1
|
Unnikumaran Y, Lietsch M, Brower A. Charting the Ethical Frontier in Newborn Screening Research: Insights from the NBSTRN ELSI Researcher Needs Survey. Int J Neonatal Screen 2024; 10:64. [PMID: 39311366 PMCID: PMC11417897 DOI: 10.3390/ijns10030064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/26/2024] Open
Abstract
From 2008 to 2024, the Newborn Screening Translational Research Network (NBSTRN), part of the National Institute of Child Health and Human Development (NICHD) Hunter Kelly Newborn Screening Program, served as a robust infrastructure to facilitate groundbreaking research in newborn screening (NBS), public health, rare disease, and genomics. Over its sixteen years, NBSTRN developed into a significant international network, supporting innovative research on novel technologies to screen, diagnose, treat, manage, and understand the natural history of more than 280 rare diseases. The NBSTRN tools and resources were used by a variety of stakeholders including researchers, clinicians, state NBS programs, parents, families, and policy makers. Resources and expertise for the newborn screening community in ethical, legal, and social issues (ELSI) has been an important area of focus for the NBSTRN and this includes efforts across the NBS system from pilot studies of candidate conditions to public health implementation of screening for new conditions, and the longitudinal follow-up of NBS-identified individuals to inform health outcomes and disease understanding. In 2023, the NBSTRN conducted a survey to explore ELSI issues in NBS research, specifically those encountered by the NBS community. Since NBS research involves collaboration among researchers, state NBS programs, clinicians, and families, the survey was broadly designed and disseminated to engage all key stakeholders. With responses from 88 members of the NBS community, including researchers and state NBS programs, the survey found that individuals rely most on institutional and collegial resources when they encounter ELSI questions. Most survey responses ranked privacy as extremely or very important in NBS research and identified the need for policies that address informed consent in NBS research. The survey results highlight the need for improved collaborative resources and educational programs focused on ELSI for the NBS community. The survey results inform future efforts in ELSI and NBS research in the United States (U.S.) and the rest of the world, including the development of policies and expanded ELSI initiatives and tools that address the needs of all NBS stakeholders.
Collapse
Affiliation(s)
- Yekaterina Unnikumaran
- American College of Medical Genetics and Genomics (ACMG), Bethesda, MD 20814, USA; (Y.U.); (M.L.)
| | - Mei Lietsch
- American College of Medical Genetics and Genomics (ACMG), Bethesda, MD 20814, USA; (Y.U.); (M.L.)
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amy Brower
- American College of Medical Genetics and Genomics (ACMG), Bethesda, MD 20814, USA; (Y.U.); (M.L.)
- Genetic Medicine, Munore-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Health Professions., Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
2
|
Kelly NR, Orsini JJ, Goldenberg AJ, Mulrooney NS, Boychuk NA, Clarke MJ, Paleologos K, Martin MM, McNeight H, Caggana M, Bailey SM, Eiland LR, Ganesh J, Kupchik G, Lumba R, Nafday S, Stroustrup A, Gelb MH, Wasserstein MP. ScreenPlus: A comprehensive, multi-disorder newborn screening program. Mol Genet Metab Rep 2024; 38:101037. [PMID: 38173711 PMCID: PMC10761901 DOI: 10.1016/j.ymgmr.2023.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The increasing availability of novel therapies highlights the importance of screening newborns for rare genetic disorders so that they may benefit from early therapy, when it is most likely to be effective. Pilot newborn screening (NBS) studies are a way to gather objective evidence about the feasibility and utility of screening, the accuracy of screening assays, and the incidence of disease. They are also an optimal way to evaluate the complex ethical, legal and social implications (ELSI) that accompany NBS expansion for disorders. ScreenPlus is a consented pilot NBS program that aims to enroll over 100,000 infants across New York City. The initial ScreenPlus panel includes 14 disorders and uses an analyte-based, multi-tiered screening platform in an effort to enhance screening accuracy. Infants who receive an abnormal result are referred to a ScreenPlus provider for confirmatory testing, management, and therapy as needed, along with longitudinal capture of outcome data. Participation in ScreenPlus requires parental consent, which is obtained in active and passive manners. Patient-facing documents are translated into the ten most common languages spoken at our nine pilot hospitals, all of which serve diverse communities. At the time of consent, parents are invited to receive a series of online surveys to capture their opinions about specific ELSI-related topics, such as NBS policy, residual dried blood spot retention, and the types of disorders that should be on NBS panels. ScreenPlus has developed a stakeholder-based, collective funding model that includes federal support in addition to funding from 14 advocacy and industry sponsors, all of which have a particular interest in NBS for at least one of the ScreenPlus disorders. Taken together, ScreenPlus is a model, multi-sponsored pilot NBS program that will provide critical data about NBS for a broad panel of disorders, while gathering key stakeholder opinions to help guide ethically sensitive decision-making about NBS expansion.
