]
Abstract
The term "epileptic encephalopathy" is used to describe a possible relationship between epilepsy and developmental delay. The pathogenesis of developmental encephalopathies, independent of epilepsy, can be defined by genetic control mechanisms. The aim of this study was to investigate the use of miRNAs as serum biomarkers for the determination and discrimination of epileptic encephalopathies. Whole blood samples obtained from 54 individuals in 2 groups designated as epileptic encephalopathy patients' group (n = 24) and healthy controls (n = 30) were included in this study. The expression levels of 10 miRNAs were determined using qRT-PCR. After the determination of expression levels, the correlation of upregulated miRNA levels and Ki67 index was calculated using Pearson correlation test. The comparison of epileptic encephalopathy patients' group with healthy controls revealed the upregulation of one miRNAs (hsa-miR-324-5p) and downregulation of three miRNAs (hsa-miR-146a-5p, hsa-miR-138-5p, hsa-miR-187-3p). It has been determined that miRNAs with altered expression are an important factor in the formation of epileptic seizures and seizure-induced neuronal death. The fact that processes that play a key role in epiloptogenesis are under the control of miRNAs causes miRNAs to become meta-controllers of gene expression in the brain. We thought that further studies are needed to prove that especially hsa-miR-146a-5p, hsa-miR-138-5p, and hsa-miR-187-3p can be used as epileptic encephalopathy biomarkers. The detection of disease-specific miRNAs could contribute to the development of precision treatments.
Collapse
Affiliation(s)
- Aycan Ünalp
- Department of Pediatric Neurology, Izmir Faculty of Medicine, University of Health Sciences, Izmir, Turkey.
| | - Ender Coskunpinar
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Kubra Gunduz
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Serdar Pekuz
- Department of Pediatric Neurology, University of Health Sciences, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| | - Bahar Toklu Baysal
- Department of Pediatric Neurology, University of Health Sciences, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| | - Selvinaz Edizer
- Department of Pediatric Neurology, University of Health Sciences, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| | - Ceyda Hayretdag
- Department of Neurology, School of Medicine, Beykent University, Istanbul, Turkey
| | - Elif Gudeloglu
- Department of Pediatric Neurology, University of Health Sciences, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
16
|
Su T, Chen ML, Liu LH, Meng H, Tang B, Liu XR, Liao WP. Critical Role of E1623 Residue in S3-S4 Loop of Nav1.1 Channel and Correlation Between Nature of Substitution and Functional Alteration. Front Mol Neurosci 2022; 14:797628. [PMID: 35082603 PMCID: PMC8785683 DOI: 10.3389/fnmol.2021.797628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: An overwhelming majority of the genetic variants associated with genetic disorders are missense. The association between the nature of substitution and the functional alteration, which is critical in determining the pathogenicity of variants, remains largely unknown. With a novel missense variant (E1623A) identified from two epileptic cases, which occurs in the extracellular S3-S4 loop of Nav1.1, we studied functional changes of all latent mutations at residue E1623, aiming to understand the relationship between substitution nature and functional alteration. Methods: Six latent mutants with amino acid substitutions at E1623 were generated, followed by measurements of their electrophysiological alterations. Different computational analyses were used to parameterize the residue alterations. Results: Structural modeling indicated that the E1623 was located in the peripheral region far from the central pore, and contributed to the tight turn of the S3-S4 loop. The E1623 residue exhibited low functional tolerance to the substitutions with the most remarkable loss-of-function found in E1623A, including reduced current density, less steady-state availability of activation and inactivation, and slower recovery from fast inactivation. Correlation analysis between electrophysiological parameters and the parameterized physicochemical properties of different residues suggested that hydrophilicity of side-chain at E1623 might be a crucial contributor for voltage-dependent kinetics. However, none of the established algorithms on the physicochemical variations of residues could well predict changes in the channel conductance property indicated by peak current density. Significance: The results established the important role of the extracellular S3-S4 loop in Nav1.1 channel gating and proposed a possible effect of local conformational loop flexibility on channel conductance and kinetics. Site-specific knowledge of protein will be a fundamental task for future bioinformatics.
Collapse
Affiliation(s)
- Tao Su
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Meng-Long Chen
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Li-Hong Liu
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Hen Meng
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
- *Correspondence: Wei-Ping Liao
| |
Collapse
|
17
|
Rydzanicz M, Zwoliński P, Gasperowicz P, Pollak A, Kostrzewa G, Walczak A, Konarzewska M, Płoski R. A recurrent de novo variant supports KCNC2 involvement in the pathogenesis of developmental and epileptic encephalopathy. Am J Med Genet A 2021; 185:3384-3389. [PMID: 34448338 DOI: 10.1002/ajmg.a.62455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) are a heterogenous group of conditions characterized by the co-occurrence of epilepsy and intellectual/developmental disability. Despite several known DEE-related genes, including these encoding ion channels, still many cases remain without molecular diagnosis. Here, we present a 2-year-old girl with severe DEE in whom whole exome sequencing revealed de novo p.(Val471Leu) variant in the KCNC2 encoding Kv3.2, a voltage-gated potassium channel. To the best of our knowledge, this is the third DEE case due to KCNC2 mutation. Our clinical and molecular findings, particularly the recurrence of p.(Val471Leu) in patient with similar clinical phenotype, further support KCNC2 as a novel DEE-associated gene.
