1
|
Dawson J, Kay C, Black HF, Bortnick S, Javier K, Xia Q, Sandhu A, Buchanan C, Hogg V, Chang FCF, Goto J, Arning L, Saft C, Bijlsma EK, Nguyen HP, Roxburgh R, Hayden MR. The frequency and clinical impact of synonymous HTT loss-of-interruption and duplication-of-interruption variants in a diverse HD cohort. Genet Med 2024; 26:101239. [PMID: 39140258 DOI: 10.1016/j.gim.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE To determine the frequency and clinical impact of loss-of-interruption (LOI) and duplication-of-interruption modifier variants of the HTT CAG and CCG repeat in a cohort of individuals with Huntington disease (HD). METHODS We screened symptomatic HD participants from the UBC HD Biobank and 5 research sites for sequence variants. After variant identification, we examined the clinical impact and frequency in the reduced penetrance range. RESULTS Participants with CAG-CCG LOI and CCG LOI variants have a similar magnitude of earlier onset of HD, by 12.5 years. The sequence variants exhibit ancestry-specific differences. Participants with the CAG-CCG LOI variant also have a faster progression of Total Motor Score by 1.9 units per year. Symptomatic participants with the CAG-CCG LOI variant show enrichment in the reduced penetrance range. The CAG-CCG LOI variant explains the onset of 2 symptomatic HD participants with diagnostic repeats below the pathogenetic range. CONCLUSION Our findings have significant clinical implications for participants with the CAG-CCG LOI variant who receive inaccurate diagnoses near diagnostic cutoff ranges. Improved diagnostic testing approaches and clinical management are needed for these individuals. We present the largest and most diverse HTT CAG and CCG sequence variant cohort and emphasize their importance in clinical presentation in HD.
Collapse
Affiliation(s)
- Jessica Dawson
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Stephanie Bortnick
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Kyla Javier
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Qingwen Xia
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Akshdeep Sandhu
- Research Informatics, BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Virginia Hogg
- Auckland City Hospital, Health New Zealand, Auckland, New Zealand
| | - Florence C F Chang
- Huntington Disease Unit, Department of Neurology, Westmead Hospital, Westmead, New South Wales, Australia; Sydney Medical School, Westmead Campus, University of Sydney, Sydney, Australia
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare, Ichikawa Hospital, Chiba, Japan
| | - Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Carsten Saft
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr University Bochum, Bochum, Germany
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Huu P Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Richard Roxburgh
- Auckland City Hospital, Health New Zealand, Auckland, New Zealand; Department of Medicine and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Pérez‐Oliveira S, Castilla‐Silgado J, Painous C, Aldecoa I, Menéndez‐González M, Blázquez‐Estrada M, Corte D, Tomás‐Zapico C, Compta Y, Muñoz E, Lladó A, Balasa M, Aragonès G, García‐González P, Rosende‐Roca M, Boada M, Ruíz A, Pastor P, De la Casa‐Fages B, Rabano A, Sánchez‐Valle R, Molina‐Porcel L, Álvarez V. Huntingtin CAG repeats in neuropathologically confirmed tauopathies: Novel insights. Brain Pathol 2024; 34:e13250. [PMID: 38418081 PMCID: PMC11189778 DOI: 10.1111/bpa.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Previous studies have suggested a relationship between the number of CAG triplet repeats in the HTT gene and neurodegenerative diseases not related to Huntington's disease (HD). This study seeks to investigate whether the number of CAG repeats of HTT is associated with the risk of developing certain tauopathies and its influence as a modulator of the clinical and neuropathological phenotype. Additionally, it aims to evaluate the potential of polyglutamine staining as a neuropathological screening. We genotyped the HTT gene CAG repeat number and APOE-ℰ isoforms in a cohort of patients with neuropathological diagnoses of tauopathies (n=588), including 34 corticobasal degeneration (CBD), 98 progressive supranuclear palsy (PSP) and 456 Alzheimer's disease (AD). Furthermore, we genotyped a control group of 1070 patients, of whom 44 were neuropathologic controls. We identified significant differences in the number of patients with pathological HTT expansions in the CBD group (2.7%) and PSP group (3.2%) compared to control subjects (0.2%). A significant increase in the size of the HTT CAG repeats was found in the AD compared to the control group, influenced by the presence of the Apoliprotein E (APOE)-ℰ4 isoform. Post-mortem assessments uncovered tauopathy pathology with positive polyglutamine aggregates, with a slight predominance in the neostriatum for PSP and CBD cases and somewhat greater limbic involvement in the AD case. Our results indicated a link between HTT CAG repeat expansion with other non-HD pathology, suggesting they could share common neurodegenerative pathways. These findings support that genetic or histological screening for HTT repeat expansions should be considered in tauopathies.
Collapse
Affiliation(s)
- Sergio Pérez‐Oliveira
- Laboratory of GeneticsHospital Universitario Central de AsturiasOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Juan Castilla‐Silgado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
| | - Cèlia Painous
- Parkinson's Disease and Movement Disorders Unit, Department of NeurologyHospital Clinic of BarcelonaBarcelonaSpain
- UB Neuro Institut de Neurociències, Maeztu CenterUniversity of BarcelonaBarcelonaSpain
- Fundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB‐IDIBAPS)BarcelonaSpain
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobank‐Hospital Clinic‐FRCB‐IDIBAPSBarcelonaSpain
- Pathology Department, Biomedical Diagnostic CenterHospital Clínic de Barcelona, University of BarcelonaBarcelonaSpain
| | - Manuel Menéndez‐González
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Department of NeurologyHospital Universitario Central de AsturiasOviedoSpain
- Department of MedicineUniversity of OviedoOviedoSpain
| | - Marta Blázquez‐Estrada
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Department of NeurologyHospital Universitario Central de AsturiasOviedoSpain
- Department of MedicineUniversity of OviedoOviedoSpain
| | - Daniela Corte
- Biobank of Principado de Asturias, Hospital Universitario Central de Asturias (HUCA)OviedoSpain
