1
|
Gahl WA, Perry M. Desperately seeking solutions. Genet Med 2022; 24:2419-2421. [PMID: 36112139 DOI: 10.1016/j.gim.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022] Open
Affiliation(s)
- William A Gahl
- NIH Undiagnosed Diseases Program, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
| | - Mary Perry
- Office of Strategic Coordination, Office of the Director, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Markello C, Huang C, Rodriguez A, Carroll A, Chang PC, Eizenga J, Markello T, Haussler D, Paten B. A complete pedigree-based graph workflow for rare candidate variant analysis. Genome Res 2022; 32:893-903. [PMID: 35483961 PMCID: PMC9104704 DOI: 10.1101/gr.276387.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
Methods that use a linear genome reference for genome sequencing data analysis are reference-biased. In the field of clinical genetics for rare diseases, a resulting reduction in genotyping accuracy in some regions has likely prevented the resolution of some cases. Pangenome graphs embed population variation into a reference structure. Although pangenome graphs have helped to reduce reference mapping bias, further performance improvements are possible. We introduce VG-Pedigree, a pedigree-aware workflow based on the pangenome-mapping tool of Giraffe and the variant calling tool DeepTrio using a specially trained model for Giraffe-based alignments. We demonstrate mapping and variant calling improvements in both single-nucleotide variants (SNVs) and insertion and deletion (indel) variants over those produced by alignments created using BWA-MEM to a linear-reference and Giraffe mapping to a pangenome graph containing data from the 1000 Genomes Project. We have also adapted and upgraded deleterious-variant (DV) detecting methods and programs into a streamlined workflow. We used these workflows in combination to detect small lists of candidate DVs among 15 family quartets and quintets of the Undiagnosed Diseases Program (UDP). All candidate DVs that were previously diagnosed using the Mendelian models covered by the previously published methods were recapitulated by these workflows. The results of these experiments indicate that a slightly greater absolute count of DVs are detected in the proband population than in their matched unaffected siblings.
Collapse
Affiliation(s)
- Charles Markello
- UC Santa Cruz Genomics Institute, Santa Cruz, California 95060, USA
| | - Charles Huang
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Alex Rodriguez
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Andrew Carroll
- Google Incorporated, Mountain View, California 94043, USA
| | - Pi-Chuan Chang
- Google Incorporated, Mountain View, California 94043, USA
| | - Jordan Eizenga
- UC Santa Cruz Genomics Institute, Santa Cruz, California 95060, USA
| | - Thomas Markello
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - David Haussler
- UC Santa Cruz Genomics Institute, Santa Cruz, California 95060, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, California 95064, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, Santa Cruz, California 95060, USA
| |
Collapse
|
3
|
Kobren SN, Baldridge D, Velinder M, Krier JB, LeBlanc K, Esteves C, Pusey BN, Züchner S, Blue E, Lee H, Huang A, Bastarache L, Bican A, Cogan J, Marwaha S, Alkelai A, Murdock DR, Liu P, Wegner DJ, Paul AJ, Sunyaev SR, Kohane IS. Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases. Genet Med 2021; 23:1075-1085. [PMID: 33580225 PMCID: PMC8187147 DOI: 10.1038/s41436-020-01084-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Genomic sequencing has become an increasingly powerful and relevant tool to be leveraged for the discovery of genetic aberrations underlying rare, Mendelian conditions. Although the computational tools incorporated into diagnostic workflows for this task are continually evolving and improving, we nevertheless sought to investigate commonalities across sequencing processing workflows to reveal consensus and standard practice tools and highlight exploratory analyses where technical and theoretical method improvements would be most impactful. METHODS We collected details regarding the computational approaches used by a genetic testing laboratory and 11 clinical research sites in the United States participating in the Undiagnosed Diseases Network via meetings with bioinformaticians, online survey forms, and analyses of internal protocols. RESULTS We found that tools for processing genomic sequencing data can be grouped into four distinct categories. Whereas well-established practices exist for initial variant calling and quality control steps, there is substantial divergence across sites in later stages for variant prioritization and multimodal data integration, demonstrating a diversity of approaches for solving the most mysterious undiagnosed cases. CONCLUSION The largest differences across diagnostic workflows suggest that advances in structural variant detection, noncoding variant interpretation, and integration of additional biomedical data may be especially promising for solving chronically undiagnosed cases.
