1
|
Lv M, Zhang L, Wang Y, Ma L, Yang Y, Zhou X, Wang L, Yu X, Li S. Floral volatile benzenoids/phenylpropanoids: biosynthetic pathway, regulation and ecological value. HORTICULTURE RESEARCH 2024; 11:uhae220. [PMID: 39398951 PMCID: PMC11469922 DOI: 10.1093/hr/uhae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/28/2024] [Indexed: 10/15/2024]
Abstract
Benzenoids/phenylpropanoids, the second most diverse group of plant volatiles, exhibit significant structural diversity and play crucial roles in attracting pollinators and protecting against pathogens, insects, and herbivores. This review summarizes their complex biosynthetic pathways and regulatory mechanisms, highlighting their links to plant growth, development, hormone levels, circadian rhythms, and flower coloration. External factors like light, humidity, and temperature also influence their biosynthesis. Their ecological value is discussed, offering insights for enhancing floral scent, pollinator attraction, pest resistance, and metabolic engineering through genetic modification.
Collapse
Affiliation(s)
- Mengwen Lv
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing 100083, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Ling Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xian Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Yu
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing 100083, China
| | - Shanshan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Guo Y, Chen X, Li J, Wang Q, Zhang S, Liu N, Zhang Y, Zhang T. Single-cell RNA sequencing reveals a high-resolution cell atlas of petals in Prunus mume at different flowering development stages. HORTICULTURE RESEARCH 2024; 11:uhae189. [PMID: 39247887 PMCID: PMC11377181 DOI: 10.1093/hr/uhae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/05/2024] [Indexed: 09/10/2024]
Abstract
Prunus mume (mei), a traditional ornamental plant in China, is renowned for its fragrant flowers, primarily emitted by its petals. However, the cell types of mei petals and where floral volatile synthesis occurs are rarely reported. The study used single-cell RNA sequencing to characterize the gene expression landscape in petals of P. mume 'Fenhong Zhusha' at budding stage (BS) and full-blooming stage (FS). Six major cell types of petals were identified: epidermal cells (ECs), parenchyma cells (PCs), xylem parenchyma cells, phloem parenchyma cells, xylem vessels and fibers, and sieve elements and companion cells complex. Cell-specific marker genes in each cell type were provided. Floral volatiles from mei petals were measured at four flowering development stages, and their emissions increased from BS to FS, and decreased at the withering stage. Fifty-eight differentially expressed genes (DEGs) in benzenoid/phenylpropanoid pathway were screened using bulk RNA-seq data. Twenty-eight DEGs expression increased from BS to FS, indicating that they might play roles in floral volatile synthesis in P. mume, among which PmBAHD3 would participate in benzyl acetate synthesis. ScRNA-seq data showed that 27 DEGs mentioned above were expressed variously in different cell types. In situ hybridization confirmed that PmPAL2, PmCAD1, PmBAHD3,5, and PmEGS1 involved in floral volatile synthesis in mei petals are mainly expressed in EC, PC, and most vascular tissues, consistent with scRNA-seq data. The result indicates that benzyl acetate and eugenol, the characteristic volatiles in mei, are mostly synthesized in these cell types. The first petal single-cell atlas was constructed, offering new insights into the molecular mechanism of floral volatile synthesis.
Collapse
Affiliation(s)
- Yuhong Guo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiling Chen
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinhong Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nuoxuan Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengxun Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Zhang W, Li J, Dong Y, Huang Y, Qi Y, Bai H, Li H, Shi L. Genome-wide identification and expression of BAHD acyltransferase gene family shed novel insights into the regulation of linalyl acetate and lavandulyl acetate in lavender. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154143. [PMID: 38064887 DOI: 10.1016/j.jplph.2023.154143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024]
Abstract
The BAHD acyltransferase superfamily has a variety of biological functions, especially in catalyzing the synthesis of ester compounds and improving plant stress resistance. Linalyl acetate and lavandulyl acetate, the most important volatile esters in lavender, are generated by LaBAHDs. However, the systematic identification, expression characteristics of LaBAHD genes and their correlations with ester formation remain elusive. Here, 166 LaBAHD genes were identified from the lavender genome. Based on detailed phylogenetic analysis, the LaBAHD family genes were divided into five groups, among which the LaBAHDs involved in volatile ester biosynthesis belong to the IIIa and Va clades. Whole-genome duplications (WGDs) and tandem duplications (TDs) jointly drive the expansion of LaBAHD superfamily. The promoter regions of LaBAHDs contained a variety of stress- and hormone-related motifs, as well as binding sites with five types of transcription factors (TFs). Then, linalyl acetate- and lavandulyl acetate-regulated coexpression modules were established and some candidate TFs that may function in inducing ester formation were identified. Based on the correlation analysis between the ester contents and expression profiles of BAHD genes in different tissues, five candidate genes were screened for further examination. Drought, salt and MeJA treatments increased the accumulation of linalyl acetate and lavandulyl acetate, and induced the expression of LaBAHDs. Our results indicated that LaBAHD57, LaBAHD63, LaBAHD104, LaBAHD105 and LaBAHD119 are crucial candidate genes involved in linalyl acetate and lavandulyl acetate biosynthesis. Our findings offer a theoretical foundation for further studying the specific biological functions of LaBAHD family and improving the quality of lavender essential oil.
