1
|
Song R, Zhang X, Zhang Z, Zhou C. Climatic factors, but not geographic distance, promote genetic structure and differentiation of Cleistogenes squarrosa (Trin.) Keng populations. FRONTIERS IN BIOINFORMATICS 2024; 4:1454689. [PMID: 39606024 PMCID: PMC11599168 DOI: 10.3389/fbinf.2024.1454689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Climate can shape plant genetic diversity and genetic structure, and genetic diversity and genetic structure can reflect the adaptation of plants to climate change. We used rbcl and trnL-trnF sequences to analyze the genetic diversity and genetic structure of C. squarrosa under the influence of different environmental factors in Inner Mongolia grassland. The results showed that the genetic diversity of this species was low. (The trnL-trnF sequences have higher genetic diversity than rbcl sequences.) C. squarrosa had low genetic diversity compared to other prairie plants, but had a more pronounced genetic structure. The haplotype network diagram of the combined sequences could be divided into two categories, and the results of the NJ, MP, and ML trees also showed that the haplotypes were divided into two branches. The results of genetic structure analysis showed that that the populations located in the desert steppe fall into exactly one cluster, and the populations located in the typical steppe fall into exactly another cluster. The neutrality tests were all negative and the mismatch distribution also showed a single peak across the population, suggesting that C. squarrosa had undergone population expansion and was well adapted to the local environment. The results of the mantel test showed that climate had a greater influence on the genetic distance of C. squarrosa, with annual precipitation having a higher influence than mean annual temperature. This study provided basic genetic information on the genetic structure of C. squarrosa and contributes to the study of genetic adaptation mechanisms in grassland plants.
Collapse
Affiliation(s)
- Ruyan Song
- School of Life Science, Liaoning University, Shenyang, China
| | - Xueli Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Zhuo Zhang
- School of Life Science and Bioengineering, Shenyang University, Shenyang, China
| | - Chan Zhou
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
2
|
Hellequin E, Rech P, Petrolli R, Selosse MA, Kodja H, Piquet B, Martos F. Variations in the root mycobiome and mycorrhizal fungi between different types of Vanilla forest farms on Réunion Island. MYCORRHIZA 2024; 34:429-446. [PMID: 39432085 DOI: 10.1007/s00572-024-01171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The mycorrhizal fungi of cultivated Vanilla spp. have mainly been studied in America, while a recent study has investigated them on Réunion Island (Indian Ocean). However, there are many different types of cultivation on Réunion, from shade-house crops to forest farms of endemic or exotic trees. Here we fill a gap in the study of the root mycobiome of Vanilla by sampling vines in forest plantations on recent lava flows in the southeast of Réunion. Specifically, we aimed to characterize the fungal communities between terrestrial and epiphytic roots, between forest farms that differ mainly in the species of trees, and between Vanilla roots and ECM-like roots of nearby trees. By sequencing fungal ITS2, we showed that the Vanilla root mycobiome is diverse and differed between the root types and forest farms. Epiphytic and terrestrial roots host endophytic fungi, while a putative rust with visible urediniospores was abundant in terrestrial roots mainly. Other pathogens were detected in epiphytic roots (Colletotrichum) with no sign of disease. Following sequencing and electron microscopy, Tulasnellaceae, characterized by imperforate parenthesomes and cell wall expansion with an amorphous matrix, were shown to be the main mycorrhizal fungi in both vanilla root types. Interestingly, the dominant Tulasnellaceae OTU was found in ECM-type roots of trees belonging to the ectomycorrhizal family Sapotaceae. Further observations are needed to confirm the ectomycorrhizal association of endemic trees with Tulasnella. Moreover, labeling experiments will be instrumental in investigating the transfer of nutrients between the trees and the Vanilla through the network of mycorrhizal associations in the soil.
