1
|
Kuczyńska A, Michałek M, Ogrodowicz P, Kempa M, Witaszak N, Dziurka M, Gruszka D, Daszkowska-Golec A, Szarejko I, Krajewski P, Mikołajczak K. Drought-induced molecular changes in crown of various barley phytohormone mutants. PLANT SIGNALING & BEHAVIOR 2024; 19:2371693. [PMID: 38923879 PMCID: PMC11210921 DOI: 10.1080/15592324.2024.2371693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Martyna Michałek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Natalia Witaszak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Dziurka
- Faculty of Natural Sciences, The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
2
|
Hao Q, Li T, Lu G, Wang S, Li Z, Gu C, Kong F, Shu Q, Li Y. Chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 maintain petal greenness in Paeonia suffruticosa 'Lv Mu Yin Yu'. J Adv Res 2024:S2090-1232(24)00388-6. [PMID: 39236974 DOI: 10.1016/j.jare.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION Green flowers are not an adaptive trait in natural plants due to the challenge for pollinators to discriminate from leaves, but they are valuable in horticulture. The molecular mechanisms of green petals remain unclear. Tree peony (Paeonia suffruticosa) is a globally cultivated ornamental plant and considered the 'King of Flowers' in China. The P. suffruticosa 'Lv Mu Yin Yu (LMYY)' cultivar with green petals could be utilized as a representative model for understanding petal-specific chlorophyll (Chl) accumulation and color formation. OBJECTIVES Identify the key genes related to Chl metabolism and understand the molecular mechanism of petal color changes. METHODS The petal color parameter was analyzed at five developmental stages using a Chroma Spectrophotometer, and Chl and anthocyanin accumulation patterns were examined. Based on comparative transcriptomes, differentially expressed genes (DEGs) were identified, among which three were functionally characterized through overexpression in tobacco plants or silencing in 'LMYY' petals. RESULTS During flower development and blooming, flower color changed from green to pale pink, consistent with the Chl and anthocyanin levels. The level of Chl demonstrated a similar pattern with petal epidermal cell striation density. The DEGs responsible for Chl and anthocyanin metabolism were characterized through a comparative transcriptome analysis of flower petals over three critical developmental stages. The key chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 influenced the Chl accumulation and the greenness of 'LMYY' petals. CONCLUSION PsCLH1, PsLhcb1, and PsLhcb5 were critical in accumulating the Chl and maintaining the petal greenness. Flower color changes from green to pale pink were regulated by the homeostasis of Chl degradation and anthocyanin biosynthesis. This study offers insights into underlying molecular mechanisms in the green petal and a strategy for germplasm innovation.
Collapse
Affiliation(s)
- Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tongtong Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Gaojie Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuo Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Zhen Li
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Cancan Gu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fan Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
3
|
Li X, Zhang J, Guo X, Qiu L, Chen K, Wang J, Cheng T, Zhang Q, Zheng T. Genome-Wide Analysis of the Gibberellin-Oxidases Family Members in Four Prunus Species and a Functional Analysis of PmGA2ox8 in Plant Height. Int J Mol Sci 2024; 25:8697. [PMID: 39201381 PMCID: PMC11354515 DOI: 10.3390/ijms25168697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.L.); (J.Z.); (X.G.); (L.Q.); (K.C.); (J.W.); (T.C.); (Q.Z.)