| | - Cristina Tomás‐Zapico
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Department of NeurologyHospital Clinic of BarcelonaBarcelonaSpain
- UB Neuro Institut de Neurociències, Maeztu CenterUniversity of BarcelonaBarcelonaSpain
- Fundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB‐IDIBAPS)BarcelonaSpain
| | - Esteban Muñoz
- Parkinson's Disease and Movement Disorders Unit, Department of NeurologyHospital Clinic of BarcelonaBarcelonaSpain
- UB Neuro Institut de Neurociències, Maeztu CenterUniversity of BarcelonaBarcelonaSpain
- Fundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB‐IDIBAPS)BarcelonaSpain
| | - Albert Lladó
- Alzheimer's Disease and other Cognitive Disorders UnitNeurology Service, Hospital Clínic, FRCB‐IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Mircea Balasa
- Alzheimer's Disease and other Cognitive Disorders UnitNeurology Service, Hospital Clínic, FRCB‐IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Gemma Aragonès
- Neurological Tissue Bank of the Biobank‐Hospital Clinic‐FRCB‐IDIBAPSBarcelonaSpain
| | - Pablo García‐González
- Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Maitée Rosende‐Roca
- Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Agustín Ruíz
- Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of NeurologyUniversity Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) BadalonaBarcelonaSpain
| | - Beatriz De la Casa‐Fages
- Movement Disorders Unit, Department of NeurologyHospital General Universitario Gregorio MarañónMadridSpain
- Instituto Investigación Sanitaria Gregorio MarañónMadridSpain
| | - Alberto Rabano
- Neuropathology Department and Brain Tissue BankCIEN Foundation, Queen Sofia Foundation Alzheimer CenterMadridSpain
| | - Raquel Sánchez‐Valle
- Alzheimer's Disease and other Cognitive Disorders UnitNeurology Service, Hospital Clínic, FRCB‐IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Laura Molina‐Porcel
- UB Neuro Institut de Neurociències, Maeztu CenterUniversity of BarcelonaBarcelonaSpain
- Alzheimer's Disease and other Cognitive Disorders UnitNeurology Service, Hospital Clínic, FRCB‐IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Victoria Álvarez
- Laboratory of GeneticsHospital Universitario Central de AsturiasOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| |
Collapse
|
3
|
Laß J, Lüth T, Schlüter K, Schaake S, Laabs BH, Much C, Jamora RD, Rosales RL, Saranza G, Diesta CCE, Pearson CE, König IR, Brüggemann N, Klein C, Westenberger A, Trinh J. Stability of Mosaic Divergent Repeat Interruptions in X-Linked Dystonia-Parkinsonism. Mov Disord 2024; 39:1145-1153. [PMID: 38616406 DOI: 10.1002/mds.29809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND X-Linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by rapidly progressive dystonia and parkinsonism. Mosaic Divergent Repeat Interruptions affecting motif Length and Sequence (mDRILS) were recently found within the TAF1 SVA repeat tract and were shown to associate with repeat stability and age at onset in XDP, specifically the AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n] mDRILS. OBJECTIVE This study aimed to investigate the stability of mDRILS frequencies and stability of (AGAGGG)n repeat length during transmission in parent-offspring pairs. METHODS Fifty-six families (n = 130) were investigated for generational transmission of repeat length and mDRILS. The mDRILS stability of 16 individuals was assessed at two sampling points 1 year apart. DNA was sequenced with long-read technologies after long-range polymerase chain reaction amplification of the TAF1 SVA. Repeat number and mDRILS were detected with Noise-Cancelling Repeat Finder (NCRF). RESULTS When comparing the repeat domain, 51 of 65 children had either contractions or expansions of the repeat length. The AGGG frequency remained stable across generations at 0.074 (IQR: 0.069-0.078) (z = -0.526; P = 0.599). However, the median AGGG frequency in children with an expansion (0.072 [IQR: 0.066-0.076]) was lower compared with children with retention or contraction (0.080 [IQR: 0.073-0.083]) (z = -0.007; P = 0.003). In a logistic regression model, the AGGG frequency predicted the outcome of either expansion or retention/contraction when including repeat number and sex as covariates (β = 80.7; z-score = 2.63; P = 0.0085). The AGGG frequency varied slightly over 1 year (0.070 [IQR: 0.063-0.080] to 0.073 [IQR: 0.069-0.078]). CONCLUSIONS Our results show that a higher AGGG frequency may stabilize repeats across generations. This highlights the importance of further investigating mDRILS as a disease-modifying factor with generational differences. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joshua Laß
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Roland Dominic Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Tomas and the CNS-Metropolitan Medical Center, Manila, Philippines Section of Neurology, Manila, Philippines
| | - Gerard Saranza
- Department of Internal Medicine, Chong Hua Hospital, Cebu, Philippines
| | - Cid Czarina E Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati City, Philippines
| | | | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Pengo M, Squitieri F. Beyond CAG Repeats: The Multifaceted Role of Genetics in Huntington Disease. Genes (Basel) 2024; 15:807. [PMID: 38927742 PMCID: PMC11203031 DOI: 10.3390/genes15060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG expansion on the huntingtin (HTT) gene and is characterized by progressive motor, cognitive, and neuropsychiatric decline. Recently, new genetic factors besides CAG repeats have been implicated in the disease pathogenesis. Most genetic modifiers are involved in DNA repair pathways and, as the cause of the loss of CAA interruption in the HTT gene, they exert their main influence through somatic expansion. However, this mechanism might not be the only driver of HD pathogenesis, and future studies are warranted in this field. The aim of the present review is to dissect the many faces of genetics in HD pathogenesis, from cis- and trans-acting genetic modifiers to RNA toxicity, mitochondrial DNA mutations, and epigenetics factors. Exploring genetic modifiers of HD onset and progression appears crucial to elucidate not only disease pathogenesis, but also to improve disease prediction and prevention, develop biomarkers of disease progression and response to therapies, and recognize new therapeutic opportunities. Since the same genetic mechanisms are also described in other repeat expansion diseases, their implications might encompass the whole spectrum of these disorders.
