1
|
Gering E, Johnsson M, Theunissen D, Martin Cerezo ML, Steep A, Getty T, Henriksen R, Wright D. Signals of selection and ancestry in independently feral Gallus gallus populations. Mol Ecol 2024; 33:e17336. [PMID: 38553993 DOI: 10.1111/mec.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 10/18/2024]
Abstract
Recent work indicates that feralisation is not a simple reversal of domestication, and therefore raises questions about the predictability of evolution across replicated feral populations. In the present study we compare genes and traits of two independently established feral populations of chickens (Gallus gallus) that inhabit archipelagos within the Pacific and Atlantic regions to test for evolutionary parallelism and/or divergence. We find that feral populations from each region are genetically closer to one another than other domestic breeds, despite their geographical isolation and divergent colonisation histories. Next, we used genome scans to identify genomic regions selected during feralisation (selective sweeps) in two independently feral populations from Bermuda and Hawaii. Three selective sweep regions (each identified by multiple detection methods) were shared between feral populations, and this overlap is inconsistent with a null model in which selection targets are randomly distributed throughout the genome. In the case of the Bermudian population, many of the genes present within the selective sweeps were either not annotated or of unknown function. Of the nine genes that were identifiable, five were related to behaviour, with the remaining genes involved in bone metabolism, eye development and the immune system. Our findings suggest that a subset of feralisation loci (i.e. genomic targets of recent selection in feral populations) are shared across independently established populations, raising the possibility that feralisation involves some degree of parallelism or convergence and the potential for a shared feralisation 'syndrome'.
Collapse
Affiliation(s)
- E Gering
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - M Johnsson
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - D Theunissen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - M L Martin Cerezo
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - A Steep
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - T Getty
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - R Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - D Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Wu ZY, Chapman MA, Liu J, Milne RI, Zhao Y, Luo YH, Zhu GF, Cadotte MW, Luan MB, Fan PZ, Monro AK, Li ZP, Corlett RT, Li DZ. Genomic variation, environmental adaptation, and feralization in ramie, an ancient fiber crop. PLANT COMMUNICATIONS 2024; 5:100942. [PMID: 38720463 PMCID: PMC11369781 DOI: 10.1016/j.xplc.2024.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
Feralization is an important evolutionary process, but the mechanisms behind it remain poorly understood. Here, we use the ancient fiber crop ramie (Boehmeria nivea (L.) Gaudich.) as a model to investigate genomic changes associated with both domestication and feralization. We first produced a chromosome-scale de novo genome assembly of feral ramie and investigated structural variations between feral and domesticated ramie genomes. Next, we gathered 915 accessions from 23 countries, comprising cultivars, major landraces, feral populations, and the wild progenitor. Based on whole-genome resequencing of these accessions, we constructed the most comprehensive ramie genomic variation map to date. Phylogenetic, demographic, and admixture signal detection analyses indicated that feral ramie is of exoferal or exo-endo origin, i.e., descended from hybridization between domesticated ramie and the wild progenitor or ancient landraces. Feral ramie has higher genetic diversity than wild or domesticated ramie, and genomic regions affected by natural selection during feralization differ from those under selection during domestication. Ecological analyses showed that feral and domesticated ramie have similar ecological niches that differ substantially from the niche of the wild progenitor, and three environmental variables are associated with habitat-specific adaptation in feral ramie. These findings advance our understanding of feralization, providing a scientific basis for the excavation of new crop germplasm resources and offering novel insights into the evolution of feralization in nature.
Collapse
Affiliation(s)
- Zeng-Yuan Wu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jie Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Ying Zhao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guang-Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Ming-Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China.
| | - Peng-Zhen Fan
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Alex K Monro
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK
| | - Zhi-Peng Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Richard T Corlett
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK; Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
3
|
Kong S, Cai B, Li X, Zhou Z, Fang X, Yang X, Cai D, Luo X, Guo S, Nie Q. Assessment of selective breeding effects and selection signatures in Qingyuan partridge chicken and its strains. Poult Sci 2024; 103:103626. [PMID: 38513549 PMCID: PMC10966089 DOI: 10.1016/j.psj.2024.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Qingyuan partridge chicken (QYM) is a highly regarded native breed in China, highly esteemed for its exceptional breeding characteristics. However, the investigation into the selection signatures and its strains remains largely unexplored. In this study, blood sampling, DNA extracting, and high-depth resequencing were performed in 27 QYMs. Integrating the genomic data of 14 chicken (70 individuals) breeds from other researches, to analyze the genetic structure, selection signatures, and effects of selective breeding within QYM and its 3 strains (QYMA, QYMB, and QYMC). Population structure analysis revealed an independent QYM cluster, which exhibited distinct from other breeds, with each of its 3 strains displaying distinct clustering patterns. Linkage disequilibrium analysis highlighted QYMB's notably slower decay rate, potentially influenced by selection pressure from various production indicators. Examination of selection signatures uncovered genes and genetic mechanisms associated with genomic changes resulting from extensive selective breeding within the QYM and its strains. Intriguingly, diacylglycerol kinase beta (DGKB) and catenin alpha 2 (CTNNA2) were identified as commonly selected genes across the 3 QYM strains, linked to energy metabolism, muscle development, and fat metabolism. Our research validates the substantial impact of selective breeding on QYM and its strains, concurrently identifying genomic regions and signaling pathways associated with their distinctive characters. This research also establishes a fundamental framework for advancing yellow-feathered broiler breeding strategies.
Collapse
Affiliation(s)
- Shaofen Kong
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaojing Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiang Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Danfeng Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xuehui Luo
- Qingyuan Chicken Research Institute, Qingcheng District, Qingyuan City, China
| | - Suyin Guo
- Animal Epidemic Prevention Center, Qingcheng District, Qingyuan City, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|