Collapse
Affiliation(s)
- Nicole R. Kelly
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY 10467, USA
| | - Joseph J. Orsini
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, 12208, NY, USA
| | - Aaron J. Goldenberg
- Department of Bioethics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Niamh S. Mulrooney
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY 10467, USA
- Touro College of Osteopathic Medicine, New York, NY 10027, USA
| | - Natalie A. Boychuk
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY 10467, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Megan J. Clarke
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY 10467, USA
| | - Katrina Paleologos
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY 10467, USA
| | - Monica M. Martin
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, 12208, NY, USA
- Division of Health and Safety-Compliance, New York State Office of Cannabis Management, Albany, NY 12226, USA
| | - Hannah McNeight
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, 12208, NY, USA
| | - Michele Caggana
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, 12208, NY, USA
| | - Sean M. Bailey
- Division of Neonatology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lisa R. Eiland
- Division of Newborn Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Neonatology, Hackensack University Medical Center, Joseph M. Sanzari Children's Hospital, Hackensack, NJ 07601, USA
| | - Jaya Ganesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriel Kupchik
- Division of Medical Genetics, Maimonides Children's Hospital of Brooklyn, Brooklyn, NY 11219, USA
| | - Rishi Lumba
- Division of Neonatology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Suhas Nafday
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY 10467, USA
| | - Annemarie Stroustrup
- Division of Neonatal Services, Cohen Children's Medical Center, New Hyde Park, NY 11040, USA
| | - Michael H. Gelb
- Department of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Melissa P. Wasserstein
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY 10467, USA
| |
Collapse
|
3
|
Chan K, Hu Z, Bush LW, Cope H, Holm IA, Kingsmore SF, Wilhelm K, Scharfe C, Brower A. NBSTRN Tools to Advance Newborn Screening Research and Support Newborn Screening Stakeholders. Int J Neonatal Screen 2023; 9:63. [PMID: 37987476 PMCID: PMC10660757 DOI: 10.3390/ijns9040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Rapid advances in the screening, diagnosis, and treatment of genetic disorders have increased the number of conditions that can be detected through universal newborn screening (NBS). However, the addition of conditions to the Recommended Uniform Screening Panel (RUSP) and the implementation of nationwide screening has been a slow process taking several years to accomplish for individual conditions. Here, we describe web-based tools and resources developed and implemented by the newborn screening translational research network (NBSTRN) to advance newborn screening research and support NBS stakeholders worldwide. The NBSTRN's tools include the Longitudinal Pediatric Data Resource (LPDR), the NBS Condition Resource (NBS-CR), the NBS Virtual Repository (NBS-VR), and the Ethical, Legal, and Social Issues (ELSI) Advantage. Research programs, including the Inborn Errors of Metabolism Information System (IBEM-IS), BabySeq, EarlyCheck, and Family Narratives Use Cases, have utilized NBSTRN's tools and, in turn, contributed research data to further expand and refine these resources. Additionally, we discuss ongoing tool development to facilitate the expansion of genetic disease screening in increasingly diverse populations. In conclusion, NBSTRN's tools and resources provide a trusted platform to enable NBS stakeholders to advance NBS research and improve clinical care for patients and their families.