Collapse
Affiliation(s)
- Eve Hellequin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France.
| | - Philippe Rech
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Hippolyte Kodja
- Qualisud, Université Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 15 avenue René Cassin, St- Denis cedex 9, 97744, France
| | - Bérénice Piquet
- Electron Microscopy Platform, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, Paris Cedex 05, F-75231, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France
| |
Collapse
|
3
|
Prinsloo AS, Fitchett JM. Quantifying climatic suitability for tourism in Southwest Indian Ocean Tropical Islands: Applying the Holiday Climate Index to Réunion Island. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1717-1728. [PMID: 38744706 PMCID: PMC11461609 DOI: 10.1007/s00484-024-02700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/27/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Climate is a key resource for tourists and tourism providers. Varied approaches to quantifying climate resources for tourism have been developed in the last 40 years, computing indices from a range of meteorological variables to measure the comparative climatic suitability of different destinations through time. This study provides the first application of a tourism climate index in the tropical southwest Indian Ocean, applying the recently developed Holiday Climate Index (HCI) for Réunion Island. The suitability of this index is evaluated for the case of this French department, with a particular focus on air conditioning availability in tourism accommodation establishments as this index excludes night-time thermal comfort. Both iterations of the HCI (HCIBeach and HCIUrban) are computed with meteorological data from Roland Garros Airport for the period 1991-2020, exploring monthly, annual, and seasonal climatic suitability. Mean monthly HCI scores reveal considerable seasonality in climatic suitability for tourism on the island with scores ranging from 89.3 ('excellent') to 36.9 ('marginal') for the HCIBeach and 85.0 ('excellent') to 27.5 ('unacceptable') for the HCIUrban, with more favourable scores calculated for July and August, displaying a clear austral winter peak seasonal classification. Over the 30-year period, there is no statically significant change in mean annual climatic suitability, and at a monthly scale, only one month of the year for each index displays statistically significant trends. These results are important in informing tourism strategies for the island to maximise visitor satisfaction through targeting advertising more deliberately for peak touristic climate suitability during the winter months.
Collapse
Affiliation(s)
- Ariel S Prinsloo
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | - Jennifer M Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
4
|
Nie L, Fang Y, Xia Z, Wei X, Wu Z, Yan Y, Wang F. Relationships within Bolbitis sinensis Species Complex Using RAD Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:1987. [PMID: 39065514 PMCID: PMC11280518 DOI: 10.3390/plants13141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Species identification and phylogenetic relationship clarification are fundamental goals in species delimitation. However, these tasks pose challenges when based on morphologies, geographic distribution, and genomic data. Previously, two species of the fern genus Bolbitis, B. × multipinna and B. longiaurita were described based on morphological traits; they are phylogenetically intertwined with B. sinensis and fail to form monophyletic groups. To address the unclear phylogenetic relationships within the B. sinensis species complex, RAD sequencing was performed on 65 individuals from five populations. Our integrated analysis of phylogenetic trees, neighbor nets, and genetic structures indicate that the B. sinensis species complex should not be considered as separate species. Moreover, our findings reveal differences in the degree of genetic differentiation among the five populations, ranging from low to moderate, which might be influenced by geographical distance and gene flow. The Fst values also confirmed that genetic differentiation intensifies with increasing geographic distance. Collectively, this study clarifies the complex phylogenetic relationships within the B. sinensis species complex, elucidates the genetic diversity and differentiation across the studied populations, and offers valuable genetic insights that contribute to the broader study of evolutionary relationships and population genetics within the Bolbitis species.
Collapse
Affiliation(s)
- Liyun Nie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Yuhan Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
| | - Zengqiang Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Wei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yuehong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Faguo Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Friis G, Smith EG, Lovelock CE, Ortega A, Marshell A, Duarte CM, Burt JA. Rapid diversification of grey mangroves (Avicennia marina) driven by geographic isolation and extreme environmental conditions in the Arabian Peninsula. Mol Ecol 2024; 33:e17260. [PMID: 38197286 DOI: 10.1111/mec.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Biological systems occurring in ecologically heterogeneous and spatially discontinuous habitats provide an ideal opportunity to investigate the relative roles of neutral and selective factors in driving lineage diversification. The grey mangroves (Avicennia marina) of Arabia occur at the northern edge of the species' range and are subject to variable, often extreme, environmental conditions, as well as historic large fluctuations in habitat availability and connectivity resulting from Quaternary glacial cycles. Here, we analyse fully sequenced genomes sampled from 19 locations across the Red Sea, the Arabian Sea and the Persian/Arabian Gulf (PAG) to reconstruct the evolutionary history of the species in the region and to identify adaptive mechanisms of lineage diversification. Population structure and phylogenetic analyses revealed marked genetic structure correlating with geographic distance and highly supported clades among and within the seas surrounding the Arabian Peninsula. Demographic modelling showed times of divergence consistent with recent periods of geographic isolation and low marine connectivity during glaciations, suggesting the presence of (cryptic) glacial refugia in the Red Sea and the PAG. Significant migration was detected within the Red Sea and the PAG, and across the Strait of Hormuz to the Arabian Sea, suggesting gene flow upon secondary contact among populations. Genetic-environment association analyses revealed high levels of adaptive divergence and detected signs of multi-loci local adaptation driven by temperature extremes and hypersalinity. These results support a process of rapid diversification resulting from the combined effects of historical factors and ecological selection and reveal mangrove peripheral environments as relevant drivers of lineage diversity.
