1
|
Yoshida K. Clonal hematopoiesis in cancer predisposition syndromes. Int J Hematol 2024:10.1007/s12185-024-03878-x. [PMID: 39643764 DOI: 10.1007/s12185-024-03878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
After recent advances in sequencing technologies led to the discovery of novel genes associated with predisposition to hematological malignancies, studies have now shown that myeloid neoplasms associated with germline variants are more common than previously estimated. Based on these findings, myeloid neoplasms with germline predisposition have emerged as a unique category in the recent World Health Organization classification of Haematolymphoid Tumors. Clonal hematopoiesis is common in healthy individuals, particularly in older people. In patients with germline predisposition to hematological malignancies, clonal hematopoiesis is frequently observed at younger ages and is often associated with unique disease-specific driver mutations, some of which are hypothesized to compensate for the inherited defect. This review summarizes recent findings on clonal hematopoiesis in cancer predisposition syndromes.
Collapse
Affiliation(s)
- Kenichi Yoshida
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
2
|
Gutierrez-Rodrigues F, Groarke EM, Thongon N, Rodriguez-Sevilla JJ, Catto LFB, Niewisch MR, Shalhoub R, McReynolds LJ, Clé DV, Patel BA, Ma X, Hironaka D, Donaires FS, Spitofsky N, Santana BA, Lai TP, Alemu L, Kajigaya S, Darden I, Zhou W, Browne PV, Paul S, Lack J, Young DJ, DiNardo CD, Aviv A, Ma F, De Oliveira MM, de Azambuja AP, Dunbar CE, Olszewska M, Olivier E, Papapetrou EP, Giri N, Alter BP, Bonfim C, Wu CO, Garcia-Manero G, Savage SA, Young NS, Colla S, Calado RT. Clonal landscape and clinical outcomes of telomere biology disorders: somatic rescue and cancer mutations. Blood 2024; 144:2402-2416. [PMID: 39316766 DOI: 10.1182/blood.2024025023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT Telomere biology disorders (TBDs), caused by pathogenic germ line variants in telomere-related genes, present with multiorgan disease and a predisposition to cancer. Clonal hematopoiesis (CH) as a marker of cancer development and survival in TBDs is poorly understood. Here, we characterized the clonal landscape of a large cohort of 207 patients with TBD with a broad range of age and phenotype. CH occurred predominantly in symptomatic patients and in signature genes typically associated with cancers: PPM1D, POT1, TERT promoter (TERTp), U2AF1S34, and/or TP53. Chromosome 1q gain (Chr1q+) was the commonest karyotypic abnormality. Clinically, multiorgan involvement and CH in TERTp, TP53, and splicing factor genes were associated with poorer overall survival. Chr1q+ and splicing factor or TP53 mutations significantly increased the risk of hematologic malignancies, regardless of clonal burden. Chr1q+ and U2AF1S34 mutated clones were premalignant events associated with the secondary acquisition of mutations in genes related to hematologic malignancies. Similar to the known effects of Chr1q+ and TP53-CH, functional studies demonstrated that U2AF1S34 mutations primarily compensated for aberrant upregulation of TP53 and interferon pathways in telomere-dysfunctional hematopoietic stem cells, highlighting the TP53 pathway as a canonical route of malignancy in TBD. In contrast, somatic POT1/PPM1D/TERTp mutations had distinct trajectories unrelated to cancer development. With implications beyond TBD, our data show that telomere dysfunction is a strong selective pressure for CH. In TBD, CH is a poor prognostic marker associated with worse overall survival. The identification of key regulatory pathways that drive clonal transformation in TBD allows for the identification of patients at a higher risk of cancer development.
Collapse
Affiliation(s)
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Luiz Fernando B Catto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marena R Niewisch
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ruba Shalhoub
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J McReynolds
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Diego V Clé
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bhavisha A Patel
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xiaoyang Ma
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dalton Hironaka
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Flávia S Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nina Spitofsky
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Barbara A Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Lemlem Alemu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ivana Darden
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul V Browne
- Department of Haematology, Trinity College Dublin, Dublin, Ireland
| | - Subrata Paul
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David J Young
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Parana, Curitiba, Brazil
- Pediatric Blood and Marrow Transplantation Program, Pequeno Principe Hospital, Curitiba, Brazil
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Kochman R, Ba I, Yates M, Pirabakaran V, Gourmelon F, Churikov D, Laffaille M, Kermasson L, Hamelin C, Marois I, Jourquin F, Braud L, Bechara M, Lainey E, Nunes H, Breton P, Penhouet M, David P, Géli V, Lachaud C, Maréchal A, Revy P, Kannengiesser C, Saintomé C, Coulon S. Heterozygous RPA2 variant as a novel genetic cause of telomere biology disorders. Genes Dev 2024; 38:755-771. [PMID: 39231615 PMCID: PMC11444173 DOI: 10.1101/gad.352032.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
Premature telomere shortening or telomere instability is associated with a group of rare and heterogeneous diseases collectively known as telomere biology disorders (TBDs). Here we identified two unrelated individuals with clinical manifestations of TBDs and short telomeres associated with the identical monoallelic variant c.767A>G; Y256C in RPA2 Although the replication protein A2 (RPA2) mutant did not affect ssDNA binding and G-quadruplex-unfolding properties of RPA, the mutation reduced the affinity of RPA2 with the ubiquitin ligase RFWD3 and reduced RPA ubiquitination. Using engineered knock-in cell lines, we found an accumulation of RPA at telomeres that did not trigger ATR activation but caused short and dysfunctional telomeres. Finally, both patients acquired, in a subset of blood cells, somatic genetic rescue events in either POT1 genes or TERT promoters known to counteract the accelerated telomere shortening. Collectively, our study indicates that variants in RPA2 represent a novel genetic cause of TBDs. Our results further support the fundamental role of the RPA complex in regulating telomere length and stability in humans.