Collapse
Affiliation(s)
- Kee Chan
- American College of Medical Genetics and Genomics, Bethesda, MD 20814, USA
| | - Zhanzhi Hu
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Lynn W Bush
- Division Genetics and Genomics, Boston Children's Hospital Center, Boston, MA 02115, USA
- Department of Pediatrics and Center for Bioethics, Harvard Medical School, Boston, MA 02115, USA
| | - Heidi Cope
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Ingrid A Holm
- Division Genetics and Genomics, Boston Children's Hospital Center, Boston, MA 02115, USA
- Department of Pediatrics and Center for Bioethics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kevin Wilhelm
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Curt Scharfe
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Amy Brower
- American College of Medical Genetics and Genomics, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Odenwald B, Brockow I, Hanauer M, Lüders A, Nennstiel U. Is Our Newborn Screening Working Well? A Literature Review of Quality Requirements for Newborn Blood Spot Screening (NBS) Infrastructure and Procedures. Int J Neonatal Screen 2023; 9:35. [PMID: 37489488 PMCID: PMC10366861 DOI: 10.3390/ijns9030035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
Newborn screening using dried blood spots (NBS) is widely acknowledged as a highly successful procedure in secondary prevention. For a number of congenital disorders, severe disability or death are impressively prevented by early detection and early treatment through NBS. However, as with any other screening, NBS can also cause harm, and the principle that "the overall benefits of screening should outweigh the harms" must be considered when introducing and implementing NBS programmes. This publication compiles the results of a systematic literature research on requirements for NBS infrastructure and procedures which was conducted as part of a research project on the quality and shortcomings of the NBS pathway in Germany. The compilation contains the requirements and recommendations for realising the principle of "maximise benefits and minimise harms" in relevant NBS pathway components such as parental education and information, coverage, timeliness, laboratory quality assurance, follow-up of abnormal results, confirmatory diagnostics, documentation, and evaluation. The results reflect the complexity of NBS infrastructure, and thus, they illustrate the importance of considering and implementing NBS as a well-coordinated public health programme with continuous quality management. Special attention should be paid to the perspectives of parents and families. Some NBS issues can substantially benefit from digital instruments or international cooperation. The literature review presented here has contributed to a concept of proposals for the advancement of NBS in Germany, and despite different settings, it may as well be of interest for other countries to achieve the best possible course and outcome of NBS for each child.
Collapse
Affiliation(s)
- Birgit Odenwald
- Newborn Screening Centre/State Institute of Health, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany
| | | | | | | | - Uta Nennstiel
- Newborn Screening Centre/State Institute of Health, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany
| |
Collapse
|
5
|
King JR, Grill K, Hammarström L. Genomic-Based Newborn Screening for Inborn Errors of Immunity: Practical and Ethical Considerations. Int J Neonatal Screen 2023; 9:ijns9020022. [PMID: 37092516 PMCID: PMC10123688 DOI: 10.3390/ijns9020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Inborn errors of immunity (IEI) are a group of over 450 genetically distinct conditions associated with significant morbidity and mortality, for which early diagnosis and treatment improve outcomes. Newborn screening for severe combined immunodeficiency (SCID) is currently underway in several countries, utilising a DNA-based technique to quantify T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC). This strategy will only identify those infants with an IEI associated with T and/or B cell lymphopenia. Other severe forms of IEI will not be detected. Up-front, first-tier genomic-based newborn screening has been proposed as a potential approach by which to concurrently screen infants for hundreds of monogenic diseases at birth. Given the clinical, phenotypic and genetic heterogeneity of IEI, a next-generation sequencing-based newborn screening approach would be suitable. There are, however, several ethical, legal and social issues which must be evaluated in detail prior to adopting a genomic-based newborn screening approach, and these are discussed herein in the context of IEI.
Collapse
Affiliation(s)
- Jovanka R King
- Department of Allergy & Clinical Immunology, Women's and Children's Hospital Network, North Adelaide, SA 5006, Australia
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
- Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, North Adelaide, SA 5006, Australia
| | - Kalle Grill
- Department of Historical, Philosophical and Religious Studies, Umeå University, SE-90187 Umeå, Sweden
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, SE-14183 Huddinge, Sweden
| |
Collapse
|
6
|
Parisi MA, Caggana M, Cohen JL, Gold NB, Morris JA, Orsini JJ, Urv TK, Wasserstein MP. When is the best time to screen and evaluate for treatable genetic disorders?: A lifespan perspective. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:44-55. [PMID: 36876995 PMCID: PMC10475244 DOI: 10.1002/ajmg.c.32036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 03/07/2023]
Abstract
This paper focuses on the question of, "When is the best time to identify an individual at risk for a treatable genetic condition?" In this review, we describe a framework for considering the optimal timing for pursuing genetic and genomic screening for treatable genetic conditions incorporating a lifespan approach. Utilizing the concept of a carousel that represents the four broad time periods when critical decisions might be made around genetic diagnoses during a person's lifetime, we describe genetic testing during the prenatal period, the newborn period, childhood, and adulthood. For each of these periods, we describe the objectives of genetic testing, the current status of screening or testing, the near-term vision for the future of genomic testing, the advantages and disadvantages of each approach, and the feasibility and ethical considerations of testing and treating. The notion of a "Genomics Passbook" is one where an early genomic screening evaluation could be performed on each individual through a public health program, with that data ultimately serving as a "living document" that could be queried and/or reanalyzed at prescribed times during the lifetime of that person, or in response to concerns about symptoms of a genetic disorder in that individual.