Collapse
Affiliation(s)
- Wenying Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 00093, China; China National Botanical Garden, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jingrui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 00093, China; China National Botanical Garden, Beijing, 100093, China.
| | - Yanmei Dong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 00093, China; China National Botanical Garden, Beijing, 100093, China.
| | - Yeqin Huang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 00093, China; China National Botanical Garden, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue Qi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 00093, China; China National Botanical Garden, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 00093, China; China National Botanical Garden, Beijing, 100093, China.
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 00093, China; China National Botanical Garden, Beijing, 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 00093, China; China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
4
|
Zhang P, Ma X, Zhang Q, Guo Z, Hao J, Zhang Z, Sun M, Liu Y. Determination of Volatile Organic Compounds and Endogenous Extracts and Study of Expression Patterns of TPS and BSMT in the Flowers of Seven Lilium Cultivars. Molecules 2023; 28:7938. [PMID: 38138428 PMCID: PMC10745987 DOI: 10.3390/molecules28247938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Lily is one of the most important cut flowers in the world, with a rich floral fragrance. To further explore the fragrance emission mechanisms of lily cultivars, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and organic solvent extraction-gas chromatography-mass spectrometry (OSE-GC-MS) were used to unveil the volatile organic compounds (VOCs) and endogenous extracts of seven lily cultivars. Furthermore, real-time quantitative PCR (qRT-PCR) was used to determine the expression levels of two key genes (TPS and BSMT) related to the biosynthesis of monoterpenoids and methyl benzoate. The results show that forty-five VOCs were detected in the petals of seven lily cultivars, and the main compounds were monoterpenoids and phenylpropanoids/benzenoids. Dichloromethane was the best solvent for extracting the endogenous extracts of Lilium 'Viviana' petals and eighteen endogenous extracts were detected using dichloromethane to extract the petals of seven lily cultivars. Each compound's emission ratio (natural logarithm of the ratio of VOC content to endogenous extract content) was calculated, and linear regression analyses between emission ratios and boiling points were conducted. Significant linear negative correlations existed between the emission ratios and boiling points of compounds, and the regression equations' coefficients of determination (R2) were all greater than 0.7. TPS was expressed highly in 'Viviana', 'Pink News', and 'Palazzo', and BSMT was expressed highly in 'Pink News' and 'Palazzo'. Correlation analyses between the gene expression levels and the monoterpenoids and methyl benzoate contents found that the TPS expression levels have strong positive correlations with monoterpenoids content, while no correlations were found between the expression levels of BSMT and the contents of methyl benzoate. This study lays the foundation for research on the release patterns of VOCs in the flowers of Lilium, and the breeding of lilies for their floral fragrance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (P.Z.); (X.M.); (Q.Z.); (Z.G.); (J.H.); (Z.Z.)
| | - Yan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (P.Z.); (X.M.); (Q.Z.); (Z.G.); (J.H.); (Z.Z.)