Collapse
Affiliation(s)
- Rima Kochman
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Ibrahima Ba
- U1152 INSERM, Department of Genetics, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Vithura Pirabakaran
- UMR1163 INSERM, Genome Dynamics in the Immune System Laboratory, Laboratoire labellisé Ligue 2023, Imagine Institute, Paris Cité University, F-75015 Paris, France
| | - Florian Gourmelon
- UMR7196 CNRS, U1154 INSERM, Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Dmitri Churikov
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Marc Laffaille
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Laëtitia Kermasson
- UMR1163 INSERM, Genome Dynamics in the Immune System Laboratory, Laboratoire labellisé Ligue 2023, Imagine Institute, Paris Cité University, F-75015 Paris, France
| | - Coline Hamelin
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Isabelle Marois
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Frédéric Jourquin
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Laura Braud
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Marianne Bechara
- UMR7196 CNRS, U1154 INSERM, Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Elodie Lainey
- Assistance Publique Hôpitaux de Paris, Service d'Hématologie, Hôpital Robert Debré, Groupe Hospitalier Universitaire (GHU) AP-HP Nord, Université Paris Cité, F-75019 Paris, France
| | - Hilario Nunes
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Avicenne, F-93000 Bobigny, France
| | - Philippe Breton
- Centre Hospitalier Universitaire (CHU) Les Sables d'Olonne, Pôle santé Service Pneumologie, 85340 Olonne, France
| | - Morgane Penhouet
- CHU Nantes, Hôpital Nord Laënnec Service de Pneumologie, Unité de Transplantation Thoracique, F-44093 Nantes, France
| | - Pierre David
- UMR1163 INSERM, Imagine Institute, Université de Paris, Transgenesis Facility, F-75015 Paris, France
| | - Vincent Géli
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Christophe Lachaud
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Patrick Revy
- UMR1163 INSERM, Genome Dynamics in the Immune System Laboratory, Laboratoire labellisé Ligue 2023, Imagine Institute, Paris Cité University, F-75015 Paris, France
| | - Caroline Kannengiesser
- U1152 INSERM, Department of Genetics, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Carole Saintomé
- UMR7196 CNRS, U1154 INSERM, Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, F-75005 Paris, France
- UFR927, Sorbonne Université, F-75005 Paris, France
| | - Stéphane Coulon
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France;
| |
Collapse
|
4
|
Drobyshev A, Modestov A, Suntsova M, Poddubskaya E, Seryakov A, Moisseev A, Sorokin M, Tkachev V, Zakharova G, Simonov A, Zolotovskaia MA, Buzdin A. Pan-cancer experimental characteristic of human transcriptional patterns connected with telomerase reverse transcriptase ( TERT) gene expression status. Front Genet 2024; 15:1401100. [PMID: 38859942 PMCID: PMC11163056 DOI: 10.3389/fgene.2024.1401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.
Collapse
Affiliation(s)
- Aleksey Drobyshev
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Modestov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Poddubskaya
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Clinical Center Vitamed, Moscow, Russia
| | | | - Aleksey Moisseev
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maksim Sorokin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Galina Zakharova
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksander Simonov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
| | - Anton Buzdin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Bertrand A, Ba I, Kermasson L, Pirabakaran V, Chable N, Lainey E, Ménard C, Kallel F, Picard C, Hadiji S, Coolen-Allou N, Blanchard E, de Villartay JP, Moshous D, Roelens M, Callebaut I, Kannengiesser C, Revy P. Characterization of novel mutations in the TEL-patch domain of the telomeric factor TPP1 associated with telomere biology disorders. Hum Mol Genet 2024; 33:612-623. [PMID: 38176734 DOI: 10.1093/hmg/ddad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.
Collapse
Affiliation(s)
- Alexis Bertrand
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Ibrahima Ba
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Vithura Pirabakaran
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Noémie Chable
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital-AssistancePublique-Hôpitaux de Paris (APHP), INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris 75019, France
| | - Christelle Ménard
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Faten Kallel
- Hematology Department, Hedi Chaker Hospital, 3029, Sfax, Tunisia
| | - Capucine Picard
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, (APHP), Paris 75015, France
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris 75015, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris 75015, France
| | - Sondes Hadiji
- Hematology Department, Hedi Chaker Hospital, 3029, Sfax, Tunisia
| | - Nathalie Coolen-Allou
- Service de Pneumologie, Hôpital Félix Guyon, CHU Réunion, Saint-Denis de la Réunion 97400, France
| | - Elodie Blanchard
- Service de Pneumologie, Hôpital Haut-Lévêque, CHU Bordeaux, Bordeaux 33604, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Despina Moshous
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, (APHP), Paris 75015, France
| | - Marie Roelens
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris 75015, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Caroline Kannengiesser
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| |
Collapse
|
6
|
Elbadry MI, Tawfeek A, Hirano T, El-Mokhtar MA, Kenawey M, Helmy AM, Ogawa S, Mughal MZ, Nannya Y. A rare homozygous variant in TERT gene causing variable bone marrow failure, fragility fractures, rib anomalies and extremely short telomere lengths with high serum IgE. Br J Haematol 2024; 204:1086-1095. [PMID: 37926112 DOI: 10.1111/bjh.19176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
By whole exome sequencing, we identified a homozygous c.2086 C→T (p.R696C) TERT mutation in patients who present with a spectrum of variable bone marrow failure (BMF), raccoon eyes, dystrophic nails, rib anomalies, fragility fractures (FFs), high IgE level, extremely short telomere lengths (TLs), and skewed numbers of cytotoxic T cells with B and NK cytopenia. Haploinsufficiency in the other family members resulted in short TL and osteopenia. These patients also had the lowest bone mineral density Z-score compared to other BMF-patients. Danazol/zoledronic acid improved the outcomes of BMF and FFs. This causative TERT variant has been observed in one family afflicted with dyskeratosis congenita (DC), and thus, we also define a second report and new phenotype related to the variant which should be suspected in severe cases of DC with co-existent BMF, FFs, high IgE level and rib anomalies.
Collapse
Affiliation(s)
- Mahmoud I Elbadry
- Division of Haematology, Department of Internal Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Tawfeek
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Mohamed Kenawey
- Orthopedic Surgery Department, Faculty of Medicine, Sohag University, Sohag, Egypt
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ahmed M Helmy
- Department of Internal Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Zulf Mughal
- Pediatric Bone Disorders, Al Jalila Children's Speciality Hospital, Dubai, UAE
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Attardi E, Corey SJ, Wlodarski MW. Clonal hematopoiesis in children with predisposing conditions. Semin Hematol 2024; 61:35-42. [PMID: 38311515 DOI: 10.1053/j.seminhematol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Clonal hematopoiesis in children and young adults differs from that occuring in the older adult population. A variety of stressors drive this phenomenon, sometimes independent of age-related processes. For the purposes of this review, we adopt the term clonal hematopoiesis in predisposed individuals (CHIPI) to differentiate it from classical, age-related clonal hematopoiesis of indeterminate potential (CHIP). Stress-induced CHIPI selection can be extrinsic, such as following immunologic, infectious, pharmacologic, or genotoxic exposures, or intrinsic, involving germline predisposition from inherited bone marrow failure syndromes. In these conditions, clonal advantage relates to adaptations allowing improved cell fitness despite intrinsic defects affecting proliferation and differentiation. In certain contexts, CHIPI can improve competitive fitness by compensating for germline defects; however, the downstream effects of clonal expansion are often unpredictable - they may either counteract the underlying pathology or worsen disease outcomes. A more complete understanding of how CHIPI arises in young people can lead to the definition of preleukemic states and strategies to assess risk, surveillance, and prevention to leukemic transformation. Our review summarizes current research on stress-induced clonal dynamics in individuals with germline predisposition syndromes.