Collapse
Affiliation(s)
- Guillermo Friis
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Edward G Smith
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Catherine E Lovelock
- School of Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Alejandra Ortega
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John A Burt
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Kang H, Jaganathan GK, Han Y, Li J, Liu B. Revisiting the pericarp as a barrier restricting water entry/loss from cotyledons and embryonic axis of temperate desiccation-sensitive Quercus acorns. PLANTA 2023; 257:33. [PMID: 36609883 DOI: 10.1007/s00425-022-04061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Fully mature acorns of Quercus variabilis, Q. aliena, Q. mongolica, and Q. glandulifera are desiccation-sensitive. X-ray computer tomography showed that cotyledons shrink during drying, but embryos are protected. Information available on recalcitrant acorns of tropical and sub-tropical species of Quercus suggests that an impermeable pericarp, which limits the entry and loss of water only through the hilum (scar), is the underlying mechanism that prevents drying of the embryo axis following dispersal until the germination season. However, there is a lack of consensus supporting this proposition across species, and it is not well understood if such mechanisms occur in temperate Quercus species. This study investigated the significance of the acorn pericarp for temperate oak species and presents an ecological framework based on the post-dispersal climatic conditions. Using Quercus variabilis, Q. aliena, Q. mongolica, and Q. glandulifera acorns, the relationship between moisture content (MC) and germination was established, and X-ray computed tomography (X-ray CT) was used to understand the internal structural changes of cotyledons and embryonic axis occurring during desiccation. Water entry and exit routes through the scar, pericarp and apex were determined by imbibition and drying experiments. Climatic data and acorn morphological characteristics and germination were subjected to a principal component analysis (PCA). Freshly dispersed acorns of all species had a moisture content (MC) above 35% fresh weight (FW) basis, but drying to 15-10% MC resulted in complete loss of viability, implying recalcitrance behaviour. X-ray CT images suggested that the pericarp offers some protection to cotyledons and embryonic axis during desiccation, but it is contingent on MC. Extensive drying to a low MC with the scar and apex covered with vaseline resulted in internal tissues shrinkage, corresponding with viability loss. Water could enter or exit through the pericarp, albeit at a much slower rate than through the scar. A combination of factors including acorn anatomy, moisture content at the time of dispersal, microhabitat, the position of acorns in the soil prevent embryo desiccation below the critical MC and thus promotes survival of acorns on/in the soil during winter in temperate regions. Pericarp anatomy, to some extent, prevents excessive drying of the embryonic axis by slowing water movement, but prolonged drying or predatory pressure could result in pericarp cracks, favouring the absorption of water during sporadic rain. In the latter case, the survival of acorns possibly depends extensively on the continuous erratic rainfall, i.e. continuous wet-dry cycle, but in-situ experiments are yet to be performed to test this hypothesis.