| |
Collapse
|
5
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Ding A, Bao F, Yuan X, Wang J, Cheng T, Zhang Q. Integrative Analysis of Metabolome and Transcriptome Revealed Lutein Metabolism Contributed to Yellow Flower Formation in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2023; 12:3333. [PMID: 37765497 PMCID: PMC10537319 DOI: 10.3390/plants12183333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Prunus mume is a famous ornamental woody tree with colorful flowers. P. mume with yellow flowers is one of the most precious varieties. Regretfully, metabolites and regulatory mechanisms of yellow flowers in P. mume are still unclear. This hinders innovation of flower color breeding in P. mume. To elucidate the metabolic components and molecular mechanisms of yellow flowers, we analyzed transcriptome and metabolome between 'HJH' with yellow flowers and 'ZLE' with white flowers. Comparing the metabolome of the two varieties, we determined that carotenoids made contributions to the yellow flowers rather than flavonoids. Lutein was the key differential metabolite to cause yellow coloration of 'HJH'. Transcriptome analysis revealed significant differences in the expression of carotenoid cleavage dioxygenase (CCD) between the two varieties. Specifically, the expression level of PmCCD4 was higher in 'ZLE' than that in 'HJH'. Moreover, we identified six major transcription factors that probably regulated PmCCD4 to affect lutein accumulation. We speculated that carotenoid cleavage genes might be closely related to the yellow flower phenotype in P. mume. Further, the coding sequence of PmCCD4 has been cloned from the 'HJH' petals, and bioinformatics analysis revealed that PmCCD4 possessed conserved histidine residues, ensuring its enzymatic activity. PmCCD4 was closely related to PpCCD4, with a homology of 98.16%. Instantaneous transformation analysis in petal protoplasts of P. mume revealed PmCCD4 localization in the plastid. The overexpression of PmCCD4 significantly reduced the carotenoid content in tobacco plants, especially the lutein content, indicating that lutein might be the primary substrate for PmCCD4. We speculated that PmCCD4 might be involved in the cleavage of lutein in plastids, thereby affecting the formation of yellow flowers in P. mume. This work could establish a material and molecular basis of molecular breeding in P. mume for improving the flower color.
Collapse
Affiliation(s)
- Aiqin Ding
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Fei Bao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xi Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Dong Y, Duan S, Xia Q, Liang Z, Dong X, Margaryan K, Musayev M, Goryslavets S, Zdunić G, Bert PF, Lacombe T, Maul E, Nick P, Bitskinashvili K, Bisztray GD, Drori E, De Lorenzis G, Cunha J, Popescu CF, Arroyo-Garcia R, Arnold C, Ergül A, Zhu Y, Ma C, Wang S, Liu S, Tang L, Wang C, Li D, Pan Y, Li J, Yang L, Li X, Xiang G, Yang Z, Chen B, Dai Z, Wang Y, Arakelyan A, Kuliyev V, Spotar G, Girollet N, Delrot S, Ollat N, This P, Marchal C, Sarah G, Laucou V, Bacilieri R, Röckel F, Guan P, Jung A, Riemann M, Ujmajuridze L, Zakalashvili T, Maghradze D, Höhn M, Jahnke G, Kiss E, Deák T, Rahimi O, Hübner S, Grassi F, Mercati F, Sunseri F, Eiras-Dias J, Dumitru AM, Carrasco D, Rodriguez-Izquierdo A, Muñoz G, Uysal T, Özer C, Kazan K, Xu M, Wang Y, Zhu S, Lu J, Zhao M, Wang L, Jiu S, Zhang Y, Sun L, Yang H, Weiss E, Wang S, Zhu Y, Li S, Sheng J, Chen W. Dual domestications and origin of traits in grapevine evolution. Science 2023; 379:892-901. [PMID: 36862793 DOI: 10.1126/science.add8655] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Qiuju Xia
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Kristine Margaryan
- Institute of Molecular Biology, NAS RA, 0014 Yerevan, Armenia.,Yerevan State University, 0014 Yerevan, Armenia
| | - Mirza Musayev
- Genetic Resources Institute, Azerbaijan National Academy of Sciences, AZ1106 Baku, Azerbaijan
| | | | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Pierre-François Bert
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Thierry Lacombe
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Erika Maul
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | - György Dénes Bisztray
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Elyashiv Drori
- Department of Chemical Engineering, Ariel University, 40700 Ariel, Israel.,Eastern Regional R&D Center, 40700 Ariel, Israel
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milano, 20133 Milano, Italy
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, I.P./INIAV-Dois Portos, 2565-191 Torres Vedras, Portugal.,Green-it Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Carmen Florentina Popescu