Collapse
Affiliation(s)
- Enrico Attardi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Lasho T, Patnaik MM. Adaptive and Maladaptive Clonal Hematopoiesis in Telomere Biology Disorders. Curr Hematol Malig Rep 2024; 19:35-44. [PMID: 38095828 DOI: 10.1007/s11899-023-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) are germline-inherited conditions characterized by reduction in telomerase function, accelerated shortening of telomeres, predisposition to organ-failure syndromes, and increased risk of neoplasms, especially myeloid malignancies. In normal cells, critically short telomeres trigger apoptosis and/or cellular senescence. However, the evolutionary mechanism by which TBD-related telomerase-deficient cells can overcome this fitness constraint remains elusive. RECENT FINDINGS Preliminary data suggests the existence of adaptive somatic mosaic states characterized by variants in TBD-related genes and maladaptive somatic mosaic states that attempt to overcome hematopoietic fitness constraints by alternative methods leading to clonal hematopoiesis. TBDs are both rare and highly heterogeneous in presentation, and the association of TBD with malignant transformation is unclear. Understanding the clonal complexity and mechanisms behind TBD-associated molecular signatures that lead to somatic adaptation in the setting of defective hematopoiesis will help inform therapy and treatment for this set of diseases.
Collapse
Affiliation(s)
- Terra Lasho
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Schratz KE. Clonal evolution in inherited marrow failure syndromes predicts disease progression. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:125-134. [PMID: 38066914 PMCID: PMC10727088 DOI: 10.1182/hematology.2023000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Progression to myelodysplastic syndromes (MDS) and acute myeloid leukemia is one of the most serious complications of the inherited bone marrow failure and MDS-predisposition syndromes. Given the lack of predictive markers, this risk can also be a source of great uncertainty and anxiety to patients and their providers alike. Recent data show that some acquired mutations may provide a window into this risk. While maladaptive mechanisms, such as monosomy 7, are associated with a high risk of leukemogenesis, mutations that offset the inherited defect (known as somatic genetic rescue) may attenuate this risk. Somatic mutations that are shared with age-acquired clonal hematopoiesis mutations also show syndrome-specific patterns that may provide additional data as to disease risk. This review focuses on recent progress in this area with an emphasis on the biological underpinnings and interpretation of these patterns for patient care decisions.
Collapse
Affiliation(s)
- Kristen E. Schratz
- Department of Oncology
- Telomere Center at Johns Hopkins, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Nelson N, Feurstein S, Niaz A, Truong J, Holien JK, Lucas S, Fairfax K, Dickinson J, Bryan TM. Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review. Genet Med 2023; 25:100354. [PMID: 36496180 DOI: 10.1016/j.gim.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications. METHODS We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity. RESULTS In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants. CONCLUSION Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.
Collapse
Affiliation(s)
- Niles Nelson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia; Department of Molecular Medicine, The Royal Hobart Hospital, Hobart, Tasmania, Australia; Department of Molecular Haematology, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Simone Feurstein
- Section of Hematology, Oncology, and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aram Niaz
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jia Truong
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Sionne Lucas
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Kirsten Fairfax
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne Dickinson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
11
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics (Basel) 2022; 12:diagnostics12123107. [PMID: 36553114 PMCID: PMC9777399 DOI: 10.3390/diagnostics12123107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare disease of the lung with a largely unknown etiology and a poor prognosis. Intriguingly, forms of familial pulmonary fibrosis (FPF) have long been known and linked to specific genetic mutations. There is little evidence of the possible role of genetics in the etiology of sporadic IPF. We carried out a non-systematic, narrative literature review aimed at describing the main known genetic and epigenetic mechanisms that are involved in the pathogenesis and prognosis of IPF and FPF. In this review, we highlighted the mutations in classical genes associated with FPF, including those encoding for telomerases (TERT, TERC, PARN, RTEL1), which are also found in about 10-20% of cases of sporadic IPF. In addition to the Mendelian forms, mutations in the genes encoding for the surfactant proteins (SFTPC, SFTPA1, SFTPA2, ABCA3) and polymorphisms of genes for the mucin MUC5B and the Toll-interacting protein TOLLIP are other pathways favoring the fibrogenesis that have been thoroughly explored. Moreover, great attention has been paid to the main epigenetic alterations (DNA methylation, histone modification and non-coding RNA gene silencing) that are emerging to play a role in fibrogenesis. Finally, a gaze on the shared mechanisms between cancer and fibrogenesis, and future perspectives on the genetics of pulmonary fibrosis have been analyzed.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Chiara Pesenti
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Laura Fontana
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
13
|
Abstract
Germline genetic defects impairing telomere length maintenance may result in severe medical conditions in humans, from aplastic anemia and myeloid neoplasms to interstitial lung disease and liver cirrhosis, from childhood (dyskeratosis congenita) to old age (pulmonary fibrosis). The molecular mechanisms underlying these clinically distinct disorders are pathologically excessive telomere erosion, limiting cell proliferation and differentiation, tissue regeneration, and increasing genomic instability. Recent findings also indicate that telomere shortening imbalances stem cell fate and is associated with an abnormal inflammatory response and the senescent-associated secretory phenotype. Bone marrow failure is the most common phenotype in patients with telomere diseases. Pulmonary fibrosis is a typical phenotype in older patients, and disease progression appears faster than in pulmonary fibrosis not associated with telomeropathies. Liver cirrhosis may present in isolation or in combination with other phenotypes. Diagnosis is based on clinical suspicion and may be confirmed by telomere length measurement and genetic testing. Next-generation sequencing (NGS) techniques have improved genetic testing; today, at least 16 genes have been implicated in telomeropathies. NGS also allows tracking of clonal hematopoiesis and malignant transformation. Patients with telomere diseases are at high risk of developing cancers, including myeloid neoplasms and head and neck cancer. However, treatment options are still limited. Transplant modalities (bone marrow, lung, and liver) may be definitive to the respective organ involvement but limited by donor availability, comorbidities, and impact on other affected organs. In clinical trials, androgens elongate telomeres of peripheral blood leukocytes and improve hematopoiesis. Further understanding of how telomere erosion impairs organ function and how somatic mutations evolve in the hematopoietic tissue may help develop new strategies to treat and prevent telomere diseases.
Collapse
Affiliation(s)
- Vinicius S Carvalho
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Willian R Gomes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Borges G, Criqui M, Harrington L. Tieing together loose ends: telomere instability in cancer and aging. Mol Oncol 2022; 16:3380-3396. [PMID: 35920280 PMCID: PMC9490142 DOI: 10.1002/1878-0261.13299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Telomere maintenance is essential for maintaining genome integrity in both normal and cancer cells. Without functional telomeres, chromosomes lose their protective structure and undergo fusion and breakage events that drive further genome instability, including cell arrest or death. One means by which this loss can be overcome in stem cells and cancer cells is via re-addition of G-rich telomeric repeats by the telomerase reverse transcriptase (TERT). During aging of somatic tissues, however, insufficient telomerase expression leads to a proliferative arrest called replicative senescence, which is triggered when telomeres reach a critically short threshold that induces a DNA damage response. Cancer cells express telomerase but do not entirely escape telomere instability as they often possess short telomeres; hence there is often selection for genetic alterations in the TERT promoter that result in increased telomerase expression. In this review, we discuss our current understanding of the consequences of telomere instability in cancer and aging, and outline the opportunities and challenges that lie ahead in exploiting the reliance of cells on telomere maintenance for preserving genome stability.