Collapse
Affiliation(s)
- Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, Division of Genetics, Albany, New York, USA
| | | | - Nina B Gold
- Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph J Orsini
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Tiina K Urv
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa P Wasserstein
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York, USA
| |
Collapse
|
7
|
Watson MS, Lloyd-Puryear MA, Howell RR. The Progress and Future of US Newborn Screening. Int J Neonatal Screen 2022; 8:41. [PMID: 35892471 PMCID: PMC9326622 DOI: 10.3390/ijns8030041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/12/2023] Open
Abstract
Progress in newborn screening (NBS) has been driven for 60 years by developments in science and technology, growing consumer advocacy, the actions of providers involved in the care of rare disease patients, and by federal and State government funding and policies. With the current explosion of clinical trials of treatments for rare diseases, the pressure for expansion has grown, and concerns about the capacity for improvement and growth are being expressed. Genome and exome sequencing (GS/ES) have now opened more opportunities for early identification and disease prevention at all points in the lifespan. The greatest challenge facing NBS stems from the conditions most amenable to screening, and new treatment development is that we are screening for rare genetic diseases. In addition, understanding the spectrum of severity requires vast amounts of population and genomic data. We propose recommendations on improving the NBS system and addressing specific demands to grow its capacity by: better defining the criteria by which screening targets are established; financing the NBS system's responsiveness to opportunities for expansion, including engagement and funding from stakeholders; creating a national quality assurance, data, IT, and communications infrastructure; and improving intra-governmental communications. While our recommendations may be specific to the United States, the underlying issues should be considered when working to improve NBS programs globally.
Collapse
Affiliation(s)
| | | | - R. Rodney Howell
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
8
|
Pichini A, Ahmed A, Patch C, Bick D, Leblond M, Kasperaviciute D, Deen D, Wilde S, Garcia Noriega S, Matoko C, Tuff-Lacey A, Wigley C, Scott RH. Developing a National Newborn Genomes Program: An Approach Driven by Ethics, Engagement and Co-design. Front Genet 2022; 13:866168. [PMID: 35711926 PMCID: PMC9195613 DOI: 10.3389/fgene.2022.866168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The transformative potential of whole genome sequencing (WGS) as a diagnostic tool in healthcare has been demonstrated by initiatives including the 100,000 Genomes Project and is now offered to certain patients in the National Health Service (NHS) in England. Building on these foundations, the utility of WGS in the newborn period can now be explored. Genomics England is working in partnership with NHS England and NHS Improvement and other healthcare, patient and public interest groups to design a research program embedded in the NHS to explore the potential challenges and implications of offering WGS in all newborns. The program will aim to: 1) evaluate the feasibility, utility and impact on the NHS of screening for childhood-onset rare actionable genetic conditions; 2) understand how, with consent, genomic and healthcare data could be used to enable research to develop new diagnostics and treatments; and 3) explore the implications of storing an individual's genome for use over their lifetime. Recognizing the important practical, scientific and ethical questions that we must explore in dialogue with the public and experts, we are taking a collaborative, evidence-based and ethically deliberate approach to designing the program. An iterative co-design process including a nationwide public dialogue has identified emergent themes and ethical considerations which are the focus of the program's design. These themes will be further developed through continued engagement with healthcare professionals, researchers, ethics experts, patient groups and the public, with an ongoing commitment to embedding ongoing ethics research and co-design into the delivery of the program.
Collapse
Affiliation(s)
| | | | - Christine Patch
- Genomics England, London, United Kingdom.,Engagement and Society, Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, United Kingdom
| | - David Bick
- Genomics England, London, United Kingdom
| | | | | | - Dasha Deen
- Genomics England, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Minear MA, Phillips MN, Kau A, Parisi MA. Newborn screening research sponsored by the NIH: From diagnostic paradigms to precision therapeutics. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:138-152. [PMID: 36102292 PMCID: PMC10328555 DOI: 10.1002/ajmg.c.31997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Newborn screening (NBS) is a successful public health initiative that effectively identifies pre-symptomatic neonates so that treatment can be initiated before the onset of irreversible morbidity and mortality. Legislation passed in 2008 has supported a system of state screening programs, educational resources, and an evidence-based review process to add conditions to a recommended universal newborn screening panel (RUSP). The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, has promoted NBS research to advance legislative goals by supporting research that will uncover fundamental mechanisms of disease, develop treatments for NBS disorders, and promote pilot studies to test implementation of new conditions. NICHD's partnerships with other federal agencies have contributed to activities that support nominations of new conditions to the RUSP. The NIH's Newborn Sequencing In Genomic Medicine and Public Health (NSIGHT) initiative funded research projects that considered how genomic sequencing could be integrated into NBS and its ethical ramifications. Recently, the workshop, "Gene Targeted Therapies: Early Diagnosis and Equitable Delivery," has explored the possibility of expanding NBS to include genetic diagnosis and precision, gene-based therapies. Although hurdles remain to realize such a vision, broad engagement of multiple stakeholders is essential to advance genomic medicine within NBS.