Collapse
Affiliation(s)
- Han Kang
- Germplasm Conservation Laboratory, Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ganesh K Jaganathan
- Germplasm Conservation Laboratory, Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
| | - Yingying Han
- Germplasm Conservation Laboratory, Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Jiajin Li
- Germplasm Conservation Laboratory, Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Baolin Liu
- Germplasm Conservation Laboratory, Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Salmona J, Dresen A, Ranaivoson AE, Manzi S, Le Pors B, Hong-Wa C, Razanatsoa J, Andriaholinirina NV, Rasoloharijaona S, Vavitsara ME, Besnard G. How ancient forest fragmentation and riparian connectivity generate high levels of genetic diversity in a microendemic Malagasy tree. Mol Ecol 2023; 32:299-315. [PMID: 36320175 PMCID: PMC10100191 DOI: 10.1111/mec.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Understanding landscape changes is central to predicting evolutionary trajectories and defining conservation practices. While human-driven deforestation is intense throughout Madagascar, exceptions in areas such as the Loky-Manambato region (north) raise questions regarding the causes and age of forest fragmentation. The Loky-Manambato region also harbours a rich and endemic flora, whose evolutionary origin remains poorly understood. We assessed the genetic diversity of an endangered microendemic Malagasy olive species (Noronhia spinifolia Hong-Wa) to better understand the vegetation dynamics in the Loky-Manambato region and its influence on past evolutionary processes. We characterized 72 individuals sampled across eight forests through nuclear and mitochondrial restriction-associated DNA sequencing data and chloroplast microsatellites. Combined population and landscape genetics analyses indicate that N. spinifolia diversity is largely explained by the current forest cover, highlighting a long-standing habitat mosaic in the region. This sustains a major and long-term role of riparian corridors in maintaining connectivity across these antique mosaic habitats, calling for the study of organismal interactions that promote gene flow.
Collapse
Affiliation(s)
- Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Axel Dresen
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Anicet E Ranaivoson
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France.,Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Sophie Manzi
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | | | - Cynthia Hong-Wa
- Claude E. Phillips Herbarium, Delaware State University, Dover, Delaware, USA
| | - Jacqueline Razanatsoa
- Herbier, Département Flore, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar
| | | | | | | | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
8
|
Lee JH, Ong HG, Kim BY, Kim YI, Jung EK, Chung MG, Kim YD. Population genomics study for the conservation management of the endangered shrub Abeliophyllum distichum. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractNatural monuments are IUCN Category III protected areas that play an important role in biodiversity conservation as they provide species refuge and allow species migration. Despite their status, natural monuments are often confined to cultural and fragmented landscapes due to anthropogenic land-use demands. In this population genomic study, we surveyed 11 populations of the endemic shrub Abeliophyllum distichum Nakai (Oleaceae), including five natural monument habitats, covering its range-wide distribution in South Korea. Using 2,254 SNPs as markers, our results showed a mean expected heterozygosity (He) of 0.319, with populations in the central distribution showing significantly higher He than those at the periphery. There was no significant heterozygote deficiency and inbreeding among studied populations overall (FIS = −0.098), except for a single natural monument population (GS-NM147). Population structure and differentiation was moderate to high (FST = 0.196), while recent gene flow between populations appeared weak, which can be attributed to the fragmented distribution and the outcrossing mating system of the heterostylous plant. Based on these findings, we provide suggestions for the population conservation and management of this endangered species.
Collapse
|
9
|
Elshibli S, Korpelainen H. Genetic Diversity and Population Structure of Medemia argun (Mart.) Wurttenb. ex H.Wendl. Based on Genome-Wide Markers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.687188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Medemia argun is a wild, dioecious palm, adapted to the harsh arid environment of the Nubian Desert in Sudan and southern Egypt. There is a concern about its conservation status, since little is known about its distribution, abundance, and genetic variation. M. argun grows on the floodplains of seasonal rivers (wadis). The continuing loss of suitable habitats in the Nubian Desert is threatening the survival of this species. We analyzed the genetic diversity, population genetic structure, and occurrence of M. argun populations to foster the development of conservation strategies for M. argun. Genotyping-by-sequencing (GBS) analyses were performed using a whole-genome profiling service. We found an overall low genetic diversity and moderate genetic structuring based on 40 single-nucleotide polymorphisms (SNPs) and 9,866 SilicoDArT markers. The expected heterozygosity of the total population (HT) equaled 0.036 and 0.127, and genetic differentiation among populations/groups (FST) was 0.052 and 0.092, based on SNP and SilicoDArT markers, respectively. Bayesian clustering analyses defined five genetic clusters that did not display any ancestral gene flow among each other. Based on SilicoDArT markers, the results of the analysis of molecular variance (AMOVA) confirmed the previously observed genetic differentiation among generation groups (23%; p < 0.01). Pairwise FST values indicated a genetic gap between old and young individuals. The observed low genetic diversity and its loss among generation groups, even under the detected high gene flow, show genetically vulnerable M. argun populations in the Nubian Desert in Sudan. To enrich and maintain genetic variability in these populations, conservation plans are required, including collection of seed material from genetically diverse populations and development of ex situ gene banks.