Collapse
Affiliation(s)
- Gustavo Borges
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Mélanie Criqui
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Lea Harrington
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
- Departments of Medicine and Biochemistry and Molecular MedicineUniversity of MontrealQCCanada
| |
Collapse
|
15
|
S L, M K, U WK, M M. Somatic compensation of inherited bone marrow failure. Semin Hematol 2022; 59:167-173. [DOI: 10.1053/j.seminhematol.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
|
16
|
Guérin C, Crestani B, Dupin C, Kawano-Dourado L, Ba I, Kannengiesser C, Borie R. [Telomeres and lung]. Rev Mal Respir 2022; 39:595-606. [PMID: 35715316 DOI: 10.1016/j.rmr.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Genetic studies of familial forms of interstitial lung disease (ILD) have led to the discovery of telomere-related gene (TRG) mutations (TERT, TERC, RTEL1, PARN, DKC1, TINF2, NAF1, NOP10, NHP2, ACD, ZCCH8) in approximately 30% of familial ILD forms. ILD patients with TRG mutation are also subject to extra-pulmonary (immune-hematological, hepatic and/or mucosal-cutaneous) manifestations. TRG mutations may be associated not only with idiopathic pulmonary fibrosis (IPF), but also with non-IPF ILDs, including idiopathic and secondary ILDs, such as hypersensitivity pneumonitis (HP). The presence of TRG mutation may also be associated with an accelerated decline of forced vital capacity (FVC) or poorer prognosis after lung transplantation, notwithstanding which, usual ILD treatments may be proposed. Lastly, patients and their relatives are called upon to reduce their exposure to environmental lung toxicity, and are likely to derive benefit from specific genetic counseling and pre-symptomatic genetic testing.
Collapse
Affiliation(s)
- C Guérin
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France..
| | - B Crestani
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| | - C Dupin
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| | - L Kawano-Dourado
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; HCor Research Institute, Hôpital de Caracao, Sao Paulo, Brésil.; Département de Pneumologie, InCor, Université de Sao Paulo, Sao Paulo, Brésil
| | - I Ba
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - C Kannengiesser
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - R Borie
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| |
Collapse
|
17
|
de novo TINF2 C.845G>A: Pathogenic Variant in Patient with Dyskeratosis Congenita. Balkan J Med Genet 2022; 24:89-93. [PMID: 36249522 PMCID: PMC9524180 DOI: 10.2478/bjmg-2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dyskeratosis congenita (DC) is a clinically and genetically heterogeneous, multisystem inherited syndrome with a very high risk for bone marrow failure (BMF) and cancer predisposition. The classical clinical form of DC is characterized by abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. Bone marrow failure is considered to be an important and major complication of DC and the leading cause of death which develops in around 85% of cases. A number of genes involved in telomere maintenance are associated with DC, such as genes that encode the components of the telomerase complex (TERT, DKC1, TERC, NOP10, and NHP2), T-loop assembly protein (RTEL1), telomere capping (CTC1), telomere shelterin complex (TINF2), and telomerase trafficking protein (TCAB1). Mutations in TINF2 have been reported in 11–20% of all patients with DC and have been associated with bone marrow failure. Here we report on a 19-month old boy with very early presentation of bone marrow failure as a first clinical manifestation of DC. Upon first admission, the patient presented with thrombocytopenia and macrocytic anemia. Soon after, his blood counts deteriorated with the development of pancytopenia and aplastic anemia. Four months later, he developed nail dystrophy and skin hyperpigmentation. A de novo heterozygous pathogenic variant c.845G>A, p.(Arg282His) was located in exon 6 of TINF2 gene and was identified via clinical exome sequencing. The findings confirmed the diagnosis of DC. This is the first case with DC due to TINF2 pathogenic variant reported in North Macedonia.
Collapse
|
18
|
Ferrer A, Mangaonkar AA, Patnaik MM. Clonal Hematopoiesis and Myeloid Neoplasms in the Context of Telomere Biology Disorders. Curr Hematol Malig Rep 2022; 17:61-68. [PMID: 35524933 PMCID: PMC9077347 DOI: 10.1007/s11899-022-00662-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
Purpose of Review Telomere biology disorders (TBDs) are cancer-predisposing multisystemic diseases that portend a higher risk of transforming into myeloid neoplasms (MNs). Due to the rarity and high variability of clinical presentations, TBD-specific characteristics of MN and the mechanisms behind this predisposition are not well defined. Herein, we review recent studies on TBD patient cohorts describing myeloid transformation events and summarize efforts to develop screening and treatment guidelines for these patients. Recent Findings Preliminary studies have indicated that TBD patients have a higher prevalence of somatic genetic alterations in hematopoietic cells, an age-related phenomenon, also known as clonal hematopoiesis; increasing predisposition to MN. The CH mutational landscape in TBD differs from that observed in non-TBD patients and preliminary data suggest a higher frequency of somatic mutations in the DNA repair mechanism pathway. Although initial studies did not observe specific features of MN in TBD patients, certain events are common in TBD, such as hypocellular bone marrows. The mechanisms of MN development need further elucidation. Summary Current management options for MN-TBD patients need to be individualized and tailored as per the clinical context. Because of the high sensitivity to alkylator chemotherapy and radiation conferred by short telomeres, non-cytotoxic targeted therapies and immunotherapy are ideal therapeutic options, but these therapies are still being tested in clinical trials. Defining the mechanisms of CH evolution in TBD and identifying risk factors leading to MN evolution will allow for the development of screening and treatment guidelines for these patients.