Collapse
Affiliation(s)
| | | | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Anna Walczak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Tao H, Chen Z, Wu J, Chen J, Chen Y, Fu J, Sun C, Zhou H, Zhong W, Zhou X, Li K. DNA Methylation Signature of Epileptic Encephalopathy-Related Pathogenic Genes Encoding Ion Channels in Temporal Lobe Epilepsy. Front Neurol 2021; 12:692412. [PMID: 34393975 PMCID: PMC8358672 DOI: 10.3389/fneur.2021.692412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is characterized by highly abnormal synchronous discharge of brain neurons, and ion channels are fundamental in the generation and modulation of neural excitability. Considering that abnormal methylation can either activate or repress genes, this study was designed to explore the DNA methylation signature of pathogenic genes encoding ion channels in temporal lobe epilepsy (TLE). In total, 38 TLE patients and 38 healthy controls were enrolled in the study, and genomic DNA and total protein of the lymphocytes were extracted from peripheral blood samples to assess methylation and protein levels. The DNA methylation levels of all 12 genes examined were significantly lower in the TLE group than in the control group. After false-positive correction, 83.3% (10/12) of these genes, namely, gamma-aminobutyric acid type A receptor subunit beta1 (GABRB1), gamma-aminobutyric acid type A receptor subunit beta2 (GABRB2), gamma-aminobutyric acid type A receptor subunit beta1 (GABRB3), glutamate ionotropic receptor NMDA type subunit 1 (GRIN1), glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A), glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B), hyperpolarization activated cyclic nucleotide gated potassium channel 1 (HCN1), potassium voltage-gated channel subfamily A member 2 (KCNA2), potassium voltage-gated channel subfamily B member 1 (KCNB1), and potassium sodium-activated channel subfamily T member 1 (KCNT1), were still differentially expressed. Among these ion channels, HCN1 and KCNA2 were selected to evaluate the effects of DNA methylation, and the levels of these proteins were inversely upregulated in the TLE group compared to the control group. As the genes identified as having differential methylation levels are involved in both excitatory and inhibitory ion channels, this study observed by binary logistic regression that hypermethylated GARAB1 was an independent risk factor for TLE, indicating that the overwhelming effect of ion channels on TLE is probably inhibitory from the perspective of DNA methylation. All these findings support the involvement of DNA methylation in TLE pathologies, but the mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zengqiang Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianhao Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yusen Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaowen Sun
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xu Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Neurology & Neurosurgery Division, Stroke Center, Clinical Medicine Research Institute & The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Yigit G, Sheffer R, Daana M, Li Y, Kaygusuz E, Mor-Shakad H, Altmüller J, Nürnberg P, Douiev L, Kaulfuss S, Burfeind P, Wollnik B, Brockmann K. Loss-of-function variants in DNM1 cause a specific form of developmental and epileptic encephalopathy only in biallelic state. J Med Genet 2021; 59:549-553. [PMID: 34172529 PMCID: PMC9132866 DOI: 10.1136/jmedgenet-2021-107769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022]
Abstract
Background Developmental and epileptic encephalopathies (DEEs) represent a group of severe neurological disorders characterised by an onset of refractory seizures during infancy or early childhood accompanied by psychomotor developmental delay or regression. DEEs are genetically heterogeneous with, to date, more than 80 different genetic subtypes including DEE31 caused by heterozygous missense variants in DNM1. Methods We performed a detailed clinical characterisation of two unrelated patients with DEE and used whole-exome sequencing to identify causative variants in these individuals. The identified variants were tested for cosegregation in the respective families. Results We excluded pathogenic variants in known, DEE-associated genes. We identified homozygous nonsense variants, c.97C>T; p.(Gln33*) in family 1 and c.850C>T; p.(Gln284*) in family 2, in the DNM1 gene, indicating that biallelic, loss-of-function pathogenic variants in DNM1 cause DEE. Conclusion Our finding that homozygous, loss-of-function variants in DNM1 cause DEE expands the spectrum of pathogenic variants in DNM1. All parents who were heterozygous carriers of the identified loss-of-function variants were healthy and did not show any clinical symptoms, indicating that the type of mutation in DNM1 determines the pattern of inheritance.
Collapse
Affiliation(s)
- Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Gottingen, Germany
| | - Ruth Sheffer
- Department of Human Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Muhannad Daana
- Child Development Institute, Clalit Health Services, Tel Aviv, Israel
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Gottingen, Germany
| | - Emrah Kaygusuz
- Institute of Human Genetics, University Medical Center Göttingen, Gottingen, Germany.,Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Hagar Mor-Shakad
- Department of Human Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Liza Douiev
- Department of Human Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Silke Kaulfuss
- Institute of Human Genetics, University Medical Center Göttingen, Gottingen, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Center Göttingen, Gottingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Gottingen, Germany .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Gottingen, Gottingen, Germany
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Göttingen, Gottingen, Germany
| |
Collapse
|
20
|
Motelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Cusick C, Singh T, Heyne H, Byrnes AE, Churchhouse C, Watts N, Solomonson M, Lal D, Gupta N, Neale BM, Cavalleri GL, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Hakonarson H, Heinzen EL, Helbig I, Kwan P, Marson AG, Petrovski S, Kamalakaran S, Sisodiya SM, Stewart R, Weckhuysen S, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, Krause R, May P, McKenna K, Regan BM, Bennett CA, Leu C, Leech SL, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Ali QZ, Sadoway TR, Krestel H, Schaller A, Papacostas SS, Kousiappa I, Tanteles GA, Christou Y, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Neubauer BA, Zimprich F, Feucht M, Reinthaler EM, Kunz WS, Zsurka G, Surges R, Baumgartner T, von Wrede R, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Lauxmann S, Boßelmann C, Kegele J, Hengsbach C, Rau S, Steinhoff BJ, Schulze-Bonhage A, Borggräfe I, Schankin CJ, Schubert-Bast S, Schreiber H, Mayer T, Korinthenberg R, Brockmann K, Wolff M, Dennig D, Madeleyn R, Kälviäinen R, Saarela A, Timonen O, Linnankivi T, Lehesjoki AE, Rheims S, Lesca G, Ryvlin P, Maillard L, Valton L, Derambure P, Bartolomei F, Hirsch E, Michel V, Chassoux F, Rees MI, Chung SK, Pickrell WO, Powell R, Baker MD, Fonferko-Shadrach B, Lawthom C, Anderson J, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CH, Delanty N, Doherty CP, Shukralla A, El-Naggar H, Widdess-Walsh