- National Research and Development Institute for Biotechnology in Horticulture, Stefanesti, 117715 Arges, Romania
| | - Rosa Arroyo-Garcia
- Center for Plant Biotechnology and Genomics, UPM-INIA/CSIC, Pozuelo de Alarcon, 28223 Madrid, Spain
| | | | - Ali Ergül
- Biotechnology Institute, Ankara University, 06135 Ankara, Turkey
| | - Yifan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Shufen Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Liu Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Chunping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Dawei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Yunbing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Jingxian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Xuzhen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Guisheng Xiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Zijiang Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Baozheng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Arsen Arakelyan
- Institute of Molecular Biology, NAS RA, 0014 Yerevan, Armenia.,Armenian Bioinformatics Institute, 0014 Yerevan, Armenia.,Biomedicine and Pharmacy, RAU, 0051 Yerevan, Armenia
| | - Varis Kuliyev
- Institute of Bioresources, Nakhchivan Branch of the Azerbaijan National Academy of Sciences, AZ7000 Nakhchivan, Azerbaijan
| | - Gennady Spotar
- National Institute of Viticulture and Winemaking Magarach, Yalta 298600, Crimea
| | - Nabil Girollet
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Nathalie Ollat
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Patrice This
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Cécile Marchal
- Vassal-Montpellier Grapevine Biological Resources Center, INRAE, 34340 Marseillan-Plage, France
| | - Gautier Sarah
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Valérie Laucou
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Roberto Bacilieri
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Franco Röckel
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Pingyin Guan
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andreas Jung
- Historische Rebsorten-Sammlung, Rebschule (K39), 67599 Gundheim, Germany
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Levan Ujmajuridze
- LEPL Scientific Research Center of Agriculture, 0159 Tbilisi, Georgia
| | | | - David Maghradze
- LEPL Scientific Research Center of Agriculture, 0159 Tbilisi, Georgia
| | - Maria Höhn
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Gizella Jahnke
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Erzsébet Kiss
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Tamás Deák
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Oshrit Rahimi
- Department of Chemical Engineering, Ariel University, 40700 Ariel, Israel
| | - Sariel Hübner
- Galilee Research Institute (Migal), Tel-Hai Academic College, 12210 Upper Galilee, Israel
| | - Fabrizio Grassi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.,NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Francesco Mercati
- Institute of Biosciences and Bioresources, National Research Council, 90129 Palermo, Italy
| | - Francesco Sunseri
- Department AGRARIA, University Mediterranea of Reggio Calabria, Reggio 89122 Calabria, Italy
| | - José Eiras-Dias
- Instituto Nacional de Investigação Agrária e Veterinária, I.P./INIAV-Dois Portos, 2565-191 Torres Vedras, Portugal.,Green-it Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Anamaria Mirabela Dumitru
- National Research and Development Institute for Biotechnology in Horticulture, Stefanesti, 117715 Arges, Romania
| | - David Carrasco
- Center for Plant Biotechnology and Genomics, UPM-INIA/CSIC, Pozuelo de Alarcon, 28223 Madrid, Spain
| | | | | | - Tamer Uysal
- Viticulture Research Institute, Ministry of Agriculture and Forestry, 59200 Tekirdağ, Turkey
| | - Cengiz Özer
- Viticulture Research Institute, Ministry of Agriculture and Forestry, 59200 Tekirdağ, Turkey
| | - Kemal Kazan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Meilong Xu
- Institute of Horticulture, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiang Lu
- Center for Viticulture and Oenology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Maoxiang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institutes, CAAS, Zhengzhou 450009, China
| | - Lei Sun
- Zhengzhou Fruit Research Institutes, CAAS, Zhengzhou 450009, China
| | | | - Ehud Weiss
- The Martin (Szusz) Department of Land of Israel Studies and Archaeology, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| |
Collapse
|
8
|
