1
|
Pérez de los Cobos F, Romero A, Lipan L, Miarnau X, Arús P, Eduardo I, Batlle I, Calle A. QTL mapping of almond kernel quality traits in the F 1 progeny of 'Marcona' × 'Marinada'. FRONTIERS IN PLANT SCIENCE 2024; 15:1504198. [PMID: 39665108 PMCID: PMC11631582 DOI: 10.3389/fpls.2024.1504198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Almond breeding is increasingly focusing on kernel quality. However, unlike other agronomic traits, the genetic basis of physical and chemical kernel quality traits has been poorly investigated. To address this gap, we conducted a QTL mapping of these traits to enhance our understanding of their genetic control. We phenotyped fruit samples from an F1 population derived from the cross between 'Marcona' and 'Marinada' for up to four years, using conventional and image analysis methods. Additionally, the 91 individuals of the population were genotyped with the almond Axiom™ 60K SNP array, and high-density linkage maps were constructed. These analyses identified several genomic regions of breeding interest. For example, two regions on chromosome one were found to contain QTLs for kernel shape and dimension, while another region at the end of the same chromosome contained QTLs for kernel fatty acid composition. Notably, QTLs for kernel symmetry and kernel shoulder, reported for the first time in this study, were also mapped on chromosome one. These QTLs will serve as a foundation for developing molecular markers linked to kernel physical and chemical quality traits in almonds, facilitating the integration of marker-assisted selection into breeding programs.
Collapse
Affiliation(s)
- Felipe Pérez de los Cobos
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3, Constantí Tarragona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
| | - Agustí Romero
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3, Constantí Tarragona, Spain
| | - Leontina Lipan
- Grupo de Investigación Calidad y Seguridad Alimentaria, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Carretera de Beniel, Alicante, Spain
| | - Xavier Miarnau
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, PCiTAL, Lleida, Spain
| | - Pere Arús
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
| | - Iban Eduardo
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
| | - Ignasi Batlle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3, Constantí Tarragona, Spain
| | - Alejandro Calle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, PCiTAL, Lleida, Spain
| |
Collapse
|
2
|
Gulino F, Siragusa C, Calà E, Gullo F, Aceto M. Tracking the Mandorla di Avola Almond Variety by Means of ICP Analysis. Foods 2024; 13:2634. [PMID: 39200562 PMCID: PMC11354188 DOI: 10.3390/foods13162634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
The Mandorla di Avola is recognized all over the world as one of the best almond varieties. It is cultivated in a small area inside the provinces of Siracusa and Ragusa (Sicily, southern Italy). It is used in traditional Sicilian cuisine for both salty and sweet foods and of course in artisan pastry, apart from being consumed as a fruit. Due to its extraordinary organoleptic and beneficial features, the Mandorla di Avola is frequently counterfeit with almond varieties of lower quality coming from other countries. While its nutraceutical features have been studied, the possibility of authenticating it with respect to other varieties has not been explored. In this work, we used microelements determined with ICP-OES and ICP-MS as chemical descriptors to distinguish samples of Mandorla di Avola almonds from almonds coming from California and Spain, which are usually employed as substitutes in pastry. Among the different elements determined, Mn and P were found to be the best descriptors for authentication.
Collapse
Affiliation(s)
- Federica Gulino
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università degli Studi del Piemonte Orientale, Piazza Sant’Eusebio, 5-13100 Vercelli, Italy; (F.G.); (C.S.); (E.C.)
| | - Cassandra Siragusa
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università degli Studi del Piemonte Orientale, Piazza Sant’Eusebio, 5-13100 Vercelli, Italy; (F.G.); (C.S.); (E.C.)
| | - Elisa Calà
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università degli Studi del Piemonte Orientale, Piazza Sant’Eusebio, 5-13100 Vercelli, Italy; (F.G.); (C.S.); (E.C.)
| | - Francesca Gullo
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi, 24-10129 Torino, Italy;
| | - Maurizio Aceto
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università degli Studi del Piemonte Orientale, Piazza Sant’Eusebio, 5-13100 Vercelli, Italy; (F.G.); (C.S.); (E.C.)
| |
Collapse
|
3
|
Williams E, Pauley A, Dewan A. The behavioral sensitivity of mice to acyclic, monocyclic, and bicyclic monoterpenes. PLoS One 2024; 19:e0298448. [PMID: 38394306 PMCID: PMC10890753 DOI: 10.1371/journal.pone.0298448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Monoterpenes are a large class of naturally occurring fragrant molecules. These chemicals are commonly used in olfactory studies to survey neural activity and probe the behavioral limits of odor discrimination. Monoterpenes (typically in the form of essential oils) have been used for centuries for therapeutic purposes and have pivotal roles in various biological and medical applications. Despite their importance for multiple lines of research using rodent models and the role of the olfactory system in detecting these volatile chemicals, the murine sensitivity to monoterpenes remains mostly unexplored. We assayed the ability of C57BL/6J mice to detect nine different monoterpenes (the acyclic monoterpenes: geraniol, citral, and linalool; the monocyclic monoterpenes: r-limonene, s-limonene, and γ-terpinene; and the bicyclic monoterpenes: eucalyptol, α-pinene, and β-pinene) using a head-fixed Go / No-Go operant conditioning assay. We found that mice can reliably detect monoterpene concentrations in the low parts per billion (ppb) range. Specifically, mice were most sensitive to geraniol (threshold: 0.7 ppb) and least sensitive to γ-terpinene (threshold: 18.1 ppb). These estimations of sensitivity serve to set the lower limit of relevant monoterpene concentrations for functional experiments in mice. To define an upper limit, we estimated the maximum concentrations that a mouse may experience in nature by collating published headspace analyses of monoterpene concentrations emitted from natural sources. We found that natural monoterpenes concentrations typically ranged from ~1 to 1000 ppb. It is our hope that this dataset will help researchers use appropriate monoterpene concentrations for functional studies and provide context for the vapor-phase delivery of these chemicals in studies investigating their biological activity in mice.
Collapse
Affiliation(s)
- Ellie Williams
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States of America
| | - Austin Pauley
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States of America
| | - Adam Dewan
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States of America
| |
Collapse
|
4
|
Pérez de los Cobos F, Coindre E, Dlalah N, Quilot-Turion B, Batlle I, Arús P, Eduardo I, Duval H. Almond population genomics and non-additive GWAS reveal new insights into almond dissemination history and candidate genes for nut traits and blooming time. HORTICULTURE RESEARCH 2023; 10:uhad193. [PMID: 37927408 PMCID: PMC10623407 DOI: 10.1093/hr/uhad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Domestication drastically changed crop genomes, fixing alleles of interest and creating different genetic populations. Genome-wide association studies (GWASs) are a powerful tool to detect these alleles of interest (and so QTLs). In this study, we explored the genetic structure as well as additive and non-additive genotype-phenotype associations in a collection of 243 almond accessions. Our genetic structure analysis strongly supported the subdivision of the accessions into five ancestral groups, all formed by accessions with a common origin. One of these groups was formed exclusively by Spanish accessions, while the rest were mainly formed by accessions from China, Italy, France, and the USA. These results agree with archaeological and historical evidence that separate modern almond dissemination into four phases: Asiatic, Mediterranean, Californian, and southern hemisphere. In total, we found 13 independent QTLs for nut weight, crack-out percentage, double kernels percentage, and blooming time. Of the 13 QTLs found, only one had an additive effect. Through candidate gene analysis, we