1
|
Pálsson S, Wasowicz P, Heiðmarsson S, Magnússon KP. Population structure and genetic variation of fragmented mountain birch forests in Iceland. J Hered 2022; 114:165-174. [PMID: 36331896 PMCID: PMC10078168 DOI: 10.1093/jhered/esac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Betula pubescens Ehrh. (mountain birch) is the only forest-forming tree in Iceland. Since human settlement (874 AD), the continuous 25,000-30,000 km 2 forest has shrunk to 1.200 km 2 of fragmented patches, making it a good object to study population genetic consequences of habitat fragmentation and disturbance. Further, genetic studies have also shown that hybridization between the tetraploid (2n=56) B. pubescens and the diploid (2n=28) Betula nana L. (dwarf birch) occurs among Iceland's natural populations. This study assessed the genetic variation within and among eleven birch forests remaining across Iceland. Genotype-by-sequencing methodology (GBS) provided a total of 24,585 SNPs, with a minor allele frequency > 5% for genetic analyses. The analysis showed similar diversity within forests, suggesting that fragmentation and hybridization have had a limited effect on the genetic variation within sites. A clear genetic divergence is found among forests from the different regions of Iceland that may reflect historical isolation; the differentiation between forests increased with geographic distances reflecting isolation by distance. Information on the distribution of genetic variation of birch in Iceland is essential for its conservation and to establish genotype-phenotype associations to predict responses to new environmental conditions imposed by climate change and novel biotic/abiotic stressors.
Collapse
Affiliation(s)
- Snæbjörn Pálsson
- Faculty of Life and Environmental Sciences, University of Iceland, Askja - Sturlugata 7, 102 Reykjavík, Iceland
| | - Pawel Wasowicz
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| | - Kristinn Pétur Magnússon
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
- Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| |
Collapse
|
2
|
Genetic Relationship and Evolution Analysis among Malus Mill Plant Populations Based on SCoT Molecular Markers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1002624. [PMID: 35756416 PMCID: PMC9232318 DOI: 10.1155/2022/1002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Malus Mill genotype is highly heterozygous, and many theoretical problems such as genetic relationship and evolution process among germplasm are difficult to be solved by traditional analysis methods. The development of SCoT(start codon targeted polymorphism) molecular markers suitable for apples is of great significance for studying the origin, evolution, genetic relationship and genetic diversity of Malus Mill germplasm resources. In this paper, the genetic relationship and evolution of 15 materials were analyzed by SCoT molecular marker. The results showed that the gene differentiation coefficient values of four Malus Mill plants at the species level were 0.423, 0.439, 0.428 and 0.460, respectively, which indicated that there was obvious genetic differentiation among the populations of these four Malus Mill plants, but there were some differences among the populations of different Malus Mill plants. The gene differentiation coefficient of coextensive populations with different geographical distribution varied from 0.177 to 0.086 (average 0.138), which indicated that the genetic similarity of species in coextensive composite populations was high and there was a close genetic relationship among species. This indicates that SCoT molecular markers can be effectively used in the analysis of intraspecific genetic relationship and identification of intraspecific strains of Malus Mill plants.
Collapse
|
3
|
Lee JH, Ong HG, Kim BY, Kim YI, Jung EK, Chung MG, Kim YD. Population genomics study for the conservation management of the endangered shrub Abeliophyllum distichum. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractNatural monuments are IUCN Category III protected areas that play an important role in biodiversity conservation as they provide species refuge and allow species migration. Despite their status, natural monuments are often confined to cultural and fragmented landscapes due to anthropogenic land-use demands. In this population genomic study, we surveyed 11 populations of the endemic shrub Abeliophyllum distichum Nakai (Oleaceae), including five natural monument habitats, covering its range-wide distribution in South Korea. Using 2,254 SNPs as markers, our results showed a mean expected heterozygosity (He) of 0.319, with populations in the central distribution showing significantly higher He than those at the periphery. There was no significant heterozygote deficiency and inbreeding among studied populations overall (FIS = −0.098), except for a single natural monument population (GS-NM147). Population structure and differentiation was moderate to high (FST = 0.196), while recent gene flow between populations appeared weak, which can be attributed to the fragmented distribution and the outcrossing mating system of the heterostylous plant. Based on these findings, we provide suggestions for the population conservation and management of this endangered species.