| |
Collapse
|
4
|
Wei H, Chen J, Lu Z, Zhang X, Liu G, Lian B, Chen Y, Zhong F, Yu C, Zhang J. Crape myrtle LiGAoxs displaying activities of gibberellin oxidases respond to branching architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108738. [PMID: 38761544 DOI: 10.1016/j.plaphy.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
In the realm of ornamental horticulture, crape myrtle (Lagerstroemia indica) stands out for its aesthetic appeal, attributed largely to its vibrant flowers and distinctive branching architecture. This study embarked on a comprehensive exploration of the gibberellin oxidase (GAox) gene family in crape myrtle, illuminating its pivotal role in regulating GA levels, a key determinant of plant developmental processes. We identified and characterized 36 LiGAox genes, subdivided into GA2ox, GA3ox, GA20ox, and GAox-like subgroups, through genomic analyses. These genes' evolutionary trajectories were delineated, revealing significant gene expansions attributed to segmental duplication events. Functional analyses highlighted the divergent expression patterns of LiGAox genes across different crape myrtle varieties, associating them with variations in flower color and branching architecture. Enzymatic activity assays on selected LiGA2ox enzymes exhibited pronounced GA2 oxidase activity, suggesting a potential regulatory role in GA biosynthesis. Our findings offered a novel insight into the molecular underpinnings of GA-mediated growth and development in L. indica, providing a foundational framework for future genetic enhancements aimed at optimizing ornamental traits.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
5
|
Wei H, Chen J, Zhang X, Lu Z, Lian B, Liu G, Chen Y, Zhong F, Yu C, Zhang J. Comprehensive analysis of annexin gene family and its expression in response to branching architecture and salt stress in crape myrtle. BMC PLANT BIOLOGY 2024; 24:78. [PMID: 38287275 PMCID: PMC10826223 DOI: 10.1186/s12870-024-04748-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Annexin (ANN) is calcium (Ca2+)-dependent and phospholipid binding protein family, which is involved in plant growth and development and response to various stresses. However, little known about ANN genes were identified from crape myrtle, an ornamental horticultural plant widely cultivated in the world. RESULTS Here, 9 LiANN genes were identified from Lagerstroemia indica, and their characterizations and functions were investigated in L. indica for the first time. The LiANN genes were divided into 2 subfamilies. The gene structure, chromosomal location, and collinearity relationship were also explored. In addition, the GO annotation analysis of these LiANNs indicated that they are enriched in molecular functions, cellular components, and biological processes. Moreover, transcription factors (TFs) prediction analysis revealed that bHLH, MYB, NAC, and other TFs can interact with the LiANN promoters. Interestingly, the LiANN2/4/6-9 were demonstrated to play critical roles in the branching architecture of crape myrtle. Furthermore, the LiANN2/6/8/9 were differentially expressed under salt treatment, and a series of TFs regulating LiANN2/6/8/9 expression were predicted to play essential roles in salt resistance. CONCLUSIONS These results shed light on profile and function of the LiANN gene family, and lay a foundation for further studies of the LiANN genes.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Bilin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China.
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China.
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
6
|
Wang L, Pan L, Niu L, Cui G, Wei B, Zeng W, Wang Z, Lu Z. Fine mapping of the gene controlling the weeping trait of Prunus persica and its uses for MAS in progenies. BMC PLANT BIOLOGY 2022; 22:459. [PMID: 36153492 PMCID: PMC9508784 DOI: 10.1186/s12870-022-03840-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Fruit tree yield and fruit quality are affected by the tree's growth type, and branching angle is an important agronomic trait of fruit trees, which largely determines the crown structure. The weeping type of peach tree shows good ventilation and light transmission; therefore, it is commonly cultivated. However, there is no molecular marker closely linked with peach weeping traits for target gene screening and assisted breeding. RESULTS First, we confirmed that the peach weeping trait is a recessive trait controlled by a single gene by constructing segregating populations. Based on BSA-seq, we mapped the gene controlling this trait within 159 kb of physical distance on chromosome 3. We found a 35 bp deletion in the candidate area in standard type, which was not lacking in weeping type. For histological assessments, different types of branches were sliced and examined, showing fiber bundles in the secondary xylem of ordinary branches but not in weeping branches. CONCLUSIONS This study established a molecular marker that is firmly linked to weeping trait. This marker can be used for the selection of parents in the breeding process and the early screening of hybrid offspring to shorten the breeding cycle. Moreover, we preliminary explored histological differences between growth types. These results lay the groundwork for a better understanding of the weeping growth habit of peach trees.