Collapse
Affiliation(s)
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Matt Velinder
- Center for Genomic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Joel B Krier
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly LeBlanc
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Cecilia Esteves
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Barbara N Pusey
- National Human Genome Research Institute (NHGRI) at the National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Health System, Miami, FL, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Alden Huang
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna Bican
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joy Cogan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shruti Marwaha
- Stanford Center for Undiagnosed Diseases, Stanford, CA, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York City, NY, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander J Paul
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Tambe MA, Ng BG, Shimada S, Wolfe LA, Adams DR, Gahl WA, Bamshad MJ, Nickerson DA, Malicdan MC, Freeze HH. Mutations in GET4 disrupt the transmembrane domain recognition complex pathway. J Inherit Metab Dis 2020; 43:1037-1045. [PMID: 32395830 PMCID: PMC7508799 DOI: 10.1002/jimd.12249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
The transmembrane domain recognition complex (TRC) targets cytoplasmic C-terminal tail-anchored (TA) proteins to their respective membranes in the endoplasmic reticulum (ER), Golgi, and mitochondria. It is composed of three proteins, GET4, BAG6, and GET5. We identified an individual with compound heterozygous missense variants (p.Arg122His, p.Ile279Met) in GET4 that reduced all three TRC proteins by 70% to 90% in his fibroblasts, suggesting a possible defect in TA protein targeting. He presented with global developmental delay, intellectual disabilities, seizures, facial dysmorphism, and delayed bone age. We found the TA protein, syntaxin 5, is poorly targeted to Golgi membranes compared to normal controls. Since GET4 regulates ER to Golgi transport, we hypothesized that such transport would be disrupted in his fibroblasts, and discovered that retrograde (but not anterograde) transport was significantly reduced. Despite reduction in the three TRC proteins, their mRNA levels were unchanged, suggesting increased degradation in patient fibroblasts. Treating fibroblasts with the FDA-approved proteasome inhibitor, bortezomib (10 nM), restored syntaxin 5 localization and nearly normalized the levels of all three TRC proteins. Our study identifies the first individual with GET4 mutations.
Collapse
Affiliation(s)
- Mitali A. Tambe
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Shino Shimada
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
| | - Lynne A. Wolfe
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
| | - David R. Adams
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, 10 Center Drive, Bldg. 10, Rm 10C107, MSC1851, Bethesda, MD 20892-1851, USA
| | | | - William A. Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, 10 Center Drive, Bldg. 10, Rm 10C107, MSC1851, Bethesda, MD 20892-1851, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington Seattle, Washington
- Department of Genome Sciences, University of Washington Seattle, Washington
| | | | | | - May C.V. Malicdan
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Common Fund, Office of the Director, NIH, Bethesda, MD 20892-1851, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, 10 Center Drive, Bldg. 10, Rm 10C107, MSC1851, Bethesda, MD 20892-1851, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Foley AR, Zou Y, Dunford JE, Rooney J, Chandra G, Xiong H, Straub V, Voit T, Romero N, Donkervoort S, Hu Y, Markello T, Horn A, Qebibo L, Dastgir J, Meilleur KG, Finkel RS, Fan Y, Mamchaoui K, Duguez S, Nelson I, Laporte J, Santi M, Malfatti E, Maisonobe T, Touraine P, Hirano M, Hughes I, Bushby K, Oppermann U, Böhm J, Jaiswal JK, Stojkovic T, Bönnemann CG. GGPS1 Mutations Cause Muscular Dystrophy/Hearing Loss/Ovarian Insufficiency Syndrome. Ann Neurol 2020; 88:332-347. [PMID: 32403198 PMCID: PMC7496979 DOI: 10.1002/ana.25772] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.