Collapse
Affiliation(s)
- Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Ferdinando Squitieri
- Centre for Neurological Rare Diseases (CMNR), Fondazione Lega Italiana Ricerca Huntington (LIRH), 00161 Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
6
|
Novy C, Busk ØL, Tysnes OB, Landa SS, Aanjesen TN, Alstadhaug KB, Bjerknes TL, Bjørnå IK, Bråthen G, Dahl E, Demic N, Fahlström M, Flemmen HØ, Hallerstig E, HogenEsch I, Kampman MT, Kleveland G, Kvernmo HB, Ljøstad U, Maniaol A, Morsund AH, Nakken O, Olsen CG, Schlüter K, Utvik MS, Yaseen R, Holla ØL, Holmøy T, Høyer H. Repeat expansions in AR, ATXN1, ATXN2 and HTT in Norwegian patients diagnosed with amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae087. [PMID: 38585669 PMCID: PMC10998343 DOI: 10.1093/braincomms/fcae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Genetic repeat expansions cause neuronal degeneration in amyotrophic lateral sclerosis as well as other neurodegenerative disorders such as spinocerebellar ataxia, Huntington's disease and Kennedy's disease. Repeat expansions in the same gene can cause multiple clinical phenotypes. We aimed to characterize repeat expansions in a Norwegian amyotrophic lateral sclerosis cohort. Norwegian amyotrophic lateral sclerosis patients (n = 414) and neurologically healthy controls adjusted for age and gender (n = 713) were investigated for repeat expansions in AR, ATXN1, ATXN2 and HTT using short read exome sequencing and the ExpansionHunter software. Five amyotrophic lateral sclerosis patients (1.2%) and two controls (0.3%) carried ≥36 repeats in HTT (P = 0.032), and seven amyotrophic lateral sclerosis patients (1.7%) and three controls (0.4%) carried ≥29 repeats in ATXN2 (P = 0.038). One male diagnosed with amyotrophic lateral sclerosis carried a pathogenic repeat expansion in AR, and his diagnosis was revised to Kennedy's disease. In ATXN1, 50 amyotrophic lateral sclerosis patients (12.1%) and 96 controls (13.5%) carried ≥33 repeats (P = 0.753). None of the patients with repeat expansions in ATXN2 or HTT had signs of Huntington's disease or spinocerebellar ataxia type 2, based on a re-evaluation of medical records. The diagnosis of amyotrophic lateral sclerosis was confirmed in all patients, with the exception of one patient who had primary lateral sclerosis. Our findings indicate that repeat expansions in HTT and ATXN2 are associated with increased likelihood of developing amyotrophic lateral sclerosis. Further studies are required to investigate the potential relationship between HTT repeat expansions and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Camilla Novy
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5009 Bergen, Norway
| | - Sigve S Landa
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Tori N Aanjesen
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
| | | | - Tale L Bjerknes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5009 Bergen, Norway
- Institute of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| | - Ingrid K Bjørnå
- Department of Neurology, Vestre Viken Hospital Trust, 3004 Drammen, Norway
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Elin Dahl
- Department of Neurology, Telemark Hospital Trust, 3710 Skien, Norway
| | - Natasha Demic
- Department of Neurology, Vestfold Hospital Trust, 3103 Tønsberg, Norway
| | - Maria Fahlström
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Heidi Ø Flemmen
- Department of Neurology, Telemark Hospital Trust, 3710 Skien, Norway
| | - Erika Hallerstig
- Department of Neurology, Østfold Hospital Trust, 1714 Grålum, Norway
| | - Ineke HogenEsch
- Department of Neurology, Fonna Hospital Trust, 5528 Haugesund, Norway
| | - Margitta T Kampman
- Department of Neurology, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Grethe Kleveland
- Department of Neurology, Innlandet Hospital Trust, 2609 Lillehammer, Norway
| | - Helene B Kvernmo
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Unn Ljøstad
- Institute of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Department of Neurology, Sørlandet Hospital Trust, 4615 Kristiansand, Norway
| | - Angelina Maniaol
- Department of Neurology, Oslo University Hospital, 0450 Oslo, Norway
| | | | - Ola Nakken
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Cathrine G Olsen
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Katrin Schlüter
- Department of Neurology, Stavanger University Hospital, 4019 Stavanger, Norway
| | - May-Sissel Utvik
- Department of Neurology, Namsos Hospital Trust, 7803 Namsos, Norway
| | - Ryaz Yaseen
- Department of Neurology, Oslo University Hospital, 0450 Oslo, Norway
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Trygve Holmøy
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Helle Høyer
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| |
Collapse
|
7
|
Dalene Skarping K, Arning L, Petersén Å, Nguyen HP, Gebre-Medhin S. Attenuated huntingtin gene CAG nucleotide repeat size in individuals with Lynch syndrome. Sci Rep 2024; 14:4300. [PMID: 38383663 PMCID: PMC10881568 DOI: 10.1038/s41598-024-54277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
DNA mismatch repair (MMR) is thought to contribute to the onset and progression of Huntington disease (HD) by promoting somatic expansion of the pathogenic CAG nucleotide repeat in the huntingtin gene (HTT). Here we have studied constitutional HTT CAG repeat size in two cohorts of individuals with Lynch syndrome (LS) carrying heterozygous loss-of-function variants in the MMR genes MLH1 (n = 12/60; Lund cohort/Bochum cohort, respectively), MSH2 (n = 15/88), MSH6 (n = 21/23), and controls (n = 19/559). The sum of CAG repeats for both HTT alleles in each individual was calculated due to unknown segregation with the LS allele. In the larger Bochum cohort, the sum of CAG repeats was lower in the MLH1 subgroup compared to controls (MLH1 35.40 CAG repeats ± 3.6 vs. controls 36.89 CAG repeats ± 4.5; p = 0.014). All LS genetic subgroups in the Bochum cohort displayed lower frequencies of unstable HTT intermediate alleles and lower HTT somatic CAG repeat expansion index values compared to controls. Collectively, our results indicate that MMR gene haploinsufficiency could have a restraining impact on constitutional HTT CAG repeat size and support the notion that the MMR pathway is a driver of nucleotide repeat expansion diseases.
Collapse
Affiliation(s)
- Karin Dalene Skarping
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics and Pathology, Office for Medical Service, 221 85, Lund, Sweden
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Huu Phuc Nguyen
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Samuel Gebre-Medhin
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Clinical Genetics and Pathology, Office for Medical Service, 221 85, Lund, Sweden.
| |
Collapse
|
8
|
Gorcenco S, Kafantari E, Wallenius J, Karremo C, Alinder E, Dobloug S, Landqvist Waldö M, Englund E, Ehrencrona H, Wictorin K, Karrman K, Puschmann A. Clinical and genetic analyses of a Swedish patient series diagnosed with ataxia. J Neurol 2024; 271:526-542. [PMID: 37787810 PMCID: PMC10770240 DOI: 10.1007/s00415-023-11990-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
Hereditary ataxia is a heterogeneous group of complex neurological disorders. Next-generation sequencing methods have become a great help in clinical diagnostics, but it may remain challenging to determine if a genetic variant is the cause of the patient's disease. We compiled a consecutive single-center series of 87 patients from 76 families with progressive ataxia of known or unknown etiology. We investigated them clinically and genetically using whole exome or whole genome sequencing. Test methods were selected depending on family history, clinical phenotype, and availability. Genetic results were interpreted based on the American College of Medical Genetics criteria. For high-suspicion variants of uncertain significance, renewed bioinformatical and clinical evaluation was performed to assess the level of pathogenicity. Thirty (39.5%) of the 76 families had received a genetic diagnosis at the end of our study. We present the predominant etiologies of hereditary ataxia in a Swedish patient series. In two families, we established a clinical diagnosis, although the genetic variant was classified as "of uncertain significance" only, and in an additional three families, results are pending. We found a pathogenic variant in one family, but we suspect that it does not explain the complete clinical picture. We conclude that correctly interpreting genetic variants in complex neurogenetic diseases requires genetics and clinical expertise. The neurologist's careful phenotyping remains essential to confirm or reject a diagnosis, also by reassessing clinical findings after a candidate genetic variant is suggested. Collaboration between neurology and clinical genetics and combining clinical and research approaches optimizes diagnostic yield.