Collapse
|
4
|
Wang L, Ding J, Borrell JS, Cheek M, McAllister HA, Wang F, Liu L, Zhang H, Zhang Q, Wang Y, Wang N. Molecular and morphological analyses clarify species delimitation in section Costatae and reveal Betula buggsii sp. nov. (sect. Costatae, Betulaceae) in China. ANNALS OF BOTANY 2022; 129:415-428. [PMID: 35018419 PMCID: PMC8944703 DOI: 10.1093/aob/mcac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Delineating closely related and morphologically similar species is difficult. Here, we integrate morphology, genetics, ploidy and geography to resolve species and subspecies boundaries in four trees of section Costatae (genus Betula): Betula ashburneri, B. costata, B. ermanii and B. utilis, as well as multiple subspecies and polyploid races. METHODS We genotyped 371 individuals (20-133 per species) from 51 populations at 15 microsatellite markers, as well as a subset of individuals, using restriction-site associated DNA sequencing and nuclear internal transcribed spacers. We determined the ploidy level of eight individuals using flow cytometry and characterized leaf variation for a subset of 109 individuals by morphometric analysis. KEY RESULTS Integration of multiple lines of evidence suggested a series of revisions to the taxonomy of section Costatae. Betula costata and B. ermanii were found to be valid. Molecular and leaf morphology analyses revealed little differentiation between diploid B. albosinensis and some samples of B. utilis ssp. utilis. By contrast, other B. utilis ssp. utilis samples and ssp. albosinensis formed a morphological continuum but differed based on genetics. Specifically, B. utilis ssp. albosinensis was divided into two groups with group I genetically similar to B. utilis ssp. utilis and group II, a distinct cluster, proposed as the new diploid species Betula buggsii sp. nov. Phylogenomic analysis based on 2285 620 single nucleotide polymorphisms identified a well-supported monophyletic clade of B. buggsii. Morphologically, B. buggsii is characterized by elongated lenticels and a distinct pattern of bark peeling and may be geographically restricted to the Qinling-Daba Mountains. CONCLUSIONS Our integrated approach identifies six taxa within section Costatae: B. ashburneri, B. buggsii, B. costata, B. utilis ssp. utilis, B. utilis ssp. albosinensis and B. ermanii. Our research demonstrates the value of an integrative approach using morphological, geographical, genetic and ploidy-level data for species delineation.
Collapse
Affiliation(s)
| | | | | | | | - Hugh A McAllister
- School of Life Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool, UK
| | - Feifei Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Lu Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Huayu Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Qiufeng Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yiming Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | | |
Collapse
|
5
|
Curry CJ, Davis BW, Bertola LD, White PA, Murphy WJ, Derr JN. Spatiotemporal Genetic Diversity of Lions Reveals the Influence of Habitat Fragmentation across Africa. Mol Biol Evol 2021; 38:48-57. [PMID: 32667997 PMCID: PMC8480188 DOI: 10.1093/molbev/msaa174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Direct comparisons between historical and contemporary populations allow for detecting changes in genetic diversity through time and assessment of the impact of habitat fragmentation. Here, we determined the genetic architecture of both historical and modern lions to document changes in genetic diversity over the last century. We surveyed microsatellite and mitochondrial genome variation from 143 high-quality museum specimens of known provenance, allowing us to directly compare this information with data from several recently published nuclear and mitochondrial studies. Our results provide evidence for male-mediated gene flow and recent isolation of local subpopulations, likely due to habitat fragmentation. Nuclear markers showed a significant decrease in genetic diversity from the historical (HE = 0.833) to the modern (HE = 0.796) populations, whereas mitochondrial genetic diversity was maintained (Hd = 0.98 for both). Although the historical population appears to have been panmictic based on nDNA data, hierarchical structure analysis identified four tiers of genetic structure in modern populations and was able to detect most sampling locations. Mitogenome analyses identified four clusters: Southern, Mixed, Eastern, and Western and were consistent between modern and historically sampled haplotypes. Within the last century, habitat fragmentation caused lion subpopulations to become more geographically isolated as human expansion changed the African landscape. This resulted in an increase in fine-scale nuclear genetic structure and loss of genetic diversity as lion subpopulations became more differentiated, whereas mitochondrial structure and diversity were maintained over time.
Collapse
Affiliation(s)
- Caitlin J Curry
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Laura D Bertola
- Department of Biology, City College of New York, New York, NY
| | - Paula A White
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA
| | - William J Murphy
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - James N Derr
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
6
|
Increased Genetic Diversity via Gene Flow Provides Hope for Acacia whibleyana, an Endangered Wattle Facing Extinction. DIVERSITY 2020. [DOI: 10.3390/d12080299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper we apply a conservation genomics approach to make evidence-based management recommendations for Acacia whibleyana, an endangered shrub endemic to Eyre Peninsula, South Australia. We used population genomic analysis to assess genetic connectivity, diversity, and historical inbreeding across all known stands of the species sampling remnant stands, revegetated stands of unknown origin, and a post-fire seedling cohort. Our results indicate a degree of historical connectivity across the landscape, but habitat loss and/or pollinator community disruption are potential causes of strong genetic structure across the remnant stands. Remnant stands had low genetic diversity and showed evidence of historical inbreeding, but only low levels of intra-stand relatedness indicating that risks of contemporary inbreeding are low. Analysis of a post-fire first generation cohort of seedlings showed they likely resulted from intra-stand matings, resulting in reduced genetic diversity compared to the parents. However, admixed seedlings in this cohort showed an increase in heterozygosity relative to likely sources and the non-admixed seedlings of the same stand. Assisted inter-stand gene flow may prove an effective management strategy to boost heterozygosity and corresponding increases in adapting capacity in this endangered species.