Collapse
|
10
|
Garot E, Dussert S, Domergue F, Jo�t T, Fock-Bastide I, Combes MC, Lashermes P. Multi-Approach Analysis Reveals Local Adaptation in a Widespread Forest Tree of Reunion Island. PLANT & CELL PHYSIOLOGY 2021; 62:280-292. [PMID: 33377945 PMCID: PMC8112841 DOI: 10.1093/pcp/pcaa160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/04/2020] [Indexed: 05/15/2023]
Abstract
Detecting processes of local adaptation in forest trees and identifying environmental selective drivers are of primary importance for forest management and conservation. Transplant experiments, functional genomics and population genomics are complementary tools to efficiently characterize heritable phenotypic traits and to decipher the genetic bases of adaptive traits. Using an integrative approach combining phenotypic assessment in common garden, transcriptomics and landscape genomics, we investigated leaf adaptive traits in Coffea mauritiana, a forest tree endemic to Reunion Island. Eight populations of C. mauritiana originating from sites with contrasted environmental conditions were sampled in common garden to assess several leaf morphological traits, to analyze the leaf transcriptome and leaf cuticular wax composition. The relative alkane content of cuticular waxes was significantly correlated with major climatic gradients, paving the way for further transcriptome-based analyses. The expression pattern of cuticle biosynthetic genes was consistent with a modulation of alkane accumulation across the population studied, supporting the hypothesis that the composition of cuticular wax is involved in the local adaptation of C. mauritiana. Association tests in landscape genomics performed using RNA-seq-derived single-nucleotide polymorphisms revealed that genes associated with cell wall remodeling also likely play an adaptive role. By combining these different approaches, this study efficiently identified local adaptation processes in a non-model species. Our results provide the first evidence for local adaptation in trees endemic to Reunion Island and highlight the importance of cuticle composition for the adaptation of trees to the high evaporative demand in warm climates.
Collapse
Affiliation(s)
- Edith Garot
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
- Universit� de La R�union, UMR PVBMT, La R�union, Saint-Pierre 97410, France
| | - Stephane Dussert
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
| | | | - Thierry Jo�t
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
| | | | | | - Philippe Lashermes
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
- Corresponding author: E-mail, ; Fax, +33 4 67 41 61 81
| |
Collapse
|
11
|
Yun SA, Kim SC. Genetic diversity and structure of Saussurea polylepis (Asteraceae) on continental islands of Korea: Implications for conservation strategies and management. PLoS One 2021; 16:e0249752. [PMID: 33831066 PMCID: PMC8031399 DOI: 10.1371/journal.pone.0249752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Saussurea polylepis Nakai is an herbaceous perennial endemic to Korea and is highly restricted to several continental islands in the southwestern part of the Korean Peninsula. Given its very narrow geographical distribution, it is more vulnerable to anthropogenic activities and global climate changes than more widely distributed species. Despite the need for comprehensive genetic information for conservation and management, no such population genetic studies of S. polylepis have been conducted. In this study, genetic diversity and population structure were evaluated for 97 individuals from 5 populations (Gwanmaedo, Gageodo, Hongdo, Heusando, and Uido) using 19 polymorphic microsatellites. The populations were separated by a distance of 20–90 km. We found moderate levels of genetic diversity in S. polylepis (Ho = 0.42, He = 0.43). This may be due to long lifespans, outcrossing, and gene flow, despite its narrow range. High levels of gene flow (Nm = 1.76, mean Fst = 0.09), especially from wind-dispersed seeds, would contribute to low levels of genetic differentiation among populations. However, the small population size and reduced number of individuals in the reproductive phase of S. polylepis can be a major threat leading to inbreeding depression and genetic diversity loss. Bayesian cluster analysis revealed three significant structures at K = 3, consistent with DAPC and UPGMA. It is thought that sea level rise after the last glacial maximum may have acted as a geographical barrier, limiting the gene flow that would lead to distinct population structures. We proposed the Heuksando population, which is the largest island inhabited by S. polylepis, as a source population because of its large population size and high genetic diversity. Four management units (Gwanmaedo, Gageodo, Hongdo-Heuksando, and Uido) were suggested for conservation considering population size, genetic diversity, population structure, unique alleles, and geographical location (e.g., proximity).