P, Barišić N, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Ragona F, Zara F, Iacomino M, Riva A, Madia F, Vari MS, Salpietro V, Scala M, Mancardi MM, Nobili L, Amadori E, Giacomini T, Bisulli F, Pippucci T, Licchetta L, Minardi R, Tinuper P, Muccioli L, Mostacci B, Gambardella A, Labate A, Annesi G, Manna L, Gagliardi M, Parrini E, Mei D, Vetro A, Bianchini C, Montomoli M, Doccini V, Barba C, Hirose S, Ishii A, Suzuki T, Inoue Y, Yamakawa K, Beydoun A, Nasreddine W, Khoueiry Zgheib N, Tumiene B, Utkus A, Sadleir LG, King C, Caglayan SH, Arslan M, Yapıcı Z, Topaloglu P, Kara B, Yis U, Turkdogan D, Gundogdu-Eken A, Bebek N, Uğur-İşeri S, Baykan B, Salman B, Haryanyan G, Yücesan E, Kesim Y, Özkara Y, Tsai MH, Ho CJ, Lin CH, Lin KL, Chou IJ, Poduri A, Shiedley BR, Shain C, Noebels JL, Goldman A, Busch RM, Jehi L, Najm IM, Ferguson L, Khoury J, Glauser TA, Clark PO, Buono RJ, Ferraro TN, Sperling MR, Lo W, Privitera M, French JA, Schachter S, Kuzniecky RI, Devinsky O, Hegde M, Greenberg DA, Ellis CA, Goldberg E, Helbig KL, Cosico M, Vaidiswaran P, Fitch E, Berkovic SF, Lerche H, Lowenstein DH, Goldstein DB. Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals. Am J Hum Genet 2021; 108:965-982. [PMID: 33932343 PMCID: PMC8206159 DOI: 10.1016/j.ajhg.2021.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
Collapse
|
21
|
Wang J, Qiao JD, Liu XR, Liu DT, Chen YH, Wu Y, Sun Y, Yu J, Ren RN, Mei Z, Liu YX, Shi YW, Jiang M, Lin SM, He N, Li B, Bian WJ, Li BM, Yi YH, Su T, Liu HK, Gu WY, Liao WP. UNC13B variants associated with partial epilepsy with favourable outcome. Brain 2021; 144:3050-3060. [PMID: 33876820 PMCID: PMC8634081 DOI: 10.1093/brain/awab164] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 11/12/2022] Open
Abstract
The unc-13 homolog B (UNC13B) gene encodes a presynaptic protein, mammalian uncoordinated 13-2 (Munc13-2), that is highly expressed in the brain-predominantly in the cerebral cortex-and plays an essential role in synaptic vesicle priming and fusion, potentially affecting neuronal excitability. However, the functional significance of UNC13B mutation in human disease is not known. In this study we screened for novel genetic variants in a cohort of 446 unrelated cases (families) with partial epilepsy without acquired causes by trio-based whole-exome sequencing. UNC13B variants were identified in 12 individuals affected by partial epilepsy and/or febrile seizures from eight unrelated families. The eight probands all had focal seizures and focal discharges in EEG recordings, including two patients who experienced frequent daily seizures and one who showed abnormalities in the hippocampus by brain MRI; however, all of the patients showed favorable outcome without intellectual or developmental abnormalities. The identified UNC13B variants included one nonsense variant, two variants at or around a splice site, one compound heterozygous missense variant, and four missense variants that cosegregated in the families. The frequency of UNC13B variants identified in the present study was significantly higher than that in a control cohort of Han Chinese and controls of the East Asian and all populations in the Genome Aggregation Database. Computational modeling, including hydrogen bond and docking analyses, suggested that the variants lead to functional impairment. In Drosophila, seizure rate and duration were increased by Unc13b knockdown compared to wild-type flies, but these effects were less pronounced than in sodium voltage-gated channel alpha subunit 1 (Scn1a) knockdown Drosophila. Electrophysiologic recordings showed that excitatory neurons in Unc13b-deficient flies exhibited increased excitability. These results suggest that UNC13B is potentially associated with epilepsy. The frequent daily seizures and hippocampal abnormalities but ultimately favorable outcome under antiepileptic therapy in our patients indicate that partial epilepsy caused by UNC13B variant is a clinically manageable condition.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Da Qiao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - De-Tian Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yan-Hui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fujian, China
| | - Yi Wu
- Department of Pediatrics, Fujian Medical University Union Hospital, Fujian, China
| | - Yan Sun
- Department of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jing Yu
- Department of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Rong-Na Ren
- Department of Pediatrics and Neurosurgery, 900 Hospital of the Joint Logistics Team, Fujian, China
| | - Zhen Mei
- Department of Pediatrics and Neurosurgery, 900 Hospital of the Joint Logistics Team, Fujian, China
| | - Yu-Xi Liu
- Department of Neurology, The First Affiliated Hospital of Shanxi Medical University, Shanxi, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Mi Jiang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Si-Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bin Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wen-Jun Bian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bing-Mei Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | | - Wei-Yue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Beijing, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | |
Collapse
|
22
|
Genetic Neonatal-Onset Epilepsies and Developmental/Epileptic Encephalopathies with Movement Disorders: A Systematic Review. Int J Mol Sci 2021; 22:ijms22084202. [PMID: 33919646 PMCID: PMC8072943 DOI: 10.3390/ijms22084202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Despite expanding next generation sequencing technologies and increasing clinical interest into complex neurologic phenotypes associating epilepsies and developmental/epileptic encephalopathies (DE/EE) with movement disorders (MD), these monogenic conditions have been less extensively investigated in the neonatal period compared to infancy. We reviewed the medical literature in the study period 2000–2020 to report on monogenic conditions characterized by neonatal onset epilepsy and/or DE/EE and development of an MD, and described their electroclinical, genetic and neuroimaging spectra. In accordance with a PRISMA statement, we created a data collection sheet and a protocol specifying inclusion and exclusion criteria. A total of 28 different genes (from 49 papers) leading to neonatal-onset DE/EE with multiple seizure types, mainly featuring tonic and myoclonic, but also focal motor seizures and a hyperkinetic MD in 89% of conditions, with neonatal onset in 22%, were identified. Neonatal seizure semiology, or MD age of onset, were not always available. The rate of hypokinetic MD was low, and was described from the neonatal period only, with WW domain containing oxidoreductase (WWOX) pathogenic variants. The outcome is characterized by high rates of associated neurodevelopmental disorders and microcephaly. Brain MRI findings are either normal or nonspecific in most conditions, but serial imaging can be necessary in order to detect progressive abnormalities. We found high genetic heterogeneity and low numbers of described patients. Neurological phenotypes are complex, reflecting the involvement of genes necessary for early brain development. Future studies should focus on accurate neonatal epileptic phenotyping, and detailed description of semiology and time-course, of the associated MD, especially for the rarest conditions.