Collapse
Affiliation(s)
- Sorina Gorcenco
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| | - Efthymia Kafantari
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Joel Wallenius
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Christin Karremo
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Erik Alinder
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sigurd Dobloug
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Landqvist Waldö
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Elisabet Englund
- Pathology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Klas Wictorin
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Kristina Karrman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Andreas Puschmann
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- SciLifeLab National Research Infrastructure, Solna, Sweden
| |
Collapse
|
9
|
Goldman JS, Uhlmann WR, Naini AB, Klitzman RL, Marder KS. Genetic Testing of HTT Modifiers for Huntington's Disease: Considerations for Clinical Guidelines. Mov Disord 2023; 38:2151-2154. [PMID: 37975739 DOI: 10.1002/mds.29650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Affiliation(s)
- Jill S Goldman
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy R Uhlmann
- Departments of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali B Naini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert L Klitzman
- Department of Psychiatry, Columbia University Irving Medical Center, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Karen S Marder
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Thompson LM, Orr HT. HD and SCA1: Tales from two 30-year journeys since gene discovery. Neuron 2023; 111:3517-3530. [PMID: 37863037 PMCID: PMC10842341 DOI: 10.1016/j.neuron.2023.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
One of the more transformative findings in human genetics was the discovery that the expansion of unstable nucleotide repeats underlies a group of inherited neurological diseases. A subset of these unstable repeat neurodegenerative diseases is due to the expansion of a CAG trinucleotide repeat encoding a stretch of glutamines, i.e., the polyglutamine (polyQ) repeat neurodegenerative diseases. Among the CAG/polyQ repeat diseases are Huntington's disease (HD) and spinocerebellar ataxia type 1 (SCA1), in which the expansions are within widely expressed proteins. Although both HD and SCA1 are autosomal dominantly inherited, and both typically cause mid- to late-life-onset movement disorders with cognitive decline, they each are characterized by distinct clinical characteristics and predominant sites of neuropathology. Importantly, the respective affected proteins, Huntingtin (HTT, HD) and Ataxin 1 (ATXN1, SCA1), have unique functions and biological properties. Here, we review HD and SCA1 with a focus on how their disease-specific and shared features may provide informative insights.
Collapse
Affiliation(s)
- Leslie M Thompson
- Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, Department of Biological Chemistry, Institute of Memory Impairments and Neurological Disorders, Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis and Saint Paul, MN 55455, USA.
| |
Collapse
|
11
|
Ikenoshita S, Matsuo K, Yabuki Y, Kawakubo K, Asamitsu S, Hori K, Usuki S, Hirose Y, Bando T, Araki K, Ueda M, Sugiyama H, Shioda N. A cyclic pyrrole-imidazole polyamide reduces pathogenic RNA in CAG/CTG triplet repeat neurological disease models. J Clin Invest 2023; 133:e164792. [PMID: 37707954 PMCID: PMC10645379 DOI: 10.1172/jci164792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a noncoding region and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases. Here, we show that a CWG repeat DNA-targeting compound, cyclic pyrrole-imidazole polyamide (CWG-cPIP), suppressed the pathogenesis of coding and noncoding CWG repeat diseases. CWG-cPIP bound to the hairpin form of mismatched CWG DNA, interfering with transcription elongation by RNA polymerase through a preferential activity toward repeat-expanded DNA. We found that CWG-cPIP selectively inhibited pathogenic mRNA transcripts from expanded CWG repeats, reducing CUG RNA foci and polyglutamine accumulation in cells from patients with myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Treatment with CWG-cPIP ameliorated behavioral deficits in adeno-associated virus-mediated CWG repeat-expressing mice and in a genetic mouse model of HD, without cytotoxicity or off-target effects. Together, we present a candidate compound that targets expanded CWG repeat DNA independently of its genomic location and reduces both pathogenic RNA and protein levels. CWG-cPIP may be used for the treatment of CWG repeat diseases and improvement of clinical outcomes.
Collapse
Affiliation(s)
- Susumu Ikenoshita
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Department of Neurology, Graduate School of Medical Sciences
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| | - Kosuke Kawakubo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| | - Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Karin Hori
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis and
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Kyoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
12
|
Gall-Duncan T, Luo J, Jurkovic CM, Fischer LA, Fujita K, Deshmukh AL, Harding RJ, Tran S, Mehkary M, Li V, Leib DE, Chen R, Tanaka H, Mason AG, Lévesque D, Khan M, Razzaghi M, Prasolava T, Lanni S, Sato N, Caron MC, Panigrahi GB, Wang P, Lau R, Castel AL, Masson JY, Tippett L, Turner C, Spies M, La Spada AR, Campos EI, Curtis MA, Boisvert FM, Faull RLM, Davidson BL, Nakamori M, Okazawa H, Wold MS, Pearson CE. Antagonistic roles of canonical and Alternative-RPA in disease-associated tandem CAG repeat instability. Cell 2023; 186:4898-4919.e25. [PMID: 37827155 PMCID: PMC11209935 DOI: 10.1016/j.cell.2023.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Luo
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Laura A Fischer
- Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyota Fujita
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amit L Deshmukh
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephanie Tran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mustafa Mehkary
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vanessa Li
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David E Leib
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Ran Chen
- Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hikari Tanaka
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amanda G Mason
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Lévesque
- Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mahreen Khan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mortezaali Razzaghi
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tanya Prasolava
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stella Lanni
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nozomu Sato
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marie-Christine Caron
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Gagan B Panigrahi
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peixiang Wang
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel Lau
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand; University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maria Spies
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Albert R La Spada
- Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA, USA; Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Eric I Campos
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - Richard L M Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Beverly L Davidson
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Masayuki Nakamori
- Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitoshi Okazawa
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marc S Wold
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
13
|
Bao YF, Li XY, Dong Y, Wu ZY. Loss of CAA interruption and intergenerational CAG instability in Chinese patients with Huntington's disease. J Mol Med (Berl) 2023; 101:869-876. [PMID: 37231148 DOI: 10.1007/s00109-023-02329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG expansions in huntingtin (HTT) gene, involving motor, cognitive, and neuropsychiatric symptoms. However, genetic modifiers and CAG repeat instability may lead to variations of clinical manifestations, making diagnosis of HD difficult. In this study, we recruited 229 HD individuals from 164 families carrying expanded CAG repeats of HTT, and analyzed loss of CAA interruption (LOI) on the expanded allele and CAG instability during germline transmission. Sanger sequencing and TA cloning were used to determine CAG repeat length and identify LOI variants. Detailed clinical features and genetic testing results were collected. We identified 6 individuals with LOI variants from 3 families, and all probands presented with earlier motor onset age than predicted onset age. In addition, we also presented 2 families with extreme CAG instability during germline transmission. One family showed an expansion from 35 to 66 CAG repeats, while the other family showed both CAG expansion and contraction in lineal three generations. In conclusion, we present the first document of Asian HD population with LOI variant, and we suggest that for symptomatic individuals with intermediate or reduced penetrance allele or negative family history, HTT gene sequencing should be considered in the clinical practice. KEY MESSAGES : We screened the loss of CAA interruption (LOI) variant in a Chinese HD cohort and presented the first document of Asian patients with Huntington's disease carrying LOI variant. We identified 6 individuals with LOI variants from 3 families, and all probands presented with earlier motor onset age than predicted onset age. We presented 2 families with extreme CAG instability during germline transmission. One family showed an expansion from 35 to 66 CAG repeats, while the other family showed both CAG expansion and contraction in lineal three generations. We suggest that for symptomatic individuals with intermediate or reduced penetrance allele or negative family history, HTT gene sequencing should be considered in the clinical practice.