Collapse
Affiliation(s)
- Luwei Wang
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lei Pan
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Liang Niu
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Guochao Cui
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Bin Wei
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Wenfang Zeng
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Zhiqiang Wang
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Zhenhua Lu
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
7
|
Yu C, Ke Y, Qin J, Huang Y, Zhao Y, Liu Y, Wei H, Liu G, Lian B, Chen Y, Zhong F, Zhang J. Genome-wide identification of calcineurin B-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant Lagerstroemia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:942217. [PMID: 36204074 PMCID: PMC9530917 DOI: 10.3389/fpls.2022.942217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) play important roles in plant responses to stress. However, their function in the ornamental woody plant Lagerstroemia indica is remains unclear. In this study, the LiCIPK gene family was analyzed at the whole genome level. A total of 37 LiCIPKs, distributed across 17 chromosomes, were identified. Conserved motif analysis indicated that all LiCIPKs possess a protein kinase motif (S_TKc) and C-terminal regulatory motif (NAF), while seven LiCIPKs lack a protein phosphatase interaction (PPI) motif. 3D structure analysis further revealed that the N-terminal and C-terminal 3D-structure of 27 members are situated near to each other, while 4 members have a looser structure, and 6 members lack intact structures. The intra- and interspecies collinearity analysis, synonymous substitution rate (K s ) peaks of duplicated LiCIPKs, revealed that ∼80% of LiCIPKs were retained by the two whole genome duplication (WGD) events that occurred approximately 56.12-61.16 million year ago (MYA) and 16.24-26.34 MYA ago. The promoter of each LiCIPK contains a number of auxin, abscisic acid, gibberellic acid, salicylic acid, and drought, anaerobic, defense, stress, and wound responsive cis-elements. Of the 21 members that were successfully amplified by qPCR, 18 LiCIPKs exhibited different expression patterns under NaCl, mannitol, PEG8000, and ABA treatments. Given that LiCIPK30, the AtSOS2 ortholog, responded to all four types of stress it was selected for functional verification. LiCIPK30 complements the atsos2 phenotype in vivo. 35S:LiCIPK-overexpressing lines exhibit increased leaf area increment, chlorophyll a and b content, reactive oxygen species scavenging enzyme activity, and expression of ABF3 and RD22, while the degree of membrane lipid oxidation decreases under NaCl treatment compared to WT. The evolutionary history, and potential mechanism by which LiCIPK30 may regulate plant tolerance to salt stress were also discussed. In summary, we identified LiCIPK members involved in abiotic stress and found that LiCIPK30 transgenic Arabidopsis exhibits more salt and osmotic stress tolerance than WT. This research provides a theoretical foundation for further investigation into the function of LiCIPKs, and for mining gene resources to facilitate the cultivation and breeding of new L. indica varieties in coastal saline-alkali soil.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yongchao Ke
- School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunpeng Huang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yanchun Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| |
Collapse
|
8
|
Yang H, Liao H, Xu F, Zhang W, Xu B, Chen X, Zhu B, Pan W, Yang X. Integrated transcriptomic and gibberellin analyses reveal genes related to branch development in Eucalyptus urophylla. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:69-79. [PMID: 35661587 DOI: 10.1016/j.plaphy.2022.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Tree branches affect the planting density and basal scab, which act as important attributes in the yield and quality of trees. Eucalyptus urophylla is an important pioneer tree with characteristics of strong adaptability, fast growth, short rotation period, and low disease and pest pressures. In this study, we collected ZQUC14 and LDUD26 clones and compared their transcriptomes and metabolomes from mature xylem, phloem, and developing tissues to identify factors that may influence branch development. In total, 32,809 differentially expressed genes (DEGs) and 18 gibberellin (GA) hormones were detected in the five sampled tissues. Searches of the kyoto Encyclopedia of Genes and Genomes pathways identified mainly genes related to diterpenoid biosynthesis, plant MAPK signaling pathways, plant hormone signal transduction, glycerolipid metabolism, peroxisome, phenylpropanoid biosynthesis, ABC transporters, and brassinosteroid biosynthesis. Furthermore, gene expression trend analysis and weighted gene co-expression network analysis revealed 13 genes likely involved in diterpenoid biosynthesis, including five members of the 2OG-Fe(II) oxygenase superfamily, four cytochrome P450 genes, and four novel genes. In GA signal transduction pathways, 24 DEGs were found to positively regulate branch formation. These results provide a comprehensive analysis of branch development based on the transcriptome and metabolome, and help clarify the molecular mechanisms of E. urophylla.
Collapse
Affiliation(s)
- Huixiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Huanqin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Fang Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Xinyu Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Baozhu Zhu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Wen Pan
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China.
| | - Xiaohui Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
9
|
Wang W, Gao H, Liang Y, Li J, Wang Y. Molecular basis underlying rice tiller angle: Current progress and future perspectives. MOLECULAR PLANT 2022; 15:125-137. [PMID: 34896639 DOI: 10.1016/j.molp.2021.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species, thereby contributing to agricultural production in the future.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
10
|
Zhuo X, Zheng T, Li S, Zhang Z, Zhang M, Zhang Y, Ahmad S, Sun L, Wang J, Cheng T, Zhang Q. Identification of the PmWEEP locus controlling weeping traits in Prunus mume through an integrated genome-wide association study and quantitative trait locus mapping. HORTICULTURE RESEARCH 2021; 8:131. [PMID: 34059642 PMCID: PMC8167129 DOI: 10.1038/s41438-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Weeping Prunus mume (mei) has long been cultivated in East Asia for its specific ornamental value. However, little is known about the regulatory mechanism of the weeping trait in mei, which limits molecular breeding for the improvement of weeping-type cultivars. Here, we quantified the weeping trait in mei using nested phenotyping of 214 accessions and 342 F1 hybrids. Two major associated loci were identified from the genome-wide association study (GWAS), which was conducted using 3,014,409 single nucleotide polymorphisms (SNPs) derived from resequencing, and 8 QTLs and 55 epistatic loci were identified from QTL mapping using 7,545 specific lengths amplified fragment (SLAF) markers. Notably, an overlapping PmWEEP major QTL was fine mapped within a 0.29 Mb region on chromosome 7 (Pa7), and a core SNP locus closely associated with the weeping trait was screened and validated. Furthermore, a total of 22 genes in the PmWEEP QTL region were expressed in weeping or upright mei based on RNA-seq analysis. Among them, only a novel gene (Pm024213) containing a thioredoxin (Trx) domain was found to be close to the core SNP and specifically expressed in buds and branches of weeping mei. Co-expression analysis of Pm024213 showed that most of the related genes were involved in auxin and lignin biosynthesis. These findings provide insights into the regulatory mechanism of the weeping trait and effective molecular markers for molecular-assisted breeding in Prunus mume.