Collapse
Affiliation(s)
- Seon A. Yun
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- * E-mail: ,
| |
Collapse
|
12
|
Andriamihaja CF, Ramarosandratana AV, Grisoni M, Jeannoda VH, Besse P. Drivers of population divergence and species differentiation in a recent group of indigenous orchids ( Vanilla spp.) in Madagascar. Ecol Evol 2021; 11:2681-2700. [PMID: 33767829 PMCID: PMC7981232 DOI: 10.1002/ece3.7224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
With over 25,000 species, orchids are among families with remarkable high rate of diversification. Since Darwin's time, major advances attributed the exceptional diversity of orchids to plant-pollinator interactions. However, unraveling the processes and factors that determine the phenotypic and genotypic variation of natural orchid populations remains a challenge. Here, we assessed genetic population structure and floral differentiation in recently diverged leafless Vanilla species in a world biodiversity hotspot, Madagascar, using seven microsatellite loci and 26 morphometric variables. Additionally, analyses were performed to test for the occurrence of any patterns of isolation by distance, isolation by environment, and isolation by adaptation and to detect possible physical barriers that might have caused genetic discontinuities between populations. Positive inbreeding coefficients detected in 22 populations were probably due to the presence of null alleles, geitonogamy and/or some admixture (sympatric species). In contrast, the only high-altitude population showed an important rate of clonality leading to heterozygote excess. Genetic diversity was maximum in western populations, suggesting a postglacial colonization to the north and south. Clustering analyses identified seven genetic groups characterized by specific floral traits that matched five botanical descriptions in the literature. A contribution of montane refugia and river barriers on population differentiation was detected. We also detected combined effects of IBD/IBE and IBE/IBA on genetic differentiation and suggested this pattern is more likely determined by ecological isolation, although pollinator-mediated divergent selection could not be ruled out for some of the species. Overall, this study provides further insights on speciation in orchids, a group for which Madagascar shows one of the world's highest level of endemism and confirms the importance of the peculiar biogeography of the island in shaping species differentiation.
Collapse
Affiliation(s)
- Cathucia F. Andriamihaja
- Université de la RéunionUMR PVBMTSt PierreFrance
- Department of Plant Biology and EcologyUniversity of AntananarivoAntananarivoMadagascar
| | | | | | | | | |
Collapse
|
13
|
Rummun N, Rondeau P, Bourdon E, Pires E, McCullagh J, Claridge TDW, Bahorun T, Li WW, Neergheen VS. Terminalia bentzoë, a Mascarene Endemic Plant, Inhibits Human Hepatocellular Carcinoma Cells Growth In Vitro via G0/G1 Phase Cell Cycle Arrest. Pharmaceuticals (Basel) 2020; 13:ph13100303. [PMID: 33053825 PMCID: PMC7650599 DOI: 10.3390/ph13100303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Tropical forests constitute a prolific sanctuary of unique floral diversity and potential medicinal sources, however, many of them remain unexplored. The scarcity of rigorous scientific data on the surviving Mascarene endemic taxa renders bioprospecting of this untapped resource of utmost importance. Thus, in view of valorizing the native resource, this study has as its objective to investigate the bioactivities of endemic leaf extracts. Herein, seven Mascarene endemic plants leaves were extracted and evaluated for their in vitro antioxidant properties and antiproliferative effects on a panel of cancer cell lines, using methyl thiazolyl diphenyl-tetrazolium bromide (MTT) and clonogenic cell survival assays. Flow cytometry and comet assay were used to investigate the cell cycle and DNA damaging effects, respectively. Bioassay guided-fractionation coupled with liquid chromatography mass spectrometry (MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopic analysis were used to identify the bioactive compounds. Among the seven plants tested, Terminaliabentzoë was comparatively the most potent antioxidant extract, with significantly (p < 0.05) higher cytotoxic activities. T. bentzoë extract further selectively suppressed the growth of human hepatocellular carcinoma cells and significantly halted the cell cycle progression in the G0/G1 phase, decreased the cells' replicative potential and induced significant DNA damage. In total, 10 phenolic compounds, including punicalagin and ellagic acid, were identified and likely contributed to the extract's potent antioxidant and cytotoxic activities. These results established a promising basis for further in-depth investigations into the potential use of T. bentzoë as a supportive therapy in cancer management.