Collapse
|
23
|
Tao H, Zhou X, Chen J, Zhou H, Huang L, Cai Y, Fu J, Liu Z, Chen Y, Sun C, Zhao B, Zhong W, Li K. Genetic Effects of the Schizophrenia-Related Gene DTNBP1 in Temporal Lobe Epilepsy. Front Genet 2021; 12:553974. [PMID: 33679873 PMCID: PMC7933566 DOI: 10.3389/fgene.2021.553974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have reported patients who concurrently exhibit conditions of epilepsy and schizophrenia, indicating certain shared pathologies between them. This study aimed to investigate the genetic effects of the schizophrenia-related gene DTNBP1 in temporal lobe epilepsy (TLE). A total of 496 TLE patients and 528 healthy individuals were successfully genotyped for six DTNBP1 polymorphisms (rs760665, rs1011313, rs2619528, rs2619522, rs909706, and rs2619538), including 335 TLE patients and 325 healthy controls in cohort 1, and 161 TLE patients and 203 healthy controls in cohort 2. The frequency of the TT genotype at rs909706 T > C was lower in TLE patients than in normal controls in the initial cohort (cohort 1), which was confirmed in an independent cohort (cohort 2). However, the intronic T allele failed to be in linkage disequilibrium (LD) with any functional variations nearby; thus, together with the CCAC and TCAT haplotypes (rs1011313-rs2619528-rs2619522-rs909706) observed in the study, this allele acts only as a protective factor against susceptibility to TLE. Meanwhile, a novo mutant allele rs2619538 T > A was exclusively observed in TLE patients, and a dual-luciferase assay revealed that the mutant allele was increased by approximately 22% in the DTNBP2 promoter compared with the wild-type allele. Together with the trend of increasing DTNBP1 expression in epilepsy patients and animal models in this study, these are the first findings to demonstrate the genetic association of DTNBP1 with TLE. Homozygous mutation of rs2619538 T > A likely promotes DTNBP1 expression and facilitates subsequent processes in epilepsy pathologies. Thus, the role of DTNBP1 in TLE deserves further exploration in the future.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xu Zhou
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lidan Huang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Chaowen Sun
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Neurology and Neurosurgery Division, Stroke Center, The First Affiliated Hospital, Clinical Medicine Research Institute, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To review the evolution of the concept of epileptic encephalopathy during the course of past years and analyze how the current definition might impact on both clinical practice and research. RECENT FINDINGS Developmental delay in children with epilepsy could be the expression of the cause, consequence of intense epileptiform activity (seizures and EEG abnormalities), or because of the combination of both factors. Therefore, the current International League Against Epilepsy classification identified three electroclinical entities that are those of developmental encephalopathy, epileptic encephalopathy, and developmental and epileptic encephalopathy (DEE). Many biological pathways could be involved in the pathogenesis of DEEs. DNA repair, transcriptional regulation, axon myelination, metabolite and ion transport, and peroxisomal function could all be involved in DEE. Also, epilepsy and epileptiform discharges might impact on cognition via several mechanisms, although they are not fully understood. SUMMARY The correct and early identification of cause in DEE might increase the chances of a targeted treatment regimen. Interfering with neurobiological processes of the disease will be the most successful way in order to improve both the cognitive disturbances and epilepsy that are the key features of DEE.
Collapse
|
25
|
Sugawara Y, Mizuno T, Moriyama K, Ishiwata H, Kato M, Nakashima M, Mizuguchi T, Matsumoto N. Cerebrospinal fluid abnormalities in developmental and epileptic encephalopathy with a de novo CDK19 variant. Neurol Genet 2020; 6:e527. [PMID: 33134521 PMCID: PMC7577532 DOI: 10.1212/nxg.0000000000000527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Yuji Sugawara
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Tomoko Mizuno
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Kengo Moriyama
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Hisako Ishiwata
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Mitsuko Nakashima
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Takeshi Mizuguchi
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Naomichi Matsumoto
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| |
Collapse
|
26
|
Yuan J, Xing H, Lamy AL, Lencz T, Pe’er I. Leveraging correlations between variants in polygenic risk scores to detect heterogeneity in GWAS cohorts. PLoS Genet 2020; 16:e1009015. [PMID: 32956347 PMCID: PMC7529195 DOI: 10.1371/journal.pgen.1009015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 10/01/2020] [Accepted: 07/29/2020] [Indexed: 11/18/2022] Open
Abstract
Evidence from both GWAS and clinical observation has suggested that certain psychiatric, metabolic, and autoimmune diseases are heterogeneous, comprising multiple subtypes with distinct genomic etiologies and Polygenic Risk Scores (PRS). However, the presence of subtypes within many phenotypes is frequently unknown. We present CLiP (Correlated Liability Predictors), a method to detect heterogeneity in single GWAS cohorts. CLiP calculates a weighted sum of correlations between SNPs contributing to a PRS on the case/control liability scale. We demonstrate mathematically and through simulation that among i.i.d. homogeneous cases generated by a liability threshold model, significant anti-correlations are expected between otherwise independent predictors due to ascertainment on the hidden liability score. In the presence of heterogeneity from distinct etiologies, confounding by covariates, or mislabeling, these correlation patterns are altered predictably. We further extend our method to two additional association study designs: CLiP-X for quantitative predictors in applications such as transcriptome-wide association, and CLiP-Y for quantitative phenotypes, where there is no clear distinction between cases and controls. Through simulations, we demonstrate that CLiP and its extensions reliably distinguish between homogeneous and heterogeneous cohorts when the PRS explains as low as 3% of variance on the liability scale and cohorts comprise 50, 000 − 100, 000 samples, an increasingly practical size for modern GWAS. We apply CLiP to heterogeneity detection in schizophrenia cohorts totaling > 50, 000 cases and controls collected by the Psychiatric Genomics Consortium. We observe significant heterogeneity in mega-analysis of the combined PGC data (p-value 8.54 × 0−4), as well as in individual cohorts meta-analyzed using Fisher’s method (p-value 0.03), based on significantly associated variants. We also apply CLiP-Y to detect heterogeneity in neuroticism in over 10, 000 individuals from the UK Biobank and detect heterogeneity with a p-value of 1.68 × 10−9. Scores were not significantly reduced when partitioning by known subclusters (“Depression” and “Worry”), suggesting that these factors are not the primary source of observed