Li T, Zhao X, Cao X. Volatile Metabolome and Aroma Differences of Six Cultivars of Prunus mume Blossoms. PLANTS (BASEL, SWITZERLAND) 2023; 12:308. [PMID: 36679020 PMCID: PMC9863704 DOI: 10.3390/plants12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Prunus mume is a traditional Chinese plant with high ornamental and application values due to its very early blooming and unique fragrance. Long-term breeding and cultivation have resulted in a variety of P. mume blossoms and have made their exploitation more possible. Existing studies on the volatile metabolome and aroma of P. mume blossoms are limited. In this study, six extensively planted cultivars of P. mume blossoms, including Gulihong (GLH), Yudie (YD), LvE (LE), Dongfang Zhusha (DFZS), Jiangmei (JM), and Gongfen (GF), were investigated for their differences in terms of volatile metabolome, as well as their aroma characteristics based on the strategies and methods of metabolomics. The volatile metabolites were analyzed using HS-SPME-GC-MS technique. A total of eighty-nine compounds were detected and sixty-five of them were tentatively identified, including thirty-seven phenylpropanoids/benzenes, seventeen fatty acid derivatives, ten terpenoids, and one other compound. YD contains the most volatile metabolites in terms of number and amounts, which impart more abundant aromas to this cultivar. Fifteen differential compounds were screened through the untargeted metabolic analysis of twenty-nine samples by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), while nine compounds were screened based on the odor activity value (OAV) analysis of the sixty-five identified compounds. GLH and GF, JM and LE were found to be more similar to each other based on chemometrics analysis of both volatile contents and OAVs, while YD and DFZS were markedly different from other cultivars. Six main metabolites, including benzaldehyde, methyl benzoate, benzyl acetate, eugenol, (E)-cinnamic alcohol, and 4-allylphenol, together with 2-nonenal, 3,4-dimethoxytoluene, and trans-β-Ionone were screened as differential compounds, owing to their higher contents and/or lower olfactory threshold, which endow an almond, cherry, phenolic, wintergreen, cananga odorata, floral, jasmine, hyacinth, cinnamon, clove, woody, medicinal, and violet fragrance to each variety, and greatly contribute to the aroma differences of six cultivars of P. mume blossom.
Collapse
|
9
|
Plant DNA Methylation: An Epigenetic Mark in Development, Environmental Interactions, and Evolution. Int J Mol Sci 2022; 23:ijms23158299. [PMID: 35955429 PMCID: PMC9368846 DOI: 10.3390/ijms23158299] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 01/06/2023] Open
Abstract
DNA methylation is an epigenetic modification of the genome involved in the regulation of gene expression and modulation of chromatin structure. Plant genomes are widely methylated, and the methylation generally occurs on the cytosine bases through the activity of specific enzymes called DNA methyltransferases. On the other hand, methylated DNA can also undergo demethylation through the action of demethylases. The methylation landscape is finely tuned and assumes a pivotal role in plant development and evolution. This review illustrates different molecular aspects of DNA methylation and some plant physiological processes influenced by this epigenetic modification in model species, crops, and ornamental plants such as orchids. In addition, this review aims to describe the relationship between the changes in plant DNA methylation levels and the response to biotic and abiotic stress. Finally, we discuss the possible evolutionary implications and biotechnological applications of DNA methylation.
Collapse
|
10
|
Zheng T, Li P, Zhuo X, Liu W, Qiu L, Li L, Yuan C, Sun L, Zhang Z, Wang J, Cheng T, Zhang Q. The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. THE NEW PHYTOLOGIST 2022; 235:141-156. [PMID: 34861048 PMCID: PMC9299681 DOI: 10.1111/nph.17894] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/20/2021] [Indexed: 05/22/2023]
Abstract
Plant with naturally twisted branches is referred to as a tortuous-branch plant, which have extremely high ornamental value due to their zigzag shape and the natural twisting of their branches. Prunus mume is an important woody ornamental plant. However, the molecular mechanism underlying this unique trait in Prunus genus is unknown. Here, we present a chromosome-level genome assembly of the cultivated P. mume var. tortuosa created using Oxford Nanopore combined with Hi-C scaffolding, which resulted in a 237.8 Mb genome assembly being anchored onto eight pseudochromosomes. Molecular dating indicated that P. mume is the most recently differentiated species in Prunus. Genes associated with cell division, development and plant hormones play essential roles in the formation of tortuous branch trait. A putative regulatory pathway for the tortuous branch trait was constructed based on gene expression levels. Furthermore, after transferring candidate PmCYCD genes into Arabidopsis thaliana, we found that seedlings overexpressing these genes exhibited curled rosette leaves. Our results provide insights into the evolutionary history of recently differentiated species in Prunus genus, the molecular basis of stem morphology, and the molecular mechanism underlying the tortuous branch trait and highlight the utility of multi-omics in deciphering the properties of P. mume plant architecture.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Ping Li