Collapse
Affiliation(s)
- Nawraj Rummun
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, 97490 Sainte-Clotilde, Reunion, France; (P.R.); (E.B.)
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, 97490 Sainte-Clotilde, Reunion, France; (P.R.); (E.B.)
| | - Elisabete Pires
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - James McCullagh
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - Timothy D. W. Claridge
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - Theeshan Bahorun
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
- Correspondence: (W.-W.L.); (V.S.N.)
| | - Vidushi S. Neergheen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
- Correspondence: (W.-W.L.); (V.S.N.)
| |
Collapse
|
14
|
Yin H, Wang L, Shi Y, Qian C, Zhou H, Wang W, Ma XF, Tran LSP, Zhang B. The East Asian Winter Monsoon Acts as a Major Selective Factor in the Intraspecific Differentiation of Drought-Tolerant Nitraria tangutorum in Northwest China. PLANTS 2020; 9:plants9091100. [PMID: 32867062 PMCID: PMC7570063 DOI: 10.3390/plants9091100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The influence of Quaternary climate fluctuation on the geographical structure and genetic diversity of species distributed in the regions of the Qinghai–Tibet Plateau (QTP) has been well established. However, the underlying role of the East Asian monsoon system (EAMS) in shaping the genetic structure of the population and the demography of plants located in the arid northwest of China has not been explored. In the present study, Nitraria tangutorum, a drought-tolerant desert shrub that is distributed in the EAMS zone and has substantial ecological and economic value, was profiled to better understand the influence of EAMS evolution on its biogeographical patterns and demographic history. Thus, the phylogeographical structure and historical dynamics of this plant species were elucidated using its five chloroplast DNA (cpDNA) fragments. Hierarchical structure analysis revealed three distinct, divergent lineages: West, East-A, and East-B. The molecular dating was carried out using a Bayesian approach to estimate the time of intraspecies divergence. Notably, the eastern region, which included East-A and East-B lineages, was revealed to be the original center of distribution and was characterized by a high level of genetic diversity, with the intraspecific divergence time dated to be around 2.53 million years ago (Ma). These findings, combined with the data obtained by ecological niche modeling analysis, indicated that the East lineages have undergone population expansion and differentiation, which were closely correlated with the development of the EAMS, especially the East Asian winter monsoon (EAWM). The West lineage appears to have originated from the migration of N. tangutorum across the Hexi corridor at around 1.85 Ma, and subsequent colonization of the western region. These results suggest that the EAWM accelerated the population expansion of N. tangutorum and subsequent intraspecific differentiation. These findings collectively provide new information on the impact of the evolution of the EAMS on intraspecific diversification and population demography of drought-tolerant plant species in northwest China.
Collapse
Affiliation(s)
- Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Lirong Wang
- College of Ecological Environment and Resources, Qinghai Nationalities University, Xining 810007, China;
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; (C.Q.); (X.-F.M.)
| | - Huakun Zhou
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China;
| | - Wenying Wang
- Department of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; (C.Q.); (X.-F.M.)
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-19 22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Correspondence: (L.-S.P.T.); (B.Z.)
| | - Benyin Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
- Correspondence: (L.-S.P.T.); (B.Z.)
| |
Collapse
|
15
|
Ortigoza G, Brauer F, Neri I. Modelling and simulating Chikungunya spread with an unstructured triangular cellular automata. Infect Dis Model 2020; 5:197-220. [PMID: 32021947 PMCID: PMC6993010 DOI: 10.1016/j.idm.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
In this work we propose a mathematical model to simulate Chikungunya spread; the spread model is implemented in a C++ cellular automata code defined on unstructured triangular grids and space visualizations are performed with Python. In order to simulate the time space spread of the Chikungunya diseases we include assumptions such as: heterogeneous human and vector densities, population mobility, geographically localized points of infection using geographical information systems, changes in the probabilities of infection, extrinsic incubation and mosquito death rate due to environmental variables. Numerical experiments reproduce the qualitative behavior of diseases spread and provide an insight to develop strategies to prevent the diseases spread.