Collapse
Affiliation(s)
- Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
14
|
Ruiz de Sabando A, Urrutia Lafuente E, Galbete A, Ciosi M, García Amigot F, García Solaesa V, Monckton DG, Ramos-Arroyo MA. Spanish HTT gene study reveals haplotype and allelic diversity with possible implications for germline expansion dynamics in Huntington disease. Hum Mol Genet 2023; 32:897-906. [PMID: 36130218 PMCID: PMC9990985 DOI: 10.1093/hmg/ddac224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
We aimed to determine the genetic diversity and molecular characteristics of the Huntington disease (HD) gene (HTT) in Spain. We performed an extended haplotype and exon one deep sequencing analysis of the HTT gene in a nationwide cohort of population-based controls (n = 520) and families with symptomatic individuals referred for HD genetic testing. This group included 331 HD cases and 140 carriers of intermediate alleles. Clinical and family history data were obtained when available. Spanish normal alleles are enriched in C haplotypes (40.1%), whereas A1 (39.8%) and A2 (31.6%) prevail among intermediate and expanded alleles, respectively. Alleles ≥ 50 CAG repeats are primarily associated with haplotypes A2 (38.9%) and C (32%), which are also present in 50% and 21.4%, respectively, of HD families with large intergenerational expansions. Non-canonical variants of exon one sequence are less frequent, but much more diverse, in alleles of ≥27 CAG repeats. The deletion of CAACAG, one of the six rare variants not observed among smaller normal alleles, is associated with haplotype C and appears to correlate with larger intergenerational expansions and early onset of symptoms. Spanish HD haplotypes are characterized by a high genetic diversity, potentially admixed with other non-Caucasian populations, with a higher representation of A2 and C haplotypes than most European populations. Differences in haplotype distributions across the CAG length range support differential germline expansion dynamics, with A2 and C showing the largest intergenerational expansions. This haplotype-dependent germline instability may be driven by specific cis-elements, such as the CAACAG deletion.
Collapse
Affiliation(s)
- Ainara Ruiz de Sabando
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, Pamplona 31008, Spain.,Department of Health Sciences, Universidad Pública de Navarra, IdiSNA, Pamplona 31008, Spain.,Fundación Miguel Servet-Navarrabiomed, IdiSNA, Pamplona 31008, Spain
| | | | - Arkaitz Galbete
- Department of Statistics, Informatics and Mathematics, Universidad Pública de Navarra, IdiSNA, Pamplona 31006, Spain
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fermín García Amigot
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, Pamplona 31008, Spain
| | - Virginia García Solaesa
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, Pamplona 31008, Spain
| | | | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria A Ramos-Arroyo
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, Pamplona 31008, Spain.,Fundación Miguel Servet-Navarrabiomed, IdiSNA, Pamplona 31008, Spain
| |
Collapse
|
15
|
Taylor A, Barros D, Gobet N, Schuepbach T, McAllister B, Aeschbach L, Randall E, Trofimenko E, Heuchan E, Barszcz P, Ciosi M, Morgan J, Hafford-Tear N, Davidson A, Massey T, Monckton D, Jones L, network REGISTRYH, Xenarios I, Dion V. Repeat Detector: versatile sizing of expanded tandem repeats and identification of interrupted alleles from targeted DNA sequencing. NAR Genom Bioinform 2022; 4:lqac089. [PMID: 36478959 PMCID: PMC9719798 DOI: 10.1093/nargab/lqac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022] Open
Abstract
Targeted DNA sequencing approaches will improve how the size of short tandem repeats is measured for diagnostic tests and preclinical studies. The expansion of these sequences causes dozens of disorders, with longer tracts generally leading to a more severe disease. Interrupted alleles are sometimes present within repeats and can alter disease manifestation. Determining repeat size mosaicism and identifying interruptions in targeted sequencing datasets remains a major challenge. This is in part because standard alignment tools are ill-suited for repetitive and unstable sequences. To address this, we have developed Repeat Detector (RD), a deterministic profile weighting algorithm for counting repeats in targeted sequencing data. We tested RD using blood-derived DNA samples from Huntington's disease and Fuchs endothelial corneal dystrophy patients sequenced using either Illumina MiSeq or Pacific Biosciences single-molecule, real-time sequencing platforms. RD was highly accurate in determining repeat sizes of 609 blood-derived samples from Huntington's disease individuals and did not require prior knowledge of the flanking sequences. Furthermore, RD can be used to identify alleles with interruptions and provide a measure of repeat instability within an individual. RD is therefore highly versatile and may find applications in the diagnosis of expanded repeat disorders and in the development of novel therapies.