heterogeneity. Several traits, such as bipolar disease, are known to be heterogeneous and comprise distinct subtypes with unique genomic associations. For other traits such as schizophrenia, heterogeneity may be suspected, but specific subtypes are less well characterized. Furthermore, conventional mixture model-based methods to detect subtypes in genome-wide association data struggle with the high polygenicity of complex traits. We propose CLiP (Correlated Liability Predictors), a method that does not identify subtype-specific effects, but is very well-powered to detect heterogeneity of any kind within the very weak signals of GWAS. CLiP serves as a method to flag particular phenotypes for potential further study into the genomic factors driving heterogeneity, as well as a means to evaluate the transferability of polygenic risk scores. We also develop extensions of CLiP applicable to scoring heterogeneity in quantitative phenotypes and quantitative predictors such as gene expression. We apply CLiP to scoring heterogeneity in schizophrenia cohorts from the Psychiatric Genomics Consortium and neuroticism in individuals in the UK Biobank and find significant heterogeneity in both phenotypes, warranting further study.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Computer Science, Columbia University, New York, United States of America
- * E-mail:
| | - Henry Xing
- Department of Computer Science, Columbia University, New York, United States of America
| | - Alexandre Louis Lamy
- Department of Computer Science, Columbia University, New York, United States of America
| | | | - Todd Lencz
- The Center for Psychiatric Neuroscience, Feinstein Institutes for Medical Research, New York, United States of America
| | - Itsik Pe’er
- Department of Computer Science, Columbia University, New York, United States of America
| |
Collapse
|
27
|
Liu L, Chen ZR, Xu HQ, Liu DT, Mao Y, Liu HK, Liu XR, Zhou P, Lin SM, Li B, He N, Su T, Zhai QX, Meng H, Liao WP, Yi YH. DEPDC5 Variants Associated Malformations of Cortical Development and Focal Epilepsy With Febrile Seizure Plus/Febrile Seizures: The Role of Molecular Sub-Regional Effect. Front Neurosci 2020; 14:821. [PMID: 32848577 PMCID: PMC7432260 DOI: 10.3389/fnins.2020.00821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
To explore the phenotype spectrum of DEPDC5 variants and the possible mechanisms underlying phenotypical variation, we performed targeted next-generation sequencing in 305 patients with focal epilepsies and 91 patients with generalized epilepsies. Protein modeling was performed to predict the effects of missense mutations. All previously reported epilepsy-related DEPDC5 variants were reviewed. The genotype–phenotype correlations with molecular sub-regional implications were analyzed. We identified a homozygous DEPDC5 mutation (p.Pro1031His) in a case with focal cortical dysplasia and eight heterozygous mutations in 11 families with mild focal epilepsies, including 13 patients in eight families with focal epilepsy with febrile seizures plus/febrile seizures (FEFS + /FS). The mutations included one termination codon mutation (p.Ser1601_Ter1604del_ext133), three truncating mutations (p.Val151Serfs∗27, p.Arg239∗, and p.Arg838∗), and four missense mutations (p.Tyr7Cys, p.Tyr836Cys, p.Pro1031His, and p.Gly1545Ser) that were predicted to affect hydrogen bonds and protein stability. Analysis on epilepsy-related DEPDC5 variants revealed that malformations of cortical development (MCDs) had a tendency of higher frequency of null mutations than those without MCD. MCD-associated heterozygous missense mutations were clustered in structural axis for binding arrangement (SABA) domain and close to the binding sites to NPRL2/NPRL3 complex, whereas those associated with FEFS + /FS were a distance away from the binding sites. Evidence from four aspects and one possible evidence from sub-regional implication suggested MCD and FEFS + /FS as phenotypes of DEPDC5 variants. This study suggested that the phenotypes of DEPDC5 variants vary from mild FEFS + /FS to severe MCD. Heterozygous DEPDC5 mutations are generally less pathogenic and commonly associated with mild phenotypes. Bi-allelic mutations and second hit of somatic mutations, together with the genotype–phenotype correlation and sub-regional implication of DEPDC5 variants, explain severe phenotypes.
Collapse
Affiliation(s)
- Liu Liu
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Department of Neurology, Xiaoshan First People's Hospital, Hangzhou, China
| | - Zi-Rong Chen
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Qing Xu
- Department of Neurology, Xuzhou Central Hospital, Affiliated Hospital of Southeast University, Xuzhou, China
| | - De-Tian Liu
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | | | | - Xiao-Rong Liu
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Peng Zhou
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Si-Mei Lin
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bin Li
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Na He
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Heng Meng
- Department of Neurology of the First Affiliated Hospital of Jinan University and Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
28
|
Vetri L, Calì F, Vinci M, Amato C, Roccella M, Granata T, Freri E, Solazzi R, Romano V, Elia M. A de novo heterozygous mutation in KCNC2 gene implicated in severe developmental and epileptic encephalopathy. Eur J Med Genet 2020; 63:103848. [DOI: 10.1016/j.ejmg.2020.103848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/15/2019] [Accepted: 01/12/2020] [Indexed: 12/11/2022]
|
29
|
Long K, Wang H, Song Z, Yin X, Wang Y. EEF1A2 mutations in epileptic encephalopathy/intellectual disability: Understanding the potential mechanism of phenotypic variation. Epilepsy Behav 2020; 105:106955. [PMID: 32062104 DOI: 10.1016/j.yebeh.2020.106955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
EEF1A2 encodes protein elongation factor 1-alpha 2, which is involved in Guanosine triphosphate (GTP)-dependent binding of aminoacyl-transfer RNA (tRNA) to the A-site of ribosomes during protein biosynthesis and is highly expressed in the central nervous system. De novo mutations in EEF1A2 have been identified in patients with extensive neurological deficits, including intractable epilepsy, globe developmental delay, and severe intellectual disability. However, the mechanism underlying phenotype variation is unknown. Using next-generation sequencing, we identified a novel and a recurrent de novo mutation, c.294C>A; p.(Phe98Leu) and c.208G>A; p.(Gly70Ser), in patients with Lennox-Gastaut syndrome. The further systematic analysis revealed that all EEF1A2 mutations were associated with epilepsy and intellectual disability, suggesting its critical role in neurodevelopment. Missense mutations with severe molecular alteration in the t-RNA binding sites or GTP hydrolysis domain were associated with early-onset severe epilepsy, indicating that the clinical expression was potentially determined by the location of mutations and alteration of molecular effects. This study highlights the potential genotype-phenotype relationship in EEF1A2 and facilitates the evaluation of the pathogenicity of EEF1A2 mutations in clinical practice.