Collapse
Affiliation(s)
- Mollie A. Minear
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan N. Phillips
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Present address: Allen Institute for Brain Science, Seattle, WA, USA
| | - Alice Kau
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa A. Parisi
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Chung WK, Berg JS, Botkin JR, Brenner SE, Brosco JP, Brothers KB, Currier RJ, Gaviglio A, Kowtoniuk WE, Olson C, Lloyd-Puryear M, Saarinen A, Sahin M, Shen Y, Sherr EH, Watson MS, Hu Z. Newborn screening for neurodevelopmental diseases: Are we there yet? AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:222-230. [PMID: 35838066 PMCID: PMC9796120 DOI: 10.1002/ajmg.c.31988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
In the US, newborn screening (NBS) is a unique health program that supports health equity and screens virtually every baby after birth, and has brought timely treatments to babies since the 1960's. With the decreasing cost of sequencing and the improving methods to interpret genetic data, there is an opportunity to add DNA sequencing as a screening method to facilitate the identification of babies with treatable conditions that cannot be identified in any other scalable way, including highly penetrant genetic neurodevelopmental disorders (NDD). However, the lack of effective dietary or drug-based treatments has made it nearly impossible to consider NDDs in the current NBS framework, yet it is anticipated that any treatment will be maximally effective if started early. Hence there is a critical need for large scale pilot studies to assess if and how NDDs can be effectively screened at birth, if parents desire that information, and what impact early diagnosis may have. Here we attempt to provide an overview of the recent advances in NDD treatments, explore the possible framework of setting up a pilot study to genetically screen for NDDs, highlight key technical, practical, and ethical considerations and challenges, and examine the policy and health system implications.
Collapse
Affiliation(s)
- Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, New York, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey R Botkin
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Jeffrey P Brosco
- Institute for Bioethics and Health Policy, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kyle B Brothers
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
| | - Robert J Currier
- School of Medicine, University of California, San Francisco, California, USA
| | - Amy Gaviglio
- Connetics Consulting, Minneapolis, Minnesota, USA
| | | | - Colleen Olson
- Steinhardt Graduate School of Education, New York University, New York, New York, USA
| | | | | | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Elliott H Sherr
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, California, USA
| | - Michael S Watson
- Department of Pediatrics, School of Medicine, Washington University (Adjunct), St. Louis, Missouri, USA
| | - Zhanzhi Hu
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Shen EC, Srinivasan S, Passero LE, Allen CG, Dixon M, Foss K, Halliburton B, Milko LV, Smit AK, Carlson R, Roberts MC. Barriers and Facilitators for Population Genetic Screening in Healthy Populations: A Systematic Review. Front Genet 2022; 13:865384. [PMID: 35860476 PMCID: PMC9289280 DOI: 10.3389/fgene.2022.865384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Studies suggest that 1-3% of the general population in the United States unknowingly carry a genetic risk factor for a common hereditary disease. Population genetic screening is the process of offering otherwise healthy patients in the general population testing for genomic variants that predispose them to diseases that are clinically actionable, meaning that they can be prevented or mitigated if they are detected early. Population genetic screening may significantly reduce morbidity and mortality from these diseases by informing risk-specific prevention or treatment strategies and facilitating appropriate participation in early detection. To better understand current barriers, facilitators, perceptions, and outcomes related to the implementation of population genetic screening, we conducted a systematic review and searched PubMed, Embase, and Scopus for articles published from date of database inception to May 2020. We included articles that 1) detailed the perspectives of participants in population genetic screening programs and 2) described the barriers, facilitators, perceptions, and outcomes related to population genetic screening programs among patients, healthcare providers, and the public. We excluded articles that 1) focused on direct-to-consumer or risk-based genetic testing and 2) were published before January 2000. Thirty articles met these criteria. Barriers and facilitators to population genetic screening were organized by the Social Ecological Model and further categorized by themes. We found that research in population genetic screening has focused on stakeholder attitudes with all included studies designed to elucidate individuals' perceptions. Additionally, inadequate knowledge and perceived limited clinical utility presented a barrier for healthcare provider uptake. There were very few studies that conducted long-term follow-up and evaluation of population genetic screening. Our findings suggest that these and other factors, such as prescreen counseling and education, may play a role in the adoption and implementation of population genetic screening. Future studies to investigate macro-level determinants, strategies to increase provider buy-in and knowledge, delivery models for prescreen counseling, and long-term outcomes of population genetic screening are needed for the effective design and implementation of such programs. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020198198.