Collapse
Affiliation(s)
- Alejandro Ferrer
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA. .,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Abhishek A Mangaonkar
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Sharma R, Sahoo SS, Honda M, Granger SL, Goodings C, Sanchez L, Künstner A, Busch H, Beier F, Pruett-Miller SM, Valentine MB, Fernandez AG, Chang TC, Géli V, Churikov D, Hirschi S, Pastor VB, Boerries M, Lauten M, Kelaidi C, Cooper MA, Nicholas S, Rosenfeld JA, Polychronopoulou S, Kannengiesser C, Saintomé C, Niemeyer CM, Revy P, Wold MS, Spies M, Erlacher M, Coulon S, Wlodarski MW. Gain-of-function mutations in RPA1 cause a syndrome with short telomeres and somatic genetic rescue. Blood 2022; 139:1039-1051. [PMID: 34767620 PMCID: PMC8854676 DOI: 10.1182/blood.2021011980] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Sushree S Sahoo
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Masayoshi Honda
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Sophie L Granger
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Charnise Goodings
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Louis Sanchez
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7196, INSERM Unité1154, Paris, France
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Vincent Géli
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Dmitri Churikov
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Sandrine Hirschi
- Department of Respiratory Medicine and Rare Pulmonary Diseases, Strasbourg University Hospital, Strasbourg, France
| | - Victor B Pastor
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melchior Lauten
- University Hospital Schleswig-Holstein, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Charikleia Kelaidi
- Department of Pediatric Hematology/Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Megan A Cooper
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | | | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology/Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Caroline Kannengiesser
- Department of Genetics, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris University, INSERM U1152, Paris, France
| | - Carole Saintomé
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7196, INSERM Unité1154, Paris, France
- Sorbonne Université, Education and Research Unit for Life Sciences (UFR 927), Paris, France
| | - Charlotte M Niemeyer
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Patrick Revy
- Université de Paris, Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Laboratoire Labellisé Ligue, INSERM UMR 1163, Paris, France
| | - Marc S Wold
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Miriam Erlacher
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Stéphane Coulon
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| |
Collapse
|
20
|
Philippot Q, Kannengiesser C, Debray MP, Gauvain C, Ba I, Vieri M, Gondouin A, Naccache JM, Reynaud-Gaubert M, Uzunhan Y, Bondue B, Israël-Biet D, Dieudé P, Fourrage C, Lainey E, Manali E, Papiris S, Wemeau L, Hirschi S, Mal H, Nunes H, Schlemmer F, Blanchard E, Beier F, Cottin V, Crestani B, Borie R. Interstitial lung diseases associated with mutations of poly(A)-specific ribonuclease: A multicentre retrospective study. Respirology 2022; 27:226-235. [PMID: 34981600 DOI: 10.1111/resp.14195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Poly(A)-specific ribonuclease (PARN) mutations have been associated with familial pulmonary fibrosis. This study aims to describe the phenotype of patients with interstitial lung disease (ILD) and heterozygous PARN mutations. METHODS We performed a retrospective, observational, non-interventional study of patients with an ILD diagnosis and a pathogenic heterozygous PARN mutation followed up in a centre of the OrphaLung network. RESULTS We included 31 patients (29 from 16 kindreds and two sporadic patients). The median age at ILD diagnosis was 59 years (range 54 to 63). In total, 23 (74%) patients had a smoking history and/or fibrogenic exposure. The pulmonary phenotypes were heterogenous, but the most frequent diagnosis was idiopathic pulmonary fibrosis (n = 12, 39%). Haematological abnormalities were identified in three patients and liver disease in two. In total, 21 patients received a specific treatment for ILD: steroids (n = 13), antifibrotic agents (n = 11), immunosuppressants (n = 5) and N-acetyl cysteine (n = 2). The median forced vital capacity decline for the whole sample was 256 ml/year (range -363 to -148). After a median follow-up of 32 months (range 18 to 66), 10 patients had died and six had undergone lung transplantation. The median transplantation-free survival was 54 months (95% CI 29 to ∞). Extra-pulmonary features were less frequent with PARN mutation than telomerase reverse transcriptase (TERT) or telomerase RNA component (TERC) mutation. CONCLUSION IPF is common among individuals with PARN mutation, but other ILD subtypes may be observed.
Collapse
Affiliation(s)
| | - Caroline Kannengiesser
- INSERM, Unité 1152, Université de Paris, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, APHP, Paris, France
| | - Marie Pierre Debray
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Radiologie, Hôpital Bichat, APHP, Paris, France
| | | | - Ibrahima Ba
- Laboratoire de Génétique, Hôpital Bichat, APHP, Paris, France
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Gondouin
- Service de Pneumologie, CHU de Besançon, Besancon, France
| | | | | | | | | | | | - Philippe Dieudé
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Rhumatologie, Hôpital Bichat, APHP, Paris, France
| | - Cécile Fourrage
- Service de Génétique Hôpital Necker Enfants Malades, APHP, Paris, France.,Plateforme de Bio-informatique, Institut Imagine, Université de Paris, Paris, France
| | - Elodie Lainey
- Laboratoire d'Hématologie Hôpital Robert Debré, APHP, Paris, France
| | - Effrosyne Manali
- 2nd Pulmonary department, Attikon University Hospital, Athens, Greece
| | - Spyros Papiris
- 2nd Pulmonary department, Attikon University Hospital, Athens, Greece
| | | | | | - Hervé Mal
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Pneumologie B, Hôpital Bichat, APHP, Paris, France
| | - Hilario Nunes
- Service de Pneumologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Frédéric Schlemmer
- Unité de Pneumologie, Université Paris-Est Créteil, APHP, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | | | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vincent Cottin
- Coordonnateur OrphaLung, Centre coordonnateur national de référence des maladies pulmonaires rares, Service de Pneumologie, Hôpital Louis Pradel, Université de Lyon, INRAE, member of Radico-ILD, Lyon, France.,RespiFil, ERN-LUNG, Lyon, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | - Raphaël Borie
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | | |
Collapse
|
21
|
Avagyan S, Shimamura A. Lessons From Pediatric MDS: Approaches to Germline Predisposition to Hematologic Malignancies. Front Oncol 2022; 12:813149. [PMID: 35356204 PMCID: PMC8959480 DOI: 10.3389/fonc.2022.813149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric myelodysplastic syndromes (MDS) often raise concern for an underlying germline predisposition to hematologic malignancies, referred to as germline predisposition herein. With the availability of genetic testing, it is now clear that syndromic features may be lacking in patients with germline predisposition. Many genetic lesions underlying germline predisposition may also be mutated somatically in de novo MDS and leukemias, making it critical to distinguish their germline origin. The verification of a suspected germline predisposition informs therapeutic considerations, guides monitoring pre- and post-treatment, and allows for family counseling. Presentation of MDS due to germline predisposition is not limited to children and spans a wide age range. In fact, the risk of MDS may increase with age in many germline predisposition conditions and can present in adults who lack classical stigmata in their childhood. Furthermore, germline predisposition associated with DDX41 mutations presents with older adult-onset MDS. Although a higher proportion of pediatric patients with MDS will have a germline predisposition, the greater number of MDS diagnoses in adult patients may result in a larger overall number of those with an underlying germline predisposition. In this review, we present a framework for the evaluation of germline predisposition to MDS across all ages. We discuss characteristics of personal and family history, clinical exam and laboratory findings, and integration of genetic sequencing results to assist in the diagnostic evaluation. We address the implications of a diagnosis of germline predisposition for the individual, for their care after MDS therapy, and for family members. Studies on MDS with germline predisposition have provided unique insights into the pathogenesis of hematologic malignancies and mechanisms of somatic genetic rescue vs. disease progression. Increasing recognition in adult patients will inform medical management and may provide potential opportunities for the prevention or interception of malignancy.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Groarke EM, Calado RT, Liu JM. Cell senescence and malignant transformation in the inherited bone marrow failure syndromes: Overlapping pathophysiology with therapeutic implications. Semin Hematol 2022; 59:30-37. [PMID: 35491056 PMCID: PMC9062194 DOI: 10.1053/j.seminhematol.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/02/2023]
Abstract
Fanconi anemia, telomeropathies and ribosomopathies are members of the inherited bone marrow failure syndromes, rare genetic disorders that lead to failure of hematopoiesis, developmental abnormalities, and cancer predisposition. While each disorder is caused by different genetic defects in seemingly disparate processes of DNA repair, telomere maintenance, or ribosome biogenesis, they appear to lead to a common pathway characterized by premature senescence of hematopoietic stem cells. Here we review the experimental data on senescence and inflammation underlying marrow failure and malignant transformation. We conclude with a critical assessment of current and future therapies targeting these pathways in inherited bone marrow failure syndromes patients.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Johnson M Liu
- Division of Hematology, Maine Medical Center, Portland, ME
| |
Collapse
|
23
|
Zhang K, Xu L, Cong YS. Telomere Dysfunction in Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:739810. [PMID: 34859008 PMCID: PMC8631932 DOI: 10.3389/fmed.2021.739810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is an age-dependent progressive and fatal lung disease of unknown etiology, which is characterized by the excessive accumulation of extracellular matrix inside the interstitial layer of the lung parenchyma that leads to abnormal scar architecture and compromised lung function capacity. Recent genetic studies have attributed the pathological genes or genetic mutations associated with familial idiopathic pulmonary fibrosis (IPF) and sporadic IPF to telomere-related components, suggesting that telomere dysfunction is an important determinant of this disease. In this study, we summarized recent advances in our understanding of how telomere dysfunction drives IPF genesis. We highlighted the key role of alveolar stem cell dysfunction caused by telomere shortening or telomere uncapping, which bridged the gap between telomere abnormalities and fibrotic lung pathology. We emphasized that senescence-associated secretory phenotypes, innate immune cell infiltration, and/or inflammation downstream of lung stem cell dysfunction influenced the native microenvironment and local cell signals, including increased transforming growth factor-beta (TGF-β) signaling in the lung, to induce pro-fibrotic conditions. In addition, the failed regeneration of new alveoli due to alveolar stem cell dysfunction might expose lung cells to elevated mechanical tension, which could activate the TGF-β signaling loop to promote the fibrotic process, especially in a periphery-to-center pattern as seen in IPF patients. Understanding the telomere-related molecular and pathophysiological mechanisms of IPF would provide new insights into IPF etiology and therapeutic strategies for this fatal disease.