Collapse
Affiliation(s)
- Gerardo Ortigoza
- Facultad de Ingeniería,Universidad Veracruzana, Boca Del Río, Ver, Mexico
| | - Fred Brauer
- Mathematics Department, University of British Columbia, Vancouver, B.C, Canada
| | - Iris Neri
- Maestría en Gestión Integrada de Cuencas, Universidad Autónoma de Querétaro, Mexico
| |
Collapse
|
16
|
Liu X, Ma Y, Wan Y, Li Z, Ma H. Genetic Diversity of Phyllanthus emblica From Two Different Climate Type Areas. FRONTIERS IN PLANT SCIENCE 2020; 11:580812. [PMID: 33329643 PMCID: PMC7734338 DOI: 10.3389/fpls.2020.580812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Phyllanthus emblica L. is a well-known medicinal and edible plant species. Various medicinal compounds in the fruit make it an important medicinal and promising economic material. The plant is widely distributed in Southwestern and Southern China. However, due to massive deforestation and land reclamation as well as deterioration of its natural habitat in recent years, the wild resources of this species have been sharply reduced, and it is rare to see large-scale wild P. emblica forests so far. In order to effectively protect and rationally utilize this species, we investigated the genetic diversity, genetic structure, and population dynamics of 260 individuals from 10 populations of P. emblica sampled from the dry climate area in Yunnan and wet climate area in Guangxi using 20 polymorphic EST-SSR markers. We found high genetic diversity at the species level (He = 0.796) and within populations (He = 0.792), but low genetic differentiation among populations (F ST = 0.084). In addition, most genetic variation existed within populations (92.44%) compared with variation among the populations (7.56%). Meanwhile, the NJ tree, STRUCTURE, and hierarchical analysis suggested that the sampled individuals were clustered into two distinct genetic groups. In contrast, the genetic diversity of the dry climate group (He = 0.786, Na = 11.790, I = 1.962) was higher than that of the wet climate group (He = 0.673, Na = 9.060, I = 1.555), which might be attributed to the combined effects of altitude, precipitation, and geographic distance. Interestingly, only altitude and precipitation had significant pure effects on the genetic diversity, and the former was slightly stronger. In addition, DIYABC analysis suggested the effective population size of P. emblica might have contracted in the beginning of the Last Glacial Maximum. These genetic features provided vital information for the conservation and sustainable development of genetic resources of P. emblica, and they also provided new insights and guidelines for ecological restoration and economic development in dry-hot valleys of Yunnan and karst areas in Guangxi.
Collapse
Affiliation(s)
- Xiongfang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Youming Wan
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Zhenghong Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Hong Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
- *Correspondence: Hong Ma,
| |
Collapse
|
17
|
Garot E, Joët T, Combes MC, Severac D, Lashermes P. Plant population dynamics on oceanic islands during the Late Quaternary climate changes: genetic evidence from a tree species (Coffea mauritiana) in Reunion Island. THE NEW PHYTOLOGIST 2019; 224:974-986. [PMID: 31291469 DOI: 10.1111/nph.16052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
Past climatic fluctuations have played a major role in shaping the current plant biodiversity. Although harbouring an exceptional biota, oceanic islands have received little attention in studies on species demographic history and past vegetation patterns. We investigated the impact of past climatic changes on the effective population size of a tree (Coffea mauritiana) that is endemic to Reunion Island, located in the south-western Indian Ocean (SWIO). Demographic changes were inferred using summary statistics calculated from genomic data. Using ecological niche modelling and the current distribution of genetic diversity, the paleodistribution of the species was also assessed. A reduction in the effective population size of C. mauritiana during the last glaciation maximum was inferred. The distribution of the species was reduced on the western side of the island, due to low rainfall. It appeared that a major reduction in rainfall and a slight temperature decrease prevailed in the SWIO. Our findings indicated that analyses on the current patterns of intraspecific genetic variations can efficiently contribute to past climatic changes characterisation in remote islands. Identifying area with higher resilience in oceanic islands could provide guidance in forest management and conservation faced to the global climate change.
Collapse
Affiliation(s)
- Edith Garot
- IRD, University of Montpellier, DIADE, 34394, Montpellier, France
| | - Thierry Joët
- IRD, University of Montpellier, DIADE, 34394, Montpellier, France
| | | | - Dany Severac
- MGX, University of Montpellier, CNRS, INSERM, 34095, Montpellier, France
| | | |
Collapse
|