Collapse
Affiliation(s)
- Kexin Long
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hua Wang
- Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China; Key Laboratory of Birth Defects Research and Prevention, Changsha, Hunan 410008, China
| | - Zhanyi Song
- Med Department of Pediatric Neurology, Chenzhou No.1 People's Hospital (Children's Hospital), Chenzhou, Hunan 423000, China
| | - Xiaomeng Yin
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yaqin Wang
- Department of Health Management Centre, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
30
|
Abstract
Developmental and epileptic encephalopathies (DEEs) can be primarily attributed to genetic causes. The genetic landscape of DEEs has been largely shaped by the rise of high-throughput sequencing, which led to the discovery of new DEE-associated genes and helped identify de novo pathogenic variants. We discuss briefly the contribution of de novo variants to DEE and also focus on alternative inheritance models that contribute to DEE. First, autosomal recessive inheritance in outbred populations may have a larger contribution than previously appreciated, accounting for up to 13% of DEEs. A small subset of genes that typically harbor de novo variants have been associated with recessive inheritance, and often these individuals have more severe clinical presentations. Additionally, pathogenic variants in X-linked genes have been identified in both affected males and females, possibly due to a lack of X-chromosome inactivation skewing. Collectively, exome sequencing has resulted in a molecular diagnosis for many individuals with DEE, but this still leaves many cases unsolved. Multiple factors contribute to the missing etiology, including nonexonic variants, mosaicism, epigenetics, and oligogenic inheritance. Here, we focus on the first 2 factors. We discuss the promises and challenges of genome sequencing, which allows for a more comprehensive analysis of the genome, including interpretation of structural and noncoding variants and also yields a high number of de novo variants for interpretation. We also consider the contribution of genetic mosaicism, both what it means for a molecular diagnosis in mosaic individuals and the important implications for genetic counseling.
Collapse
Affiliation(s)
- Hannah C Happ
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gemma L Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
31
|
Tang B, Li B, Gao LD, He N, Liu XR, Long YS, Zeng Y, Yi YH, Su T, Liao WP. Optimization of in silico tools for predicting genetic variants: individualizing for genes with molecular sub-regional stratification. Brief Bioinform 2019; 21:1776-1786. [PMID: 31686106 DOI: 10.1093/bib/bbz115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/06/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Genes are unique in functional role and differ in their sensitivities to genetic defects, but with difficulties in pathogenicity prediction. This study attempted to improve the performance of existing in silico algorithms and find a common solution based on individualization strategy. We initiated the individualization with the epilepsy-related SCN1A variants by sub-regional stratification. SCN1A missense variants related to epilepsy were retrieved from mutation databases, and benign missense variants were collected from ExAC database. Predictions were performed by using 10 traditional tools with stepwise optimizations. Model predictive ability was evaluated using the five-fold cross-validations on variants of SCN1A, SCN2A, and KCNQ2. Additional validation was performed in SCN1A variants of damage-confirmed/familial epilepsy. The performance of commonly used predictors was less satisfactory for SCN1A with accuracy less than 80% and varied dramatically by functional domains of Nav1.1. Multistep individualized optimizations, including cutoff resetting, domain-based stratification, and combination of predicting algorithms, significantly increased predictive performance. Similar improvements were obtained for variants in SCN2A and KCNQ2. The predictive performance of the recently developed ensemble tools, such as Mendelian clinically applicable pathogenicity, combined annotation-dependent depletion and Eigen, was also improved dramatically by application of the strategy with molecular sub-regional stratification. The prediction scores of SCN1A variants showed linear correlations with the degree of functional defects and the severity of clinical phenotypes. This study highlights the need of individualized optimization with molecular sub-regional stratification for each gene in practice.
Collapse
Affiliation(s)
- Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University
| | - Bin Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzo, China
| | - Liang-Di Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzo, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University
| | - Yang Zeng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzo, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzo, China
| |
Collapse
|
32
|
Shi YW, Zhang Q, Cai K, Poliquin S, Shen W, Winters N, Yi YH, Wang J, Hu N, Macdonald RL, Liao WP, Kang JQ. Synaptic clustering differences due to different GABRB3 mutations cause variable epilepsy syndromes. Brain 2019; 142:3028-3044. [PMID: 31435640 PMCID: PMC6776116 DOI: 10.1093/brain/awz250] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
GABRB3 is highly expressed early in the developing brain, and its encoded β3 subunit is critical for GABAA receptor assembly and trafficking as well as stem cell differentiation in embryonic brain. To date, over 400 mutations or variants have been identified in GABRB3. Mutations in GABRB3 have been increasingly recognized as a major cause for severe paediatric epilepsy syndromes such as Lennox-Gastaut syndrome, Dravet syndrome and infantile spasms with intellectual disability as well as relatively mild epilepsy syndromes such as childhood absence epilepsy. There is no plausible molecular pathology for disease phenotypic heterogeneity. Here we used a very high-throughput flow cytometry assay to evaluate the impact of multiple human mutations in GABRB3 on receptor trafficking. In this study we found that surface expression of mutant β3 subunits is variable. However, it was consistent that surface expression of partnering γ2 subunits was lower when co-expressed with mutant than with wild-type subunits. Because γ2 subunits are critical for synaptic GABAA receptor clustering, this provides an important clue for understanding the pathophysiology of GABRB3 mutations. To validate our findings further, we obtained an in-depth comparison of two novel mutations [GABRB3 (N328D) and GABRB3 (E357K)] associated with epilepsy with different severities of epilepsy phenotype. GABRB3 (N328D) is associated with the relatively severe Lennox-Gastaut syndrome, and GABRB3 (E357K) is associated with the relatively mild juvenile absence epilepsy syndrome. With functional characterizations in both heterologous cells and rodent cortical neurons by patch-clamp recordings, confocal microscopy and immunoblotting, we found that both the GABRB3 (N328D) and GABRB3 (E357K) mutations reduced total subunit expression in neurons but not in HEK293T cells. Both mutant subunits, however, were reduced on the cell surface and in synapses, but the Lennox-Gastaut syndrome mutant β3 (N328D) subunit was more reduced than the juvenile absence epilepsy mutant β3 (E357K) subunit. Interestingly, both mutant β3 subunits impaired postsynaptic clustering of wild-type GABAA receptor γ2 subunits and prevented γ2 subunits from incorporating into GABAA receptors at synapses, although by different cellular mechanisms. Importantly, wild-type γ2 subunits were reduced and less clustered at inhibitory synapses in Gabrb3+/- knockout mice. This suggests that impaired receptor localization to synapses is a common pathophysiological mechanism for GABRB3 mutations, although the extent of impairment may be different among mutant subunits. The study thus identifies the novel mechanism of impaired targeting of receptors containing mutant β3 subunits and provides critical insights into understanding how GABRB3 mutations produce severe epilepsy syndromes and epilepsy phenotypic heterogeneity.