Collapse
Affiliation(s)
- Kexiong Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
24
|
Abstract
Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.
Collapse
|
25
|
Gutierrez-Rodrigues F, Sahoo SS, Wlodarski MW, Young NS. Somatic mosaicism in inherited bone marrow failure syndromes. Best Pract Res Clin Haematol 2021; 34:101279. [PMID: 34404533 DOI: 10.1016/j.beha.2021.101279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a heterogenous group of diseases caused by pathogenic germline variants in key pathways associated with haematopoiesis and genomic stability. Germline variants in IBMFS-related genes are known to reduce the fitness of hematopoietic stem and progenitor cells (HSPC), which has been hypothesized to drive clonal selection in these diseases. In many IBMFS, somatic mosaicism predominantly impacts cells by two distinct mechanisms, with contrasting effects. An acquired variation can improve cell fitness towards baseline levels, providing rescue of a deleterious phenotype. Alternatively, somatic mosaicism may result in a fitness advantage that results in malignant transformation. This review will describe these phenomena in IBMFS and delineate their relevance for diagnosis and clinical management. In addition, we will discuss which samples and methods can be used for detection of mosaicism according to clinical phenotype, type of mosaicism, and sample availability.
Collapse
Affiliation(s)
| | - Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, TN, USA
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, TN, USA; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| |
Collapse
|
26
|
Schratz KE, Gaysinskaya V, Cosner ZL, DeBoy EA, Xiang Z, Kasch-Semenza L, Florea L, Shah PD, Armanios M. Somatic reversion impacts evolution of myelodysplastic syndromes and acute myeloid leukemia in the short telomere disorders. J Clin Invest 2021; 131:e147598. [PMID: 34343137 DOI: 10.1172/jci147598] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Germline mutations in telomerase and other telomere maintenance genes manifest in the premature aging short telomere syndromes. Myelodysplastic syndromes and acute myeloid leukemia (MDS/AML) account for 75% of associated malignancies, but how these cancers overcome the inherited telomere defect is unknown. METHODS We used ultra-deep targeted sequencing to detect somatic reversion mutations in 17 candidate telomere lengthening genes among controls and short telomere syndrome patients with and without MDS/AML and we tested the functional significance of these mutations. RESULTS While no controls carried somatic mutations in telomere maintenance genes, 29% (16 of 56) of adults with germline telomere maintenance defects carried at least one (P<0.001) and 13% (7 of 56) had 2 or more. In addition to TERT promoter mutations which were present in 19%, we identified POT1 and TERF2IP mutations in 13%. POT1 mutations impaired telomere binding in vitro and some mutations were identical to ones seen in familial melanoma associated with longer telomere length. Exclusively in patients with germline defects in telomerase RNA (TR), we identified somatic mutations in nuclear RNA exosome genes, RBM7, SKIV2L2, and DIS3, where loss-of-function upregulates mature TR levels. Somatic reversion events in six telomere-related genes were more prevalent in patients who were MDS/AML-free (P = 0.02, RR 4.4, 95% CI 1.2-16.7), and no MDS/AML patient had more than one reversion mutation. CONCLUSIONS Our data identify diverse adaptive somatic mechanisms in the short telomere syndrome; they raise the possibility that their presence alleviates the telomere crisis that promotes transformation to MDS/AML.
Collapse
Affiliation(s)
- Kristen E Schratz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Valeriya Gaysinskaya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Zoe L Cosner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Emily A DeBoy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Zhimin Xiang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Laura Kasch-Semenza
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Liliana Florea
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Pali D Shah
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
27
|
Rachakonda S, Hoheisel JD, Kumar R. Occurrence, functionality and abundance of the TERT promoter mutations. Int J Cancer 2021; 149:1852-1862. [PMID: 34313327 DOI: 10.1002/ijc.33750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Telomere shortening at chromosomal ends due to the constraints of the DNA replication process acts as a tumor suppressor by restricting the replicative potential in primary cells. Cancers evade that limitation primarily through the reactivation of telomerase via different mechanisms. Mutations within the promoter of the telomerase reverse transcriptase (TERT) gene represent a definite mechanism for the ribonucleic enzyme regeneration predominantly in cancers that arise from tissues with low rates of self-renewal. The promoter mutations cause a moderate increase in TERT transcription and consequent telomerase upregulation to the levels sufficient to delay replicative senescence but not prevent bulk telomere shortening and genomic instability. Since the discovery, a staggering number of studies have resolved the discrete aspects, effects and clinical relevance of the TERT promoter mutations. The promoter mutations link transcription of TERT with oncogenic pathways, associate with markers of poor outcome and define patients with reduced survivals in several cancers. In this review, we discuss the occurrence and impact of the promoter mutations and highlight the mechanism of TERT activation. We further deliberate on the foundational question of the abundance of the TERT promoter mutations and a general dearth of functional mutations within noncoding sequences, as evident from pan-cancer analysis of the whole-genomes. We posit that the favorable genomic constellation within the TERT promoter may be less than a common occurrence in other noncoding functional elements. Besides, the evolutionary constraints limit the functional fraction within the human genome, hence the lack of abundant mutations outside the coding sequences.