Collapse
Affiliation(s)
- Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| | - Suzhen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yichi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Lidan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
11
|
Xia X, Mi X, Jin L, Guo R, Zhu J, Xie H, Liu L, An Y, Zhang C, Wei C, Liu S. CsLAZY1 mediates shoot gravitropism and branch angle in tea plants (Camellia sinensis). BMC PLANT BIOLOGY 2021; 21:243. [PMID: 34049485 PMCID: PMC8164267 DOI: 10.1186/s12870-021-03044-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/13/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Branch angle is a pivotal component of tea plant architecture. Tea plant architecture not only affects tea quality and yield but also influences the efficiency of automatic tea plant pruning. However, the molecular mechanism controlling the branch angle, which is an important aspect of plant architecture, is poorly understood in tea plants. RESULTS In the present study, three CsLAZY genes were identified from tea plant genome data through sequence homology analysis. Phylogenetic tree displayed that the CsLAZY genes had high sequence similarity with LAZY genes from other plant species, especially those in woody plants. The expression patterns of the three CsLAZYs were surveyed in eight tissues. We further verified the expression levels of the key CsLAZY1 transcript in different tissues among eight tea cultivars and found that CsLAZY1 was highly expressed in stem. Subcellular localization analysis showed that the CsLAZY1 protein was localized in the plasma membrane. CsLAZY1 was transferred into Arabidopsis thaliana to investigate its potential role in regulating shoot development. Remarkably, the CsLAZY1 overexpressed plants responded more effectively than the wild-type plants to a gravity inversion treatment under light and dark conditions. The results indicate that CsLAZY1 plays an important role in regulating shoot gravitropism in tea plants. CONCLUSIONS The results provide important evidence for understanding the functions of CsLAZY1 in regulating shoot gravitropism and influencing the stem branch angle in tea plants. This report identifies CsLAZY1 as a promising gene resource for the improvement of tea plant architecture.
Collapse
Affiliation(s)
- Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Ling Jin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Cao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China.
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
12
|
Yari V, Roein Z, Sabouri A. Exogenous 5-azaCitidine accelerates flowering and external GA 3 increases ornamental value in Iranian Anemone accessions. Sci Rep 2021; 11:7478. [PMID: 33820923 PMCID: PMC8021551 DOI: 10.1038/s41598-021-86940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
The Anemone genus is a tuberous geophyte which undergoes a dormancy period during unfavorable environmental conditions for growth. Five species of the Anemone genus naturally grow in several regions of Iran. The diverse uses of Anemone in gardens for landscaping, cut flowers, and potted plants indicate its high ornamental potential. Its dormancy and flowering are influenced by various factors. The present paper was conducted to explore the flowering behavior of Anemone accessions in response to different pre-treatments. For this purpose, tubers of 18 Anemone accessions (A. coronaria and A. biflora) were collected from natural regions of six provinces in Iran. These tubers were subjected to different conditions of non-chilling (20 °C, 90 days), chilling (4 °C, 90 days), GA3 (150 mgL-1; 24 h), and 5-azaCitidine (5-azaC; 40 µM; 24 h) prior to the cultivation. Most of the accessions were able to enter the flowering stage without chilling. The shortest period for the sprouting of tubers (16.89 ± 7.83 days) belonged to 5-azaC pre-treatment. In addition, this treatment accelerated the flowering time (about 30 days earlier) and diameter of the stem, bud, and flower. Morphological characteristics, such as stem height, number of leaves, bud, and petal and the longevity of flowers on the plant were significantly affected by GA3 pre-treatment. Our results indicated a positive correlation between flower length, stem height, and stem diameter with flower longevity under different pre-treatment conditions. The present study demonstrated that accessions Anm3, Anm12, and Anm18 had ornamental values higher than the population mean across four conditions.