Collapse
Affiliation(s)
- Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qi Zhang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Department of Neurology, Nantong University, 19 Qixiu Road, Nantong, JS, China
| | - Kefu Cai
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Nantong University, 19 QiXiu Road, Nantong, JS, China
| | - Sarah Poliquin
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Nashville, TN, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathan Winters
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Nashville, TN, USA
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
33
|
Wang Q, Liu Z, Lin Z, Zhang R, Lu Y, Su W, Li F, Xu X, Tu M, Lou Y, Zhao J, Zheng X. De Novo Germline Mutations in SEMA5A Associated With Infantile Spasms. Front Genet 2019; 10:605. [PMID: 31354784 PMCID: PMC6635550 DOI: 10.3389/fgene.2019.00605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Infantile spasm (IS) is an early-onset epileptic encephalopathy that usually presents with hypsarrhythmia on an electroencephalogram with developmental impairment or regression. In this study, whole-exome sequencing was performed to detect potential pathogenic de novo mutations, and finally we identified a novel damaging de novo mutation in SEMA5A and a compound heterozygous mutation in CLTCL1 in three sporadic trios with IS. The expression profiling of SEMA5A in the human brain showed that it was mainly highly expressed in the cerebral cortex, during the early brain development stage (8 to 9 post-conception weeks and 0 to 5 months after birth). In addition, we identified a close protein-protein interaction network between SEMA5A and candidate genes associated with epilepsy, autism spectrum disorder (ASD) or intellectual disability. Gene enrichment and function analysis demonstrated that genes interacting with SEMA5A were significantly enriched in several brain regions across early fetal development, including the cortex, cerebellum, striatum and thalamus (q < 0.05), and were involved in axonal, neuronal and synapse-associated processes. Furthermore, SEMA5A and its interacting genes were associated with ASD, epilepsy syndrome and developmental disorders of mental health. Our results provide insightful information indicating that SEMA5A may contribute to the development of the brain and is associated with IS. However, further genetic studies are still needed to evaluate the role of SEMA5A in IS to definitively establish the role of SEMA5A in this disorder.
Collapse
Affiliation(s)
- Qiongdan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ru Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yutian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijue Su
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyun Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| |
Collapse
|
34
|
Weisz-Hubshman M, Meirson H, Michaelson-Cohen R, Beeri R, Tzur S, Bormans C, Modai S, Shomron N, Shilon Y, Banne E, Orenstein N, Konen O, Marek-Yagel D, Veber A, Shalva N, Imagawa E, Matsumoto N, Lev D, Lerman Sagie T, Raas-Rothschild A, Ben-Zeev B, Basel-Salmon L, Behar DM, Heimer G. Novel WWOX deleterious variants cause early infantile epileptic encephalopathy, severe developmental delay and dysmorphism among Yemenite Jews. Eur J Paediatr Neurol 2019; 23:418-426. [PMID: 30853297 DOI: 10.1016/j.ejpn.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Abstract
The human WW Domain Containing Oxidoreductase (WWOX) gene was originally described as a tumor suppressor gene. However, recent reports have demonstrated its cardinal role in the pathogenesis of central nervous systems disorders such as epileptic encephalopathy, intellectual disability, and spinocerebellar ataxia. We report on six patients from three unrelated families of full or partial Yemenite Jewish ancestry exhibiting early infantile epileptic encephalopathy and profound developmental delay. Importantly, four patients demonstrated facial dysmorphism. Exome sequencing revealed that four of the patients were homozygous for a novel WWOX c.517-2A > G splice-site variant and two were compound heterozygous for this variant and a novel c.689A > C, p.Gln230Pro missense variant. Complementary DNA sequencing demonstrated that the WWOX c.517-2A > G splice-site variant causes skipping of exon six. A carrier rate of 1:177 was found among Yemenite Jews. We provide the first detailed description of patients harboring a splice-site variant in the WWOX gene and propose that the clinical synopsis of WWOX related epileptic encephalopathy should be broadened to include facial dysmorphism. The increased frequency of the c.517-2A > G splice-site variant among Yemenite Jews coupled with the severity of the phenotype makes it a candidate for inclusion in expanded preconception screening programs.