Collapse
Affiliation(s)
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
28
|
Benyelles M, O'Donohue MF, Kermasson L, Lainey E, Borie R, Lagresle-Peyrou C, Nunes H, Cazelles C, Fourrage C, Ollivier E, Marcais A, Gamez AS, Morice-Picard F, Caillaud D, Pottier N, Ménard C, Ba I, Fernandes A, Crestani B, de Villartay JP, Gleizes PE, Callebaut I, Kannengiesser C, Revy P. NHP2 deficiency impairs rRNA biogenesis and causes pulmonary fibrosis and Høyeraal-Hreidarsson syndrome. Hum Mol Genet 2021; 29:907-922. [PMID: 31985013 DOI: 10.1093/hmg/ddaa011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Telomeres are nucleoprotein structures at the end of chromosomes. The telomerase complex, constituted of the catalytic subunit TERT, the RNA matrix hTR and several cofactors, including the H/ACA box ribonucleoproteins Dyskerin, NOP10, GAR1, NAF1 and NHP2, regulates telomere length. In humans, inherited defects in telomere length maintenance are responsible for a wide spectrum of clinical premature aging manifestations including pulmonary fibrosis (PF), dyskeratosis congenita (DC), bone marrow failure and predisposition to cancer. NHP2 mutations have been so far reported only in two patients with DC. Here, we report the first case of Høyeraal-Hreidarsson syndrome, the severe form of DC, caused by biallelic missense mutations in NHP2. Additionally, we identified three unrelated patients with PF carrying NHP2 heterozygous mutations. Strikingly, one of these patients acquired a somatic mutation in the promoter of TERT that likely conferred a selective advantage in a subset of blood cells. Finally, we demonstrate that a functional deficit of human NHP2 affects ribosomal RNA biogenesis. Together, our results broaden the functional consequences and clinical spectrum of NHP2 deficiency.
Collapse
Affiliation(s)
- Maname Benyelles
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laëtitia Kermasson
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Elodie Lainey
- Hematology Laboratory, Robert DEBRE Hospital-APHP and INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris, France
| | - Raphael Borie
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France.,INSERM, Unité 1152, Paris, France.,Université Paris Diderot, Paris, France
| | - Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Hilario Nunes
- Service de Pneumologie, Centre de Référence des Maladies Pulmonaires rares, Hôpital Avicenne, AP-HP, INSERM 1272, Université Paris 13, Bobigny, France
| | - Clarisse Cazelles
- Service d'hématologie adulte, Hôpital Necker- Enfants malades, Paris, France
| | - Cécile Fourrage
- INSERM UMR 1163, Genomics platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Genomic Core Facility, Imagine Institute-Structure Fédérative de Recherche Necker, INSERM U1163, Paris, France
| | - Emmanuelle Ollivier
- INSERM UMR 1163, Genomics platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Genomic Core Facility, Imagine Institute-Structure Fédérative de Recherche Necker, INSERM U1163, Paris, France
| | - Ambroise Marcais
- Service d'hématologie Adultes, Hôpital Necker-Enfants Malades, Assistance publique hôpitaux de Paris, Paris, France, Laboratoire d'onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université Paris Descartes, Paris, France
| | | | - Fanny Morice-Picard
- Service de Dermatologie Pédiatrique, Centre de Reference des Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux F-33076, France
| | - Denis Caillaud
- Service de Pneumologie-Allergologie, Hôpital Gabriel Montpied, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Pottier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, Lille, France
| | - Christelle Ménard
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ibrahima Ba
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alicia Fernandes
- Biological Resources Center, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Assistance Publique des Hôpitaux de Paris and Institut Imagine, Paris, France
| | - Bruno Crestani
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France
| | - Jean-Pierre de Villartay
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
29
|
Abstract
Haploinsufficiency of GATA2 caused by heterozygous loss-of-function mutations is associated with cytopenias and predisposition to myelodysplasia and AML with other variable extrahematopoietic manifestions, including lymphedema, pulmonary alveolar proteinosis, and hearing loss. The authors report on 2 siblings with the disorder whose father was asymptomatic because of an acquired missense mutation in the affected allele that was restricted to hematopoietic cells; surprisingly, he also had no extrahematopoietic complications.
Collapse
|
30
|
Yildirim H, Yildiz P, Coskunpinar E. Investigation of telomere related gene mutations in idiopathic pulmonary fibrosis. Mol Biol Rep 2020; 47:7851-7860. [PMID: 33006015 DOI: 10.1007/s11033-020-05861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 11/28/2022]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is the most common type of Idiopathic Interstitial Pneumonias (IIP). The aim of this study is to determine the mutation of variants in four telomere-related genes and to determine the possible relationship between these mutations and telomere shortening in order to contribute to the understanding of the pathophysiology of IPF. For this study, 34 individuals with IPF, 32 individuals with non-IPF ILD (Interstitial Lung Disease), and 31 healthy controls between the ages of 40 and 85 were included. The mutation analysis and telomere measurements were examined for the volunteers. According to the mutation screening results, no significant difference was found between the patients with IPF, non-IPF ILD groups and healthy individuals in terms of genotyping analysis. However, in terms of the allele distribution for two genes, statistically significant difference was found in IPF and non-IPF ILD patients (TERT; p = 0.002 and TERC; p = 0.001). According to the telomere length measurement, the telomeres of the patients were shorter than of the control group (p = 0.0001). In compliance with the results of our analysis, it is thought that genes that have allelic significance from the point of gene mutations as well as telomere shortening may be risk factors for the disease.
Collapse
Affiliation(s)
- Halime Yildirim
- School of Medicine, Department of Medical Biology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Pinar Yildiz
- Chest Diseases, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ender Coskunpinar
- School of Medicine, Department of Medical Biology, University of Health Sciences Turkey, Istanbul, Turkey.
| |
Collapse
|
31
|
van der Vis JJ, van der Smagt JJ, Hennekam FA, Grutters JC, van Moorsel CH. Pulmonary Fibrosis and a TERT Founder Mutation With a Latency Period of 300 Years. Chest 2020; 158:612-619. [DOI: 10.1016/j.chest.2020.03.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022] Open
|
32
|
Nofrini V, Matteucci C, Pellanera F, Gorello P, Di Giacomo D, Lema Fernandez AG, Nardelli C, Iannotti T, Brandimarte L, Arniani S, Moretti M, Gili A, Roti G, Di Battista V, Colla S, Mecucci C. Activating somatic and germline TERT promoter variants in myeloid malignancies. Leukemia 2020; 35:274-278. [PMID: 32366939 PMCID: PMC7787968 DOI: 10.1038/s41375-020-0837-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/12/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Valeria Nofrini
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Caterina Matteucci
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Fabrizia Pellanera
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Paolo Gorello
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Danika Di Giacomo
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | | | - Carlotta Nardelli
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Tamara Iannotti
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Lucia Brandimarte
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Silvia Arniani
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Martina Moretti
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Alessio Gili
- Public Health Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Roti
- Hematology and Bone Marrow Transplantation Unit, University of Parma, Parma, Italy
| | - Valeria Di Battista
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Mecucci
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy.