Collapse
Affiliation(s)
- Alysha S Taylor
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Dinis Barros
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Nastassia Gobet
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Thierry Schuepbach
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Newbiologix, Ch. De la corniche 6-8, 1066 Epalinges, Switzerland
| | - Branduff McAllister
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorene Aeschbach
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Emma L Randall
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Evgeniya Trofimenko
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Eleanor R Heuchan
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Paula Barszcz
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Joanne Morgan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Alice E Davidson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Thomas H Massey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Ioannis Xenarios
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
- Health2030 Genome Center, Ch des Mines 14, 1202 Genève, Switzerland
| | - Vincent Dion
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
16
|
Dawson J, Baine-Savanhu FK, Ciosi M, Maxwell A, Monckton DG, Krause A. A probable cis-acting genetic modifier of Huntington disease frequent in individuals with African ancestry. HGG ADVANCES 2022; 3:100130. [PMID: 35935919 PMCID: PMC9352962 DOI: 10.1016/j.xhgg.2022.100130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Huntington disease (HD)is a dominantly inherited neurodegenerative disorder caused by the expansion of a polyglutamine encoding CAG repeat in the huntingtin gene. Recently, it has been established that disease severity in HD is best predicted by the number of pure CAG repeats rather than total glutamines encoded. Along with uncovering DNA repair gene variants as trans-acting modifiers of HD severity, these data reveal somatic expansion of the CAG repeat as a key driver of HD onset. Using high-throughput DNA sequencing, we have determined the precise sequence and somatic expansion profiles of the HTT repeat tract of 68 HD-affected and 158 HD-unaffected African ancestry individuals. A high level of HTT repeat sequence diversity was observed, with three likely African-specific alleles identified. In the most common disease allele (30 out of 68), the typical proline-encoding CCGCCA sequence was absent. This CCGCCA-loss disease allele was associated with an earlier age of diagnosis of approximately 7.1 years and occurred exclusively on haplotype B2. Although somatic expansion was associated with an earlier age of diagnosis in the study overall, the CCGCCA-loss disease allele displayed reduced somatic expansion relative to the typical HTT expansions in blood DNA. We propose that the CCGCCA loss occurring on haplotype B2 is an African cis-acting modifier that appears to alter disease diagnosis of HD through a mechanism that is not driven by somatic expansion. The assessment of a group of individuals from an understudied population has highlighted population-specific differences that emphasize the importance of studying genetically diverse populations in the context of disease.
Collapse
Affiliation(s)
- Jessica Dawson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Fiona K. Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alastair Maxwell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Corresponding author
| |
Collapse
|
17
|
Abstract
Roughly 3% of the human genome consists of microsatellites or tracts of short tandem repeats (STRs). These STRs are often unstable, undergoing high-frequency expansions (increases) or contractions (decreases) in the number of repeat units. Some microsatellite instability (MSI) is seen at multiple STRs within a single cell and is associated with certain types of cancer. A second form of MSI is characterised by expansion of a single gene-specific STR and such expansions are responsible for a group of 40+ human genetic disorders known as the repeat expansion diseases (REDs). While the mismatch repair (MMR) pathway prevents genome-wide MSI, emerging evidence suggests that some MMR factors are directly involved in generating expansions in the REDs. Thus, MMR suppresses some forms of expansion while some MMR factors promote expansion in other contexts. This review will cover what is known about the paradoxical effect of MMR on microsatellite expansion in mammalian cells.
Collapse
|
18
|
Deng N, Zhang Y, Ma Z, Lin R, Cheng TH, Tang H, Snyder M, Cohen S. DSIF modulates RNA polymerase II occupancy according to template G + C content. NAR Genom Bioinform 2022; 4:lqac054. [PMID: 35910045 PMCID: PMC9326580 DOI: 10.1093/nargab/lqac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
The DSIF complex comprising the Supt4h and Supt5h transcription elongation proteins clamps RNA polymerase II (RNAPII) onto DNA templates, facilitating polymerase processivity. Lowering DSIF components can differentially decrease expression of alleles containing nucleotide repeat expansions, suggesting that RNAPII transit through repeat expansions is dependent on DSIF functions. To globally identify sequence features that affect dependence of the polymerase on DSIF in human cells, we used ultra-deep ChIP-seq analysis and RNA-seq to investigate and quantify the genome-wide effects of Supt4h loss on template occupancy and transcript production. Our results indicate that RNAPII dependence on Supt4h varies according to G + C content. Effects of DSIF knockdown were prominent during transcription of sequences high in G + C but minimal for sequences low in G + C and were particularly evident for G + C-rich segments of long genes. Reanalysis of previously published ChIP-seq data obtained from mouse cells showed similar effects of template G + C composition on Supt5h actions. Our evidence that DSIF dependency varies globally in different template regions according to template sequence composition suggests that G + C content may have a role in the selectivity of Supt4h knockdown and Supt5h knockdown during transcription of gene alleles containing expansions of G + C-rich repeats.
Collapse
Affiliation(s)
- Ning Deng
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Yue Zhang
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Richard Lin
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Tzu-Hao Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University , Taipei 112, Taiwan
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Stanley N Cohen
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| |
Collapse
|
19
|
Tabrizi SJ, Schobel S, Gantman EC, Mansbach A, Borowsky B, Konstantinova P, Mestre TA, Panagoulias J, Ross CA, Zauderer M, Mullin AP, Romero K, Sivakumaran S, Turner EC, Long JD, Sampaio C. A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurol 2022; 21:632-644. [PMID: 35716693 DOI: 10.1016/s1474-4422(22)00120-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments. We used a formal consensus method that involved representatives from academia, industry, and non-profit organisations. The HD-ISS characterises individuals for research purposes from birth, starting at Stage 0 (ie, individuals with the Huntington's disease genetic mutation without any detectable pathological change) by using a genetic definition of Huntington's disease. Huntington's disease progression is then marked by measurable indicators of underlying pathophysiology (Stage 1), a detectable clinical phenotype (Stage 2), and then decline in function (Stage 3). Individuals can be precisely classified into stages based on thresholds of stage-specific landmark assessments. We also demonstrated the internal validity of this system. The adoption of the HD-ISS could facilitate the design of clinical trials targeting populations before clinical motor diagnosis and enable data standardisation across ongoing and future studies.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, University College London, UK.