Collapse
Affiliation(s)
- Emily C Shen
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Swetha Srinivasan
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Lauren E Passero
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Caitlin G Allen
- Department of Public Health Science, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Madison Dixon
- Department of Behavioral, Social, and Health Education Science, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Kimberly Foss
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Brianna Halliburton
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura V Milko
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Amelia K Smit
- The Daffodil Centre, University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, NSW, Australia.,Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Rebecca Carlson
- Health Sciences Library, University of North Carolina, Chapel Hill, NC, United States
| | - Megan C Roberts
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Márquez-Caraveo ME, Ibarra-González I, Rodríguez-Valentín R, Ramírez-García MÁ, Pérez-Barrón V, Lazcano-Ponce E, Vela-Amieva M. Brief Report: Delayed Diagnosis of Treatable Inborn Errors of Metabolism in Children with Autism and Other Neurodevelopmental Disorders. J Autism Dev Disord 2021; 51:2124-2131. [PMID: 32880084 DOI: 10.1007/s10803-020-04682-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of our study was to evaluate the frequency of treatable inborn errors of metabolism (IEM) in a clinical sample of Mexican children and adolescents with neurodevelopmental disorders (NDD). Amino acids and acylcarnitines in blood samples of 51 unrelated children and adolescents were analyzed by tandem mass spectrometry to detect treatable IEM of small molecules. One patient with isovaleric acidemia and autism spectrum disorder (ASD) and another with beta-ketothiolase deficiency and ASD/intellectual disability/attention-deficit/hyperactivity disorder (ADHD) were diagnosed, indicating an IEM frequency of 3.9% (1:26 subjects). The high frequency of treatable IEM indicates the need to perform a minimum metabolic screening as part of the diagnostic approach for patient with NDD, particularly when newborn screening programs are limited to a few disorders.
Collapse
Affiliation(s)
- María Elena Márquez-Caraveo
- Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Secretaría de Salud, San Buenaventura 86, Col. Belisario Domínguez, CP 14080, Mexico, Mexico
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, UNAM- Instituto Nacional de Pediatría, Av. IMAN 1, Col. Insurgentes-Cuicuilco, Coyoacán, CP 04530, Mexico, Mexico
| | - Rocío Rodríguez-Valentín
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Universidad 655, Col. Santa María Ahuacatitlán, Cerrada los Pinos y Caminera, CP 62100, Cuernavaca Morelos, Mexico
| | - Miguel Ángel Ramírez-García
- Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Secretaría de Salud, San Buenaventura 86, Col. Belisario Domínguez, CP 14080, Mexico, Mexico.,Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, Secretaría de Salud, Av. Insurgentes Sur 3877, Col. La Fama, CP 14269, Mexico, Mexico
| | - Verónica Pérez-Barrón
- Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Secretaría de Salud, San Buenaventura 86, Col. Belisario Domínguez, CP 14080, Mexico, Mexico
| | - Eduardo Lazcano-Ponce
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Universidad 655, Col. Santa María Ahuacatitlán, Cerrada los Pinos y Caminera, CP 62100, Cuernavaca Morelos, Mexico
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Av. IMAN #1, piso 9, Col. Insurgentes-Cuicuilco, Coyoacán, CP 04530, Mexico, Mexico.
| |
Collapse
|
13
|
Ethical Issues Surrounding Newborn Screening. Int J Neonatal Screen 2021; 7:ijns7010003. [PMID: 33435435 PMCID: PMC7838989 DOI: 10.3390/ijns7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
It would be difficult to overestimate the importance of persistent, thoughtful parents and their importance in the development of treatments for their children's rare disorders. Almost a century ago in Norway, observant parents led a brilliant young physician-scientist to his discovery of the underlying cause of their children's profound developmental delay-i.e., phenylketonuria, or PKU. Decades later, in a recovering war-ravaged Britain, an equally persistent mother pressed the scientists at Birmingham Children's Hospital to find a way to treat her seriously damaged daughter, Sheila, who suffered from PKU. Living on the financial edge, this mother insisted that Bickel and colleagues develop such a diet, and she volunteered Sheila to be the patient in the trial. The scientists concluded that the low phenylalanine diet helped but needed to be started very early-so, newborn screening was born to permit the implementation of this. Many steps brought us to where we are today, but these courageous parents made it all begin.