| |
Collapse
|
33
|
Gutierrez-Rodrigues F, Masri N, Chouery E, Diamond C, Jalkh N, Vicente A, Kajigaya S, Abillama F, Bejjani N, Serhal W, Calado RT, Young NS, Farhat H, Coussa ML. A novel homozygous RTEL1 variant in a consanguineous Lebanese family: phenotypic heterogeneity and disease anticipation. Hum Genet 2019; 138:1323-1330. [PMID: 31677132 PMCID: PMC9809984 DOI: 10.1007/s00439-019-02076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
Phenotypic heterogeneity is often observed in patients with telomeropathies caused by pathogenic variants in telomere biology genes. However, the roles of recessive variants in these different phenotypes are not fully characterized. Our goal is to describe the biological roles of a novel homozygous RTEL1 variant identified in a consanguineous Lebanese family with unusual presentation of telomeropathies. A proband was screened for germline variants in telomere biology genes by whole exome sequencing. Leukocytes' telomere length was measured in the proband and eight relatives. We identified a novel homozygous p.E665K RTEL1 variant in the proband, his mother, and seven siblings that associated with telomere shortening and a broad spectrum of clinical manifestations, ranging from mild unspecific findings to severe phenotypes. Consanguinity in at least three family generations led to increased frequency of the homozygous p.E665K variant in the youngest generation and progressive telomere shortening. The increased frequency of the homozygous RTEL1 variant due to consanguinity in this Lebanese family allowed us to infer novel behaviors of recessive RTEL1 variants, as the expressivity and penetrance of this gene are very heterogenous between inter- and intra-generations. Progressive telomere shortening was associated with disease anticipation, first reported in recessive autosomal telomeropathies. Both genetic testing and telomere length measurement were critical for the clinical diagnosis of this family with telomere diseases marked by phenotypic heterogeneity.
Collapse
Affiliation(s)
| | - Nohad Masri
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, LAUMC/RH, Zahar Street, Achrafieh, Beirut, 1110, Lebanon
| | - Eliane Chouery
- Unité de Génétique Médicale, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Carrie Diamond
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, 20892-1202, USA
| | - Nadine Jalkh
- Unité de Génétique Médicale, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Alana Vicente
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, 20892-1202, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, 20892-1202, USA
| | - Fayez Abillama
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, LAUMC/RH, Zahar Street, Achrafieh, Beirut, 1110, Lebanon
| | - Noha Bejjani
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, LAUMC/RH, Zahar Street, Achrafieh, Beirut, 1110, Lebanon
| | - Wassim Serhal
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, LAUMC/RH, Zahar Street, Achrafieh, Beirut, 1110, Lebanon
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Clinical Oncology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, 20892-1202, USA
| | - Hussein Farhat
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, LAUMC/RH, Zahar Street, Achrafieh, Beirut, 1110, Lebanon.
| | - Marie Louise Coussa
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, LAUMC/RH, Zahar Street, Achrafieh, Beirut, 1110, Lebanon
| |
Collapse
|
34
|
Rowlands CF, Baralle D, Ellingford JM. Machine Learning Approaches for the Prioritization of Genomic Variants Impacting Pre-mRNA Splicing. Cells 2019; 8:E1513. [PMID: 31779139 PMCID: PMC6953098 DOI: 10.3390/cells8121513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in pre-mRNA splicing are frequently a cause of Mendelian disease. Despite the advent of next-generation sequencing, allowing a deeper insight into a patient's variant landscape, the ability to characterize variants causing splicing defects has not progressed with the same speed. To address this, recent years have seen a sharp spike in the number of splice prediction tools leveraging machine learning approaches, leaving clinical geneticists with a plethora of choices for in silico analysis. In this review, some basic principles of machine learning are introduced in the context of genomics and splicing analysis. A critical comparative approach is then used to describe seven recent machine learning-based splice prediction tools, revealing highly diverse approaches and common caveats. We find that, although great progress has been made in producing specific and sensitive tools, there is still much scope for personalized approaches to prediction of variant impact on splicing. Such approaches may increase diagnostic yields and underpin improvements to patient care.
Collapse
Affiliation(s)
- Charlie F Rowlands
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, St Mary’s Hospital, Manchester M13 9WJ, UK;
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PR, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, MP808, Tremona Road, Southampton SO16 6YD, UK
| | - Jamie M Ellingford
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, St Mary’s Hospital, Manchester M13 9WJ, UK;
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PR, UK
| |
Collapse
|
35
|
Benyelles M, Episkopou H, O'Donohue M, Kermasson L, Frange P, Poulain F, Burcu Belen F, Polat M, Bole‐Feysot C, Langa‐Vives F, Gleizes P, de Villartay J, Callebaut I, Decottignies A, Revy P. Impaired telomere integrity and rRNA biogenesis in PARN-deficient patients and knock-out models. EMBO Mol Med 2019; 11:e10201. [PMID: 31273937 PMCID: PMC6609912 DOI: 10.15252/emmm.201810201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
PARN, poly(A)-specific ribonuclease, regulates the turnover of mRNAs and the maturation and stabilization of the hTR RNA component of telomerase. Biallelic PARN mutations were associated with Høyeraal-Hreidarsson (HH) syndrome, a rare telomere biology disorder that, because of its severity, is likely not exclusively due to hTR down-regulation. Whether PARN deficiency was affecting the expression of telomere-related genes was still unclear. Using cells from two unrelated HH individuals carrying novel PARN mutations and a human PARN knock-out (KO) cell line with inducible PARN complementation, we found that PARN deficiency affects both telomere length and stability and down-regulates the expression of TRF1, TRF2, TPP1, RAP1, and POT1 shelterin transcripts. Down-regulation of dyskerin-encoding DKC1 mRNA was also observed and found to result from p53 activation in PARN-deficient cells. We further showed that PARN deficiency compromises ribosomal RNA biogenesis in patients' fibroblasts and cells from heterozygous Parn KO mice. Homozygous Parn KO however resulted in early embryonic lethality that was not overcome by p53 KO. Our results refine our knowledge on the pleiotropic cellular consequences of PARN deficiency.
Collapse
Affiliation(s)
- Maname Benyelles
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | | | - Marie‐Françoise O'Donohue
- Laboratoire de Biologie Moléculaire EucaryoteCentre de Biologie Intégrative (CBI)CNRS, UPSUniversité de ToulouseToulouseFrance
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | - Pierre Frange
- EA 7327, Université Paris Descartes, Sorbonne Paris‐CitéParisFrance
- Laboratoire de Microbiologie clinique & Unité d'ImmunologieHématologie et Rhumatologie PédiatriquesAP‐HP, Hôpital Necker, Enfants MaladesParisFrance
| | - Florian Poulain
- de Duve InstituteUniversité catholique de LouvainBrusselsBelgium
| | - Fatma Burcu Belen
- Pediatric HematologyFaculty of MedicineBaskent UniversityAnkaraTurkey
| | - Meltem Polat
- Pediatric Infectious DiseasesDepartment of Pediatric Infectious DiseasesPamukkale University Medical FacultyDenizliTurkey
| | - Christine Bole‐Feysot
- INSERM, UMR 1163Genomics platform, Imagine InstituteParis Descartes–Sorbonne Paris Cité UniversityParisFrance
- Genomic Core FacilityImagine Institute‐Structure Fédérative de Recherche NeckerINSERM U1163ParisFrance
| | | | - Pierre‐Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire EucaryoteCentre de Biologie Intégrative (CBI)CNRS, UPSUniversité de ToulouseToulouseFrance
| | - Jean‐Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | - Isabelle Callebaut
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de Cosmochimie, IMPMCSorbonne UniversitéParisFrance
| | | | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| |
Collapse
|
36
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|