| | - Scott Schobel
- Product Development Neuroscience, F Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Centre, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neurology, Neuroscience, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Klaus Romero
- Critical Path Institute, Tucson, Arizona 85718, USA
| | | | | | - Jeffrey D Long
- Department of Psychiatry, Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, Princeton, NJ, USA; Clinical Pharmacology Laboratory, Faculdade de Medicina de Lisboa, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
20
|
Zhang N, Ashizawa T. Mechanistic and Therapeutic Insights into Ataxic Disorders with Pentanucleotide Expansions. Cells 2022; 11:1567. [PMID: 35563872 PMCID: PMC9099484 DOI: 10.3390/cells11091567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pentanucleotide expansion diseases constitute a special class of neurodegeneration. The repeat expansions occur in non-coding regions, have likely arisen from Alu elements, and often result in autosomal dominant or recessive phenotypes with underlying cerebellar neuropathology. When transcribed (potentially bidirectionally), the expanded RNA forms complex secondary and tertiary structures that can give rise to RNA-mediated toxicity, including protein sequestration, pentapeptide synthesis, and mRNA dysregulation. Since several of these diseases have recently been discovered, our understanding of their pathological mechanisms is limited, and their therapeutic interventions underexplored. This review aims to highlight new in vitro and in vivo insights into these incurable diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| |
Collapse
|
21
|
Lüth T, Laβ J, Schaake S, Wohlers I, Pozojevic J, Jamora RDG, Rosales RL, Brüggemann N, Saranza G, Diesta CCE, Schlüter K, Tse R, Reyes CJ, Brand M, Busch H, Klein C, Westenberger A, Trinh J. Elucidating Hexanucleotide Repeat Number and Methylation within the X-Linked Dystonia-Parkinsonism (XDP)-Related SVA Retrotransposon in TAF1 with Nanopore Sequencing. Genes (Basel) 2022; 13:genes13010126. [PMID: 35052466 PMCID: PMC8775018 DOI: 10.3390/genes13010126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background: X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by progressive dystonia and parkinsonism. It is caused by a SINE-VNTR-Alu (SVA) retrotransposon insertion in the TAF1 gene with a polymorphic (CCCTCT)n domain that acts as a genetic modifier of disease onset and expressivity. Methods: Herein, we used Nanopore sequencing to investigate SVA genetic variability and methylation. We used blood-derived DNA from 96 XDP patients for amplicon-based deep Nanopore sequencing and validated it with fragment analysis which was performed using fluorescence-based PCR. To detect methylation from blood- and brain-derived DNA, we used a Cas9-targeted approach. Results: High concordance was observed for hexanucleotide repeat numbers detected with Nanopore sequencing and fragment analysis. Within the SVA locus, there was no difference in genetic variability other than variations of the repeat motif between patients. We detected high CpG methylation frequency (MF) of the SVA and flanking regions (mean MF = 0.94, SD = ±0.12). Our preliminary results suggest only subtle differences between the XDP patient and the control in predicted enhancer sites directly flanking the SVA locus. Conclusions: Nanopore sequencing can reliably detect SVA hexanucleotide repeat numbers, methylation and, lastly, variation in the repeat motif.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Joshua Laβ
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Susen Schaake
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Inken Wohlers
- Medical Systems Biology Division, Luebeck Institute of Experimental Dermatology, University of Luebeck, 23538 Luebeck, Germany; (I.W.); (H.B.)
- Institute for Cardiogenetics, University of Luebeck, 23538 Luebeck, Germany
| | - Jelena Pozojevic
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Roland Dominic G. Jamora
- Department of Neurosciences, College of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| | - Raymond L. Rosales
- Department of Neurology and Psychiatry, The Hospital Neuroscience Institute, University of Santo Tomas, Manila 1008, Philippines;
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
- Department of Neurology, University of Luebeck, 23538 Luebeck, Germany
| | - Gerard Saranza
- Section of Neurology, Department of Internal Medicine, Chong Hua Hospital, Cebu City 6000, Philippines;
| | - Cid Czarina E. Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati 1229, Philippines;
| | - Kathleen Schlüter
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Ronnie Tse
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Charles Jourdan Reyes
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Max Brand
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Hauke Busch
- Medical Systems Biology Division, Luebeck Institute of Experimental Dermatology, University of Luebeck, 23538 Luebeck, Germany; (I.W.); (H.B.)
- Institute for Cardiogenetics, University of Luebeck, 23538 Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Ana Westenberger
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Joanne Trinh
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
- Correspondence:
| |
Collapse
|
22
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
23
|
Deshmukh AL, Caron MC, Mohiuddin M, Lanni S, Panigrahi GB, Khan M, Engchuan W, Shum N, Faruqui A, Wang P, Yuen RKC, Nakamori M, Nakatani K, Masson JY, Pearson CE. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability. Cell Rep 2021; 37:110078. [PMID: 34879276 DOI: 10.1016/j.celrep.2021.110078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.
Collapse
Affiliation(s)
- Amit Laxmikant Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Gagan B Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Mahreen Khan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Worrawat Engchuan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Natalie Shum
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aisha Faruqui
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peixiang Wang
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Ryan K C Yuen
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, the Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
24
|
Arning L, Nguyen HP. Huntington disease update: new insights into the role of repeat instability in disease pathogenesis. MED GENET-BERLIN 2021; 33:293-300. [PMID: 38835439 PMCID: PMC11006308 DOI: 10.1515/medgen-2021-2101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 06/06/2024]
Abstract
The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (HTT) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease-modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely HTT transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified cis- (DNA repair genes) and trans- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.
Collapse
Affiliation(s)
- Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| |
Collapse
|
25
|
McDonnell EI, Wang Y, Goldman J, Marder K. Age of Onset of Huntington's Disease in Carriers of Reduced Penetrance Alleles. Mov Disord 2021; 36:2958-2961. [PMID: 34536046 DOI: 10.1002/mds.28789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Age of manifest Huntington's disease (HD) onset correlates with number of CAG repeats in the huntingtin gene. Little is known about onset with 36 to 39 repeats, the "reduced penetrance" (RP) range. OBJECTIVES We provide allele-specific estimates of HD penetrance (diagnostic confidence level of 4) for RP allele carriers. METHODS We analyzed 431 pre-manifest RP allele carriers from Enroll-HD, the largest prospective observational HD study. Cumulative penetrance (CP) was estimated from Kaplan-Meier curves. RESULTS No one with 36 repeats (n = 25) phenoconverted. CP for 38 repeats (n = 120) was 32% (95% confidence interval [CI] 0%-55%) and 51% (CI, 10%-73%) by ages 70 and 75, respectively, and 68% (CI, 46%-81%) and 81% (CI, 58%-92%) by ages 70 and 75 for 39 repeats (n = 253). CP was not estimable at those ages for 37 repeats (n = 33). CONCLUSIONS Differences by RP-range repeat length did not reach significance with a 3-year median follow-up duration among censored individuals. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Erin I McDonnell
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.,Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
| | - Jill Goldman
- The Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| | - Karen Marder
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA.,The Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA.,Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, New York, USA.,Department of Neurology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun 2021; 9:98. [PMID: 34034831 PMCID: PMC8145836 DOI: 10.1186/s40478-021-01201-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington's disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. MAIN BODY STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic 'AAGGG' repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of 'CGG' repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion. CONCLUSION We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.
Collapse
Affiliation(s)
- Sanjog R. Chintalaphani
- School of Medicine, University of New South Wales, Sydney, 2052 Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050 Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010 Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Molecular Medicine Laboratory and Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2137 Australia
| |
Collapse
|
27
|
Despotov K, Zádori D, Veres G, Jakab K, Gárdián G, Tóth E, Kincses TZ, Vécsei L, Ajtay A, Bereczki D, Klivényi P. Genetic epidemiological characteristics of a Hungarian subpopulation of patients with Huntington's disease. BMC Neurol 2021; 21:79. [PMID: 33602179 PMCID: PMC7890867 DOI: 10.1186/s12883-021-02089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background Recent advances in therapeutic options may prevent deterioration related to Huntington’s disease (HD), even at the pre-symptomatic stage. Be that as it may, a well-characterized patient population is essential for screening and monitoring outcome. Accordingly, the aim of this study was to describe the characteristics of a Hungarian subpopulation of HD patients and mutation carriers diagnosed at the University of Szeged. Methods We conducted a search for International Classification of Diseases (ICD) code G10H0 in the local medical database for the period of 1 January 1998 to 31 December 2018. Results We identified 90 HD cases (male: 45, female: 45) and 34 asymptomatic carriers (male: 15, female: 19). The median age of onset was 45 years (range: 16–79). There were 3 cases of juvenile onset (3.3%), and 7 of late disease onset (7.8%). The median repeat length was 43 (range: 36–70) for the pathological and 19 for the non-pathological alleles (range: 9–35). 17.5% of the pathological alleles were in the decreased penetrance range, while 7% of non-pathological alleles were intermediate. Conclusions The genetic and clinical features of the population examined in the present study were in line with the previous Hungarian study, as well as with international literature. The exceptions were the higher ratio of reduced penetrance and intermediate alleles. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02089-9.