Collapse
|
14
|
van Dijk T, Kater A, Jansen M, Dondorp WJ, Blom M, Kemp S, Langeveld M, Cornel MC, van der Pal SM, Henneman L. Expanding Neonatal Bloodspot Screening: A Multi-Stakeholder Perspective. Front Pediatr 2021; 9:706394. [PMID: 34692604 PMCID: PMC8527172 DOI: 10.3389/fped.2021.706394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022] Open
Abstract
Neonatal bloodspot screening (NBS) aims to detect treatable disorders in newborns. The number of conditions included in the screening is expanding through technological and therapeutic developments, which can result in health gain for more newborns. NBS expansion, however, also poses healthcare, ethical and societal challenges. This qualitative study explores a multi-stakeholders' perspective on current and future expansions of NBS. Semi-structured interviews were conducted with 22 Dutch professionals, including healthcare professionals, test developers and policy makers, and 17 parents of children with normal and abnormal NBS results. Addressed themes were (1) benefits and challenges of current expansion, (2) expectations regarding future developments, and (3) NBS acceptance and consent procedures. Overall, participants had a positive attitude toward NBS expansion, as long as it is aimed at detecting treatable disorders and achieving health gain. Concerns were raised regarding an increase in results of uncertain significance, diagnosing asymptomatic mothers, screening of subgroups ("males only"), finding untreatable disorders, along with increasingly complex consent procedures. Regarding the scope of future NBS expansions, two types of stakeholder perspectives emerged. Stakeholders with a "targeted-scope" perspective saw health gain for the neonate as the exclusive NBS aim. They thought pre-test information could be limited, and parents should be protected against too much options or information. Stakeholders with a "broad-scope" perspective thought the NBS aim should be formulated broader, for example, also taking (reproductive) life planning into account. They put more emphasis on individual preferences and parental autonomy. Policy-makers should engage with both perspectives when making further decisions about NBS.
Collapse
Affiliation(s)
- Tessa van Dijk
- Department of Human Genetics and Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Adriana Kater
- Department of Human Genetics and Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marleen Jansen
- Department of Human Genetics and Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wybo J Dondorp
- Department of Health, Ethics and Society, CAPHRI Care and Public Health Research Institute, and Research School GROW for Oncology & Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Maartje Blom
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Martina C Cornel
- Department of Human Genetics and Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Lidewij Henneman
- Department of Human Genetics and Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Parents' Perspectives and Societal Acceptance of Implementation of Newborn Screening for SCID in the Netherlands. J Clin Immunol 2020; 41:99-108. [PMID: 33070266 PMCID: PMC7846522 DOI: 10.1007/s10875-020-00886-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/23/2022]
Abstract
Purpose While neonatal bloodspot screening (NBS) for severe combined immunodeficiency (SCID) has been introduced more than a decade ago, implementation in NBS programs remains challenging in many countries. Even if high-quality test methods and follow-up care are available, public uptake and parental acceptance are not guaranteed. The aim of this study was to describe the parental perspective on NBS for SCID in the context of an implementation pilot. Psychosocial aspects have never been studied before for NBS for SCID and are important for societal acceptance, a major criterion when introducing new disorders in NBS programs. Methods To evaluate the perspective of parents, interviews were conducted with parents of newborns with abnormal SCID screening results (N = 17). In addition, questionnaires about NBS for SCID were sent to 2000 parents of healthy newborns who either participated or declined participation in the SONNET-study that screened 140,593 newborns for SCID. Results Support for NBS for SCID was expressed by the majority of parents in questionnaires from both a public health perspective and a personal perspective. Parents emphasized the emotional impact of an abnormal screening result in interviews. (Long-term) stress and anxiety can be experienced during and after referral indicating the importance of uniform follow-up protocols and adequate information provision. Conclusion The perspective of parents has led to several recommendations for NBS programs that are considering screening for SCID or other disorders. A close partnership of NBS programs’ stakeholders, immunologists, geneticists, and pediatricians-immunologists in different countries is required for moving towards universal SCID screening for all infants. Electronic supplementary material The online version of this article (10.1007/s10875-020-00886-4) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Armstrong RE, Frith L, Ulph FM, Southern KW. Constructing a Bioethical Framework to Evaluate and Optimise Newborn Bloodspot Screening for Cystic Fibrosis. Int J Neonatal Screen 2020; 6:40. [PMID: 33073032 PMCID: PMC7422997 DOI: 10.3390/ijns6020040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Newborn bloodspot screening for cystic fibrosis is a valid public health strategy for populations with a high incidence of this inherited condition. There are a wide variety of approaches to screening and in this paper, we propose that a bioethical framework is required to determine the most appropriate screening protocol for a population. This framework depends on the detailed evaluation of the ethical consequences of all screening outcomes and placing these in the context of the genetic profile of the population screened, the geography of the region and the healthcare resources available.