Collapse
|
7
|
Borrell JS, Zohren J, Nichols RA, Buggs RJA. Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evol Appl 2020; 13:161-175. [PMID: 31892950 PMCID: PMC6935589 DOI: 10.1111/eva.12883] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
When populations of a rare species are small, isolated and declining under climate change, some populations may become locally maladapted. Detecting this maladaptation may allow effective rapid conservation interventions, even if based on incomplete knowledge. Population maladaptation may be estimated by finding genome-environment associations (GEA) between allele frequencies and environmental variables across a local species range, and identifying populations whose allele frequencies do not fit with these trends. We can then design assisted gene flow strategies for maladapted populations, to adjust their allele frequencies, entailing lower levels of intervention than with undirected conservation action. Here, we investigate this strategy in Scottish populations of the montane plant dwarf birch (Betula nana). In genome-wide restriction site-associated single nucleotide polymorphism (SNP) data, we found 267 significant associations between SNP loci and environmental variables. We ranked populations by maladaptation estimated using allele frequency deviation from the general trends at these loci; this gave a different prioritization for conservation action than the Shapely Index, which seeks to preserve rare neutral variation. Populations estimated to be maladapted in their allele frequencies at loci associated with annual mean temperature were found to have reduced catkin production. Using an environmental niche modelling (ENM) approach, we found annual mean temperature (35%), and mean diurnal range (15%), to be important predictors of the dwarf birch distribution. Intriguingly, there was a significant correlation between the number of loci associated with each environmental variable in the GEA and the importance of that variable in the ENM. Together, these results suggest that the same environmental variables determine both adaptive genetic variation and species range in Scottish dwarf birch. We suggest an assisted gene flow strategy that aims to maximize the local adaptation of dwarf birch populations under climate change by matching allele frequencies to current and future environments.
Collapse
Affiliation(s)
| | - Jasmin Zohren
- Sex Chromosome Biology LabThe Francis Crick InstituteLondonUK
| | - Richard A. Nichols
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Richard J. A. Buggs
- Jodrell LaboratoryRoyal Botanic Gardens, KewSurreyUK
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
8
|
Su J, Yan Y, Song J, Li J, Mao J, Wang N, Wang W, Du FK. Recent Fragmentation May Not Alter Genetic Patterns in Endangered Long-Lived Species: Evidence From Taxus cuspidata. FRONTIERS IN PLANT SCIENCE 2018; 9:1571. [PMID: 30429863 PMCID: PMC6220038 DOI: 10.3389/fpls.2018.01571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Forestland fragmentation caused by overexploitation of forest resources can in principle reduce genetic diversity, limit gene flow and eventually lead to species developing strong genetic structure. However, the genetic consequences of recent anthropogenic fragmentation of tree species remain unclear. Taxus cuspidata, which has extremely small populations distributed mainly in Changbai Mt. in Northeast (NE) China, has recently endured severe habitat fragmentation. Here, we investigate the pattern of genetic diversity and structure, identify risk factors, predict the future distribution and finally provide guidelines for the conservation and management of this species. We used three chloroplast and two mitochondrial DNA fragments, which are both paternally inherited in yews but differ in mutation rates, to genotype a total of 265 individuals from 26 populations covering the distribution of the species in China. Both chloroplast and mitochondrial data showed high degrees of genetic diversity, extensive gene flow over the entire geographical range and historical stability of both effective population size and distribution of the species. However, ecological niche modeling suggests a decrease in suitable areas for this species by the years 2050 and 2070. The maintenance of high genetic diversity and the existence of sufficient gene flow suggest that recent fragmentation has not affected the genetic composition of the long-lived tree T. cuspidata. However, severe impacts of anthropogenic activities are already threatening the species. Conservation and management strategies should be implemented in order to protect the remnant populations.
Collapse
Affiliation(s)
- Jinyuan Su
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yu Yan
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Jia Song
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Junqing Li
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Jianfeng Mao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Nian Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Wenting Wang
- School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou, China
| | - Fang K. Du
- The College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|