Collapse
Affiliation(s)
- Katalin Despotov
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Dénes Zádori
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Gábor Veres
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Katalin Jakab
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Gabriella Gárdián
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Eszter Tóth
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Tamás Zsigmond Kincses
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - András Ajtay
- Department of Neurology, Semmelweis University, Budapest, Hungary.,MTA-SE Neuroepidemiological Research Group, Budapest, Hungary
| | - Dániel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary.,MTA-SE Neuroepidemiological Research Group, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary.
| |
Collapse
|
28
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
29
|
De Luca A, Morella A, Consoli F, Fanelli S, Thibert JR, Statt S, Latham GJ, Squitieri F. A Novel Triplet-Primed PCR Assay to Detect the Full Range of Trinucleotide CAG Repeats in the Huntingtin Gene ( HTT). Int J Mol Sci 2021; 22:ijms22041689. [PMID: 33567536 PMCID: PMC7916029 DOI: 10.3390/ijms22041689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The expanded CAG repeat number in HTT gene causes Huntington disease (HD), which is a severe, dominant neurodegenerative illness. The accurate determination of the expanded allele size is crucial to confirm the genetic status in symptomatic and presymptomatic at-risk subjects and avoid genetic polymorphism-related false-negative diagnoses. Precise CAG repeat number determination is critical to discriminate the cutoff between unexpanded and intermediate mutable alleles (IAs, 27–35 CAG) as well as between IAs and pathological, low-penetrance alleles (i.e., 36–39 CAG repeats), and it is also critical to detect large repeat expansions causing pediatric HD variants. We analyzed the HTT-CAG repeat number of 14 DNA reference materials and of a DNA collection of 43 additional samples carrying unexpanded, IAs, low and complete penetrance alleles, including large (>60 repeats) and very large (>100 repeats) expansions using a novel triplet-primed PCR-based assay, the AmplideX PCR/CE HTT Kit. The results demonstrate that the method accurately genotypes both normal and expanded HTT-CAG repeat numbers and reveals previously undisclosed and very large CAG expansions >200 repeats. We also show that this technique can improve genetic test reliability and accuracy by detecting CAG expansions in samples with sequence variations within or adjacent to the repeat tract that cause allele drop-outs or inaccuracies using other PCR methods.
Collapse
Affiliation(s)
- Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.D.L.); (A.M.); (F.C.)
| | - Annunziata Morella
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.D.L.); (A.M.); (F.C.)
| | - Federica Consoli
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.D.L.); (A.M.); (F.C.)
| | - Sergio Fanelli
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Julie R. Thibert
- Asuragen, Inc., Austin, TX 78744, USA; (J.R.T.); (S.S.); (G.J.L.)
| | - Sarah Statt
- Asuragen, Inc., Austin, TX 78744, USA; (J.R.T.); (S.S.); (G.J.L.)
| | - Gary J. Latham
- Asuragen, Inc., Austin, TX 78744, USA; (J.R.T.); (S.S.); (G.J.L.)
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
- Correspondence: ; Tel.: +39-06-44160536
| |
Collapse
|
30
|
Wright GEB, Black HF, Collins JA, Gall-Duncan T, Caron NS, Pearson CE, Hayden MR. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies. Lancet Neurol 2020; 19:930-939. [PMID: 33098802 DOI: 10.1016/s1474-4422(20)30343-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Huntington's disease is a fatal neurodegenerative disorder that is caused by CAG-CAA repeat expansion, encoding polyglutamine, in the huntingtin (HTT) gene. Current age-of-clinical-onset prediction models for Huntington's disease are based on polyglutamine length and explain only a proportion of the variability in age of onset observed between patients. These length-based assays do not interrogate the underlying genetic variation, because known genetic variants in this region do not alter the protein coding sequence. Given that individuals with identical repeat lengths can present with Huntington's disease decades apart, the search for genetic modifiers of clinical age of onset has become an active area of research. RECENT DEVELOPMENTS Results from three independent genetic studies of Huntington's disease have shown that glutamine-encoding CAA variants that interrupt DNA CAG repeat tracts, but do not alter polyglutamine length or polyglutamine homogeneity, are associated with substantial differences in age of onset of Huntington's disease in carriers. A variant that results in the loss of CAA interruption is associated with early onset and is particularly relevant to individuals that carry alleles in the reduced penetrance range (ie, CAG 36-39). Approximately a third of clinically manifesting carriers of reduced penetrance alleles, defined by current diagnostics, carry this variant. Somatic repeat instability, modified by interrupted CAG tracts, is the most probable cause mediating this effect. This relationship is supported by genome-wide screens for disease modifiers, which have revealed the importance of DNA-repair genes in Huntington's disease (ie, FAN1, LIG1, MLH1, MSH3, PMS1, and PMS2). WHERE NEXT?: Focus needs to be placed on refining our understanding of the effect of the loss-of-interruption and duplication-of-interruption variants and other interrupting sequence variants on age of onset, and assessing their effect in disease-relevant brain tissues, as well as in diverse population groups, such as individuals from Africa and Asia. Diagnostic tests should be augmented or updated, since current tests do not assess the underlying DNA sequence variation, especially when assessing individuals that carry alleles in the reduced penetrance range. Future studies should explore somatic repeat instability and DNA repair as new therapeutic targets to modify age of onset in Huntington's disease and in other repeat-mediated disorders. Disease-modifying therapies could potentially be developed by therapeutically targeting these processes. Promising approaches include therapeutically targeting the expanded repeat or directly perturbing key DNA-repair genes (eg, with antisense oligonucleotides or small molecules). Targeting the CAG repeat directly with naphthyridine-azaquinolone, a compound that induces contractions, and altering the expression of MSH3, represent two viable therapeutic strategies. However, as a first step, the capability of such novel therapeutic approaches to delay clinical onset in animal models should be assessed.
Collapse
Affiliation(s)
- Galen E B Wright
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jennifer A Collins
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Terence Gall-Duncan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|