Collapse
Affiliation(s)
- Rachael E Armstrong
- Department of Women's and Children's Health, University of Liverpool, Liverpool L12 2AP, UK;
| | - Lucy Frith
- Institute of Population Health, University of Liverpool, Liverpool L69 3GL, UK;
| | - Fiona M Ulph
- Division of Psychology & Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
| | - Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, Liverpool L12 2AP, UK;
| |
Collapse
|
17
|
Langan TJ, Jalal K, Barczykowski AL, Carter RL, Stapleton M, Orii K, Fukao T, Kobayashi H, Yamaguchi S, Tomatsu S. Development of a newborn screening tool for mucopolysaccharidosis type I based on bivariate normal limits: Using glycosaminoglycan and alpha-L-iduronidase determinations on dried blood spots to predict symptoms. JIMD Rep 2020; 52:35-42. [PMID: 32154058 PMCID: PMC7052686 DOI: 10.1002/jmd2.12093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Current newborn screening (NBS) for mucopolysaccharidosis type I (MPSI) has very high false positive rates and low positive predictive values (PPVs). To improve the accuracy of presymptomatic prediction for MPSI, we propose an NBS tool based on known biomarkers, alpha-L-iduronidase enzyme activity (IDUA) and level of the glycosaminoglycan (GAG) heparan sulfate (HS). METHODS We developed the NBS tool using measures from dried blood spots (DBS) of 5000 normal newborns from Gifu Prefecture, Japan. The tool's predictive accuracy was tested on the newborn DBS from these infants and from seven patients who were known to have early-onset MPSI (Hurler's syndrome). Bivariate analyses of the standardized natural logarithms of IDUA and HS levels were employed to develop the tool. RESULTS Every case of early-onset MPSI was predicted correctly by the tool. No normal newborn was incorrectly identified as having early-onset MPSI, whereas 12 normal newborns were so incorrectly identified by the Gifu NBS protocol. The PPV was estimated to be 99.9%. CONCLUSIONS Bivariate analysis of IDUA with HS in newborn DBS can accurately predict early MPSI symptoms, control false positive rates, and enhance presymptomatic treatment. This bivariate analysis-based approach, which was developed for Krabbe disease, can be extended to additional screened disorders.
Collapse
Affiliation(s)
- Thomas J. Langan
- Department of Neurology, School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNew York
| | - Kabir Jalal
- Department of Biostatistics, Population Health Observatory, School of Public Health and Health ProfessionsUniversity at BuffaloBuffaloNew York
| | - Amy L. Barczykowski
- Department of Biostatistics, Population Health Observatory, School of Public Health and Health ProfessionsUniversity at BuffaloBuffaloNew York
| | - Randy L. Carter
- Department of Biostatistics, Population Health Observatory, School of Public Health and Health ProfessionsUniversity at BuffaloBuffaloNew York
| | - Molly Stapleton
- Skeletal Dysplasia Research Lab, Nemours/Alfred I. DuPont Hospital for ChildrenWilmingtonDelaware
- Department of Biological SciencesUniversity of DelawareNewarkDelaware
| | - Kenji Orii
- Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
| | | | | | - Shunji Tomatsu
- Skeletal Dysplasia Research Lab, Nemours/Alfred I. DuPont Hospital for ChildrenWilmingtonDelaware
- Department of Biological SciencesUniversity of DelawareNewarkDelaware
- Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
- Department of PediatricsShimane UniversityShimaneJapan
- Department of PediatricsThomas Jefferson UniversityPhiladelphiaPennsylvania
| |
Collapse
|