Collapse
Affiliation(s)
- A. Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Yaqun Zou
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - James E. Dunford
- Botnar Research Centre, National Institute for Health Research Biomedical Research Centre OxfordUniversity of OxfordOxfordUnited Kingdom
| | - Jachinta Rooney
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Goutam Chandra
- Children's National Health SystemCenter for Genetic Medicine ResearchWashingtonDistrict of ColumbiaUSA
| | - Hui Xiong
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Volker Straub
- Institute of Genetic MedicineInternational Centre for LifeNewcastle upon TyneUnited Kingdom
| | - Thomas Voit
- Great Ormond Street Hospital Biomedical Research CentreGreat Ormond Street Institute of Child Health, University College LondonLondonUnited Kingdom
| | - Norma Romero
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
- Neuromuscular Morphology UnitInstitute of Myology, Pitié‐Salpêtrière HospitalParisFrance
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Thomas Markello
- National Institutes of Health Undiagnosed Diseases ProgramNational Human Genome Research InstituteBethesdaMarylandUSA
| | - Adam Horn
- Children's National Health SystemCenter for Genetic Medicine ResearchWashingtonDistrict of ColumbiaUSA
| | - Leila Qebibo
- Unit of Medical Genetics and OncogeneticsUniversity HospitalFesMorocco
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
- Department of Pediatric NeurologyGoryeb Children's HospitalMorristownNew JerseyUSA
| | - Katherine G. Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
- BiogenCambridgeMassachusettsUSA
| | - Richard S. Finkel
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Translational Neuroscience ProgramSt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Yanbin Fan
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Kamel Mamchaoui
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
| | - Stephanie Duguez
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
- School of Biomedical SciencesUlster UniversityDerryUnited Kingdom
| | - Isabelle Nelson
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
| | - Jocelyn Laporte
- Institute of Genetics and Molecular and Cellular Biology, National Institute of Health and Medical Research U1258, National Center for Scientific Research UMR7104University of StrasbourgIllkirchFrance
| | - Mariarita Santi
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Edoardo Malfatti
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
- U1179 University of Versailles Saint‐Quentin‐en‐Yvelines‐National Institute of Health and Medical ResearchParis‐Saclay UniversityVersaillesFrance
- Neurology Department, Reference Center for Neuromuscular Diseases North/East/Ile de FranceRaymond‐Poincaré University HospitalGarchesFrance
| | - Thierry Maisonobe
- Department of Clinical NeurophysiologyPitié‐Salpêtrière HospitalParisFrance
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Faculty of Medicine, Sorbonne University, Pitié‐Salpêtrière Hospital, APHPReference Center for Rare Endocrine Diseases of Growth and Development and Reference Center for Rare Gynecologic DisordersParisFrance
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center Columbia University Medical CenterNew YorkNew YorkUSA
| | - Imelda Hughes
- Department of Paediatric NeurologyRoyal Manchester Children's HospitalManchesterUnited Kingdom
| | - Kate Bushby
- Institute of Genetic MedicineInternational Centre for LifeNewcastle upon TyneUnited Kingdom
| | - Udo Oppermann
- Botnar Research Centre, National Institute for Health Research Biomedical Research Centre OxfordUniversity of OxfordOxfordUnited Kingdom
- Structural Genomics ConsortiumUniversity of OxfordOxfordUnited Kingdom
- Freiburg Institute of Advanced StudiesUniversity of FreiburgFreiburgGermany
| | - Johann Böhm
- Institute of Genetics and Molecular and Cellular Biology, National Institute of Health and Medical Research U1258, National Center for Scientific Research UMR7104University of StrasbourgIllkirchFrance
| | - Jyoti K. Jaiswal
- Children's National Health SystemCenter for Genetic Medicine ResearchWashingtonDistrict of ColumbiaUSA
- Department of Genomics and Precision MedicineGeorge Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Tanya Stojkovic
- Faculty of Medicine, Sorbonne University, Pitié‐Salpêtrière Hospital, APHPReference Center for Neuromuscular Diseases North/East/Ile de FranceParisFrance
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Macnamara EF, D’Souza P, Tifft CJ. The undiagnosed diseases program: Approach to diagnosis. TRANSLATIONAL SCIENCE OF RARE DISEASES 2020; 4:179-188. [PMID: 32477883 PMCID: PMC7250153 DOI: 10.3233/trd-190045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Undiagnosed and rare conditions are collectively common and affect millions of people worldwide. The NIH Undiagnosed Diseases Program (UDP) strives to achieve both a comprehensive diagnosis and a better understanding of the mechanisms of disease for many of these individuals. Through the careful review of records, a well-orchestrated inpatient evaluation, genomic sequencing and testing, and with the use of emerging strategies such as matchmaking programs, the UDP succeeds nearly 30 percent of the time for these highly selective cases. Although the UDP process is built on a unique set of resources, case examples demonstrate steps genetic professionals can take, in both clinical and research settings, to arrive at a diagnosis for their most challenging cases.
Collapse
Affiliation(s)
- Ellen F. Macnamara
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
| | - Precilla D’Souza
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
| | - Undiagnosed Diseases Network
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J. Tifft
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|