Collapse
Affiliation(s)
- Vahideh Yari
- grid.411528.b0000 0004 0611 9352Department of Horticultural Sciences, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Zeynab Roein
- grid.411528.b0000 0004 0611 9352Department of Horticultural Sciences, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Atefeh Sabouri
- grid.411872.90000 0001 2087 2250Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
13
|
A Genetic Linkage Map of BC2 Population Reveals QTL Associated with Plant Architecture Traits in Lagerstroemia. FORESTS 2021. [DOI: 10.3390/f12030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant architecture improvement is of great significance in influencing crop yield, harvesting efficiency and ornamental value, by changing the spatial structure of the canopy. However, the mechanism on plant architecture in woody plants is still unclear. In order to study the genetic control of plant architecture traits and promote marker-assisted selection (MAS), a genetic linkage map was constructed, and QTL mapping was performed. In this study, using 188 BC2 progenies as materials, a genetic map of Lagerstroemia was constructed using amplification fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers, and the QTLs of four key plant architecture traits (plant height, crown width, primary lateral branch height and internode length) were analyzed. The genetic map contains 22 linkage groups, including 198 AFLP markers and 36 SSR markers. The total length of the genome covered by the map is 1272 cM, and the average distance between markers is 6.8 cM. Three QTLs related to plant height were located in LG1, LG4 and LG17 linkage groups, and the phenotypic variation rates were 32.36, 16.18 and 12.73%, respectively. A QTL related to crown width was located in LG1 linkage group, and the phenotypic variation rate was 18.07%. Two QTLs related to primary lateral branch height were located in the LG1 and LG7 linkage groups, and the phenotypic variation rates were 20.59 and 15.34%, respectively. Two QTLs related to internode length were located in the LG1 and LG20 linkage groups, and the phenotypic variation rates were 14.86 and 9.87%. The results provide a scientific basis for finely mapping genes of plant architecture traits and marker-assisted breeding in Lagerstroemia.
Collapse
|
14
|
Zhu T, Wang X, Xu Z, Xu J, Li R, Liu N, Ding G, Sui S. Screening of key genes responsible for Pennisetum setaceum 'Rubrum' leaf color using transcriptome sequencing. PLoS One 2020; 15:e0242618. [PMID: 33227025 PMCID: PMC7682885 DOI: 10.1371/journal.pone.0242618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Pennisetum setaceum 'Rubrum' is an ornamental grass plant that produces purple leaves in high-light environments and light purple or green leaves in low-light environments, the latter of which greatly reduces its aesthetic appeal. Therefore, we aimed to identify the key genes associated with leaf coloration and elucidate the molecular mechanisms involved in the color changes in P. setaceum 'Rubrum' leaves. We performed transcriptome sequencing of P. setaceum 'Rubrum' leaves before and after shading. A total of 19,043 differentially expressed genes were identified, and the numbers of upregulated and downregulated genes at T1 stage, when compared with their expression at the T0 stage, were 10,761 and 8,642, respectively. The possible pathways that determine P. setaceum 'Rubrum' leaf color included flavonoid biosynthesis, flavone and flavonol biosynthesis, and carotenoid biosynthesis. There were 31 differentially expressed genes related to chlorophyll metabolism, of which 21 were related to chlorophyll biosynthesis and 10 to chlorophyll degradation, as well as three transcription factors that may be involved in the regulation of chlorophyll degradation. There were 31 key enzyme genes involved in anthocyanin synthesis and accumulation in P. setaceum 'Rubrum' leaves, with four transcription factors that may be involved in the regulation of anthocyanin metabolism. The transcriptome data were verified and confirmed reliable by real-time fluorescence quantitative PCR analysis. These findings provide a genetic basis for improving leaf color in P. setaceum 'Rubrum.'
Collapse
Affiliation(s)
- Ting Zhu
- College of Arts College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xia Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhimin Xu
- College of Arts College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Xu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Rui Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ning Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guochang Ding
- College of Arts College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (GD); (SS)
| | - Shunzhao Sui
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- * E-mail: (GD); (SS)
| |
Collapse
|
15
|
van Es SW. Baby don't cry, genetic regulation of the weeping phenotype in Prunus mume. PHYSIOLOGIA PLANTARUM 2020; 170:315-317. [PMID: 33460122 PMCID: PMC7702079 DOI: 10.1111/ppl.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Sam W. van Es
- Department of Plant PhysiologyUmeå UniversityUmeåSweden
| |
Collapse
|