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Xiaokang Zhuo
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Weichao Liu
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Like Qiu
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Lulu Li
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| |
Collapse
|
11
|
Zhang T, Bao F, Ding A, Yang Y, Cheng T, Wang J, Zhang Q. Comprehensive Analysis of Endogenous Volatile Compounds, Transcriptome, and Enzyme Activity Reveals PmCAD1 Involved in Cinnamyl Alcohol Synthesis in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:820742. [PMID: 35251090 PMCID: PMC8894765 DOI: 10.3389/fpls.2022.820742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Floral scent is an important economic and ornamental trait of Prunus mume. The floral volatiles from most cultivars of P. mume in composition exist significant differences. Cinnamyl alcohol was one of the main floral volatile compounds with distinct abundances in different cultivars, namely, 'Zaohua Lve,' 'Zao Yudie,' 'Fenpi Gongfen,' 'Jiangsha Gongfen,' and 'Fenhong Zhusha.' Based on the determination of endogenous volatiles of full-blooming flowers, vital enzyme activity and transcriptomes were comprehensively analyzed to screen the key potential genes involved in cinnamyl alcohol synthesis. Transcriptome combining with enzyme activity level analysis suggested that the expression levels of three PmCADs were highly correlated with the cinnamyl alcohol dehydrogenase (CAD) enzyme activities in six cultivars. Furthermore, phylogenetic tree and transcriptome analysis suggested that PmCAD1 and PmCAD2 might contribute to the cinnamyl alcohol synthesis. Relative expression analyses and enzyme activity assays showed that PmCAD1 played an important role in cinnamyl alcohol biosynthesis in vitro. Overall, this research lays a theoretical foundation for clarifying comprehensively the molecular biosynthesis mechanism of floral volatiles in P. mume.
Collapse
|
12
|
Yuan X, Ma K, Zhang M, Wang J, Zhang Q. Integration of Transcriptome and Methylome Analyses Provides Insight Into the Pathway of Floral Scent Biosynthesis in Prunus mume. Front Genet 2022; 12:779557. [PMID: 34976015 PMCID: PMC8714837 DOI: 10.3389/fgene.2021.779557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is a common epigenetic modification involved in regulating many biological processes. However, the epigenetic mechanisms involved in the formation of floral scent have rarely been reported within a famous traditional ornamental plant Prunus mume emitting pleasant fragrance in China. By combining whole-genome bisulfite sequencing and RNA-seq, we determined the global change in DNA methylation and expression levels of genes involved in the biosynthesis of floral scent in four different flowering stages of P. mume. During flowering, the methylation status in the “CHH” sequence context (with H representing A, T, or C) in the promoter regions of genes showed the most significant change. Enrichment analysis showed that the differentially methylated genes (DMGs) were widely involved in eight pathways known to be related to floral scent biosynthesis. As the key biosynthesis pathway of the dominant volatile fragrance of P. mume, the phenylpropane biosynthesis pathway contained the most differentially expressed genes (DEGs) and DMGs. We detected 97 DMGs participated in the most biosynthetic steps of the phenylpropane biosynthesis pathway. Furthermore, among the previously identified genes encoding key enzymes in the biosynthesis of the floral scent of P. mume, 47 candidate genes showed an expression pattern matching the release of floral fragrances and 22 of them were differentially methylated during flowering. Some of these DMGs may or have already been proven to play an important role in biosynthesis of the key floral scent components of P. mume, such as PmCFAT1a/1c, PmBEAT36/37, PmPAL2, PmPAAS3, PmBAR8/9/10, and PmCNL1/3/5/6/14/17/20. In conclusion, our results for the first time revealed that DNA methylation is widely involved in the biosynthesis of floral scent and may play critical roles in regulating the floral scent biosynthesis of P. mume. This study provided insights into floral scent metabolism for molecular breeding.