Collapse
Affiliation(s)
- M Weisz-Hubshman
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - H Meirson
- Pediatric Neurology Unit, Kaplan Medical Center Rehovot, Israel
| | - R Michaelson-Cohen
- Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - R Beeri
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel
| | - S Tzur
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel; Genomic Research Department, Emedgene Technologies, Tel-Aviv, Israel
| | - C Bormans
- Gene by Gene, Genomic Research Center, Houston, TX, USA
| | - S Modai
- Variantyx, Inc, Framingham, MA, USA
| | - N Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Variantyx, Inc, Framingham, MA, USA
| | - Y Shilon
- Pediatric Neurology Unit, Kaplan Medical Center Rehovot, Israel
| | - E Banne
- Institute of Medical Genetics, Kaplan Medical Center, Rehovot, Israel
| | - N Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Konen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Radiology Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - D Marek-Yagel
- Metabolic Diseases Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - A Veber
- Metabolic Diseases Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - N Shalva
- Metabolic Diseases Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - E Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - D Lev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Metabolic Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel; Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - T Lerman Sagie
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Metabolic Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | - A Raas-Rothschild
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - B Ben-Zeev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - L Basel-Salmon
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Center, Petach Tikva, Israel
| | - D M Behar
- Gene by Gene, Genomic Research Center, Houston, TX, USA
| | - G Heimer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel; The Pinchas Borenstein Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel
| |
Collapse
|
35
|
Nashabat M, Al Qahtani XS, Almakdob S, Altwaijri W, Ba-Armah DM, Hundallah K, Al Hashem A, Al Tala S, Maddirevula S, Alkuraya FS, Tabarki B, Alfadhel M. The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure 2019; 69:154-172. [PMID: 31054490 DOI: 10.1016/j.seizure.2019.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Epileptic encephalopathies (EE), are a group of age-related disorders characterized by intractable seizures and electroencephalogram (EEG) abnormalities that may result in cognitive and motor delay. Early infantile epileptic encephalopathies (EIEE) manifest in the first year of life. EIEE are highly heterogeneous genetically but a genetic etiology is only identified in half of the cases, typically in the form of de novo dominant mutations. METHOD This is a descriptive retrospective study of a consecutive series of patients diagnosed with EIEE from the participating hospitals. A chart review was performed for all patients. The diagnosis of epileptic encephalopathy was confirmed by molecular investigations in commercial labs. In silico study was done for all novel mutations. A systematic search was done for all the types of EIEE and their correlated genes in the literature using the Online Mendelian Inheritance In Man and PubMed databases. RESULTS In this case series, we report 72 molecularly characterized EIEE from a highly consanguineous population, and review their clinical course. We identified 50 variants, 26 of which are novel, causing 26 different types of EIEE. Unlike outbred populations, autosomal recessive EIEE accounted for half the cases. The phenotypes ranged from self-limiting and drug-responsive to severe refractory seizures or even death. CONCLUSIONS We reported the largest EIEE case series in the region with confirmed molecular testing and detailed clinical phenotyping. The number autosomal recessive predominance could be explained by the society's high consanguinity. We reviewed all the EIEE registered causative genes in the literature and proposed a functional classification.
Collapse
Affiliation(s)
- Marwan Nashabat
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Xena S Al Qahtani
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Salwa Almakdob
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Duaa M Ba-Armah
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Division of Genetics, Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.
| |
Collapse
|
36
|
Kaur P, Neethukrishna K, Kumble A, Girisha KM, Shukla A. Identification of a novel homozygous variant confirms ITPA as a developmental and epileptic encephalopathy gene. Am J Med Genet A 2019; 179:857-861. [PMID: 30816001 DOI: 10.1002/ajmg.a.61103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 11/07/2022]
Abstract
ITPA related epileptic encephalopathy (epileptic encephalopathy, early infantile, 35) is a rare inborn error of metabolism. All reported individuals with this condition, including the present case manifest global developmental delay, seizures, progressive postnatal microcephaly, hypotonia, thin corpus callosum, cerebral atrophy, delayed myelination and white matter changes in posterior limb of internal capsule. Cataract and dilated cardiomyopathy are other characteristic findings. Currently, a single publication describes this condition in four families. Three truncating and two missense variants in ITPA have been identified in these families. We hereby report another family with ITPA related disorder and review the genotype and phenotype of the reported subjects.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kausthubham Neethukrishna
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ali Kumble
- Department of Paediatrics, Indiana Hospital and Heart Institute, Mangalore, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
37
|
Fichera M, Failla P, Saccuzzo L, Miceli M, Salvo E, Castiglia L, Galesi O, Grillo L, Calì F, Greco D, Amato C, Romano C, Elia M. Mutations in ACTL6B, coding for a subunit of the neuron-specific chromatin remodeling complex nBAF, cause early onset severe developmental and epileptic encephalopathy with brain hypomyelination and cerebellar atrophy. Hum Genet 2019; 138:187-198. [PMID: 30656450 DOI: 10.1007/s00439-019-01972-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are genetically heterogenous conditions, often characterized by early onset, EEG interictal epileptiform abnormalities, polymorphous and drug-resistant seizures, and neurodevelopmental impairments. In this study, we investigated the genetic defects in two siblings who presented with severe DEE, microcephaly, spastic tetraplegia, diffuse brain hypomyelination, cerebellar atrophy, short stature, and kyphoscoliosis. Whole exome next-generation sequencing (WES) identified in both siblings a homozygous non-sense variant in the ACTL6B gene (NM_016188:c.820C>T;p.Gln274*) coding for a subunit of the neuron-specific chromatin remodeling complex nBAF. To further support these findings, a targeted ACTL6B sequencing assay was performed on a cohort of 85 unrelated DEE individuals, leading to the identification of a homozygous missense variant (NM_016188:c.1045G>A;p.Gly349Ser) in a patient. This variant did not segregate in the unaffected siblings in this family and was classified as deleterious by several prediction softwares. Interestingly, in both families, homozygous patients shared a rather homogeneous phenotype. Very few patients with ACTL6B gene variants have been sporadically reported in WES cohort studies of patients with neurodevelopmental disorders and/or congenital brain malformations. However, the limited number of patients with incomplete clinical information yet reported in the literature did not allow to establish a strong gene-disease association. Here, we provide additional genetic and clinical data on three new cases that support the pathogenic role of ACTL6B gene mutation in a syndromic form of DEE.
Collapse
Affiliation(s)
- Marco Fichera
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy. .,Oasi Research Institute-IRCCS, Troina, Italy.
| | | | - Lucia Saccuzzo
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Martina Miceli
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Eliana Salvo
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|