Collapse
Affiliation(s)
- Xi Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Kaifeng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Wang X, Wu Y, Zhu H, Zhang H, Xu J, Fu Q, Bao M, Zhang J. Headspace Volatiles and Endogenous Extracts of Prunus mume Cultivars with Different Aroma Types. Molecules 2021; 26:molecules26237256. [PMID: 34885838 PMCID: PMC8658796 DOI: 10.3390/molecules26237256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Prunus mume is a traditional ornamental plant, which owed a unique floral scent. However, the diversity of the floral scent in P. mume cultivars with different aroma types was not identified. In this study, the floral scent of eight P. mume cultivars was studied using headspace solid-phase microextraction (HS-SPME) and organic solvent extraction (OSE), combined with gas chromatography-mass spectrometry (GC-MS). In total, 66 headspace volatiles and 74 endogenous extracts were putatively identified, of which phenylpropanoids/benzenoids were the main volatile organic compounds categories. As a result of GC-MS analysis, benzyl acetate (1.55-61.26%), eugenol (0.87-6.03%), benzaldehyde (5.34-46.46%), benzyl alcohol (5.13-57.13%), chavicol (0-5.46%), and cinnamyl alcohol (0-6.49%) were considered to be the main components in most varieties. However, the volatilization rate of these main components was different. Based on the variable importance in projection (VIP) values in the orthogonal partial least-squares discriminate analysis (OPLS-DA), differential components of four aroma types were identified as biomarkers, and 10 volatile and 12 endogenous biomarkers were screened out, respectively. The odor activity value (OAV) revealed that several biomarkers, including (Z)-2-hexen-1-ol, pentyl acetate, (E)-cinnamaldehyde, methyl salicylate, cinnamyl alcohol, and benzoyl cyanide, contributed greatly to the strong-scented, fresh-scented, sweet-scented, and light-scented types of P. mume cultivars. This study provided a theoretical basis for the floral scent evaluation and breeding of P. mume cultivars.
Collapse
|
14
|
Zheng T, Li P, Li L, Zhang Q. Research advances in and prospects of ornamental plant genomics. HORTICULTURE RESEARCH 2021; 8:65. [PMID: 33790259 PMCID: PMC8012582 DOI: 10.1038/s41438-021-00499-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
The term 'ornamental plant' refers to all plants with ornamental value, which generally have beautiful flowers or special plant architectures. China is rich in ornamental plant resources and known as the "mother of gardens". Genomics is the science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene regulation, and important biological mechanisms based on detailed genome sequence information. Due to the diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and application prospects.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|
16
|
Bao F, Zhang T, Ding A, Ding A, Yang W, Wang J, Cheng T, Zhang Q. Metabolic, Enzymatic Activity, and Transcriptomic Analysis Reveals the Mechanism Underlying the Lack of Characteristic Floral Scent in Apricot Mei Varieties. FRONTIERS IN PLANT SCIENCE 2020; 11:574982. [PMID: 33193512 PMCID: PMC7642261 DOI: 10.3389/fpls.2020.574982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/30/2020] [Indexed: 06/01/2023]
Abstract
Apricot mei, a hybrid of Prunus mume and Prunus sibirica, usually has greater cold resistance than P. mume; however, most varieties of Apricot mei lack the characteristic floral scent of P. mume. The volatile and intracellular metabolites, activity levels of key enzymes, and transcriptomes of blooming flowers were comprehensively investigated in five varieties of P. mume. Benzyl acetate and eugenol were determined to be the main components of the P. mume floral scent. However, benzyl benzoate and benzyl alcohol benzoyltransferase activity was detected in only the low-fragrance varieties "Dan Fenghou" and "Yanxing." No benzyl alcohol or benzaldehyde reductase (BAR) activity was detected in the non-fragrant variety "Fenghou." PmBAR1 and PmBAR3 were identified as the key genes responsible for BAR activity. The lack of benzyl alcohol synthesis in the "Fenghou" variety was caused by low activity of PmBAR1-Fen and low expression of PmBAR3. The 60-aa segment at the N-terminus of PmBAR3 was found to play an important role in its enzymatic activity. Correlation tests between floral scent metabolites and the transcriptomes of the five different scented varieties showed that some transcripts associated with hormones, stresses, posttranslational modifications and transporters may also play important regulatory roles in floral scent metabolism in the different varieties.
Collapse
Affiliation(s)
- Fei Bao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tengxun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Anqi Ding
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Aiqin Ding
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
17
|
Zhang T, Bao F, Yang Y, Hu L, Ding A, Ding A, Wang J, Cheng T, Zhang Q. A Comparative Analysis of Floral Scent Compounds in Intraspecific Cultivars of Prunus mume with Different Corolla Colours. Molecules 2019; 25:molecules25010145. [PMID: 31905838 PMCID: PMC6982963 DOI: 10.3390/molecules25010145] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Prunus mume is the only fragrant flowering species of Prunus. According to the previous studies, benzyl acetate and eugenol dominate its floral scent. However, the diversity of its floral scents remains to be elucidated. In this work, the floral volatiles emitted from eight intraspecific cultivars of P. mume with white, pink and red flowers, were collected and analyzed using headspace solid-phase microextraction combined with gas chromatograms-mass spectrometry (HS-SPME-GC-MS). In total, 31 volatile compounds were identified, in which phenylpropanoids/benzenoids accounted for over 95% of the total emission amounts. Surprisingly, except for benzyl acetate and eugenol, several novel components, such as benzyl alcohol, cinnamyl acohol, cinnamy acetate, and benzyl benzoate were found in some cultivars. The composition of floral volatiles in cultivars with white flowers was similar, in which benzyl acetate was dominant, while within pink flowers, there were differences of floral volatile compositions. Principal component analysis (PCA) showed that the emissions of benzyl alcohol, cinnamyl alcohol, benzyl acetate, eugenol, cinnamyl acetate, and benzyl benzoate could make these intraspecific cultivars distinguishable from each other. Further, hierarchical cluster analysis indicated that cultivars with similar a category and amount of floral compounds were grouped together. Our findings lay a theoretical basis for fragrant plant breeding in P. mume.
Collapse
|
18
|
Zhang T, Huo T, Ding A, Hao R, Wang J, Cheng T, Bao F, Zhang Q. Genome-wide identification, characterization, expression and enzyme activity analysis of coniferyl alcohol acetyltransferase genes involved in eugenol biosynthesis in Prunus mume. PLoS One 2019; 14:e0223974. [PMID: 31618262 PMCID: PMC6795479 DOI: 10.1371/journal.pone.0223974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Prunus mume, a traditional Chinese flower, is the only species of Prunus known to produce a strong floral fragrance, of which eugenol is one of the principal components. To explore the molecular mechanism of eugenol biosynthesis in P. mume, patterns of dynamic, spatial and temporal variation in eugenol were analysed using GC-MS. Coniferyl alcohol acetyltransferase (CFAT), a member of the BAHD acyltransferase family, catalyses the substrate of coniferyl alcohol to coniferyl acetate, which is an important substrate for synthesizing eugenol. In a genome-wide analysis, we found 90 PmBAHD genes that were phylogenetically clustered into five major groups with motif compositions relatively conserved in each cluster. The phylogenetic tree showed that the PmBAHD67-70 proteins were close to the functional CFATs identified in other species, indicating that these four proteins might function as CFATs. In this work, 2 PmCFAT genes, named PmCFAT1 and PmCFAT2, were cloned from P. mume ‘Sanlunyudie’, which has a strong fragrance. Multiple sequences indicated that PmCFAT1 contained two conserved domains, HxxxD and DFGWG, whereas DFGWG in PmCFAT2 was changed to DFGFG. The expression levels of PmCFAT1 and PmCFAT2 were examined in different flower organs and during the flowering stages of P. mume ‘Sanlunyudie’. The results showed that PmCFAT1 was highly expressed in petals and stamens, and this expression increased from the budding stage to the full bloom stage and decreased in the withering stage, consistent with the patterns of eugenol synthesis and emission. However, the peak of gene expression appeared earlier than those of eugenol synthesis and emission. In addition, the expression level of PmCFAT2 was higher in pistils and sepals than in other organs and decreased from the budding stage to the blooming stage and then increased in the withering stage, which was not consistent with eugenol synthesis. Subcellular localization analysis indicated that PmCFAT1 and PmCFAT2 were located in the cytoplasm and nucleus, while enzyme activity assays showed that PmCFAT1 is involved in eugenol biosynthesis in vitro. Overall, the results suggested that PmCFAT1, but not PmCFAT2, contributed to eugenol synthesis in P. mume.
Collapse
Affiliation(s)
- Tengxun Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tingting Huo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Anqi Ding
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ruijie Hao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Fei Bao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- * E-mail: (FB); (QZ)
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
- * E-mail: (FB); (QZ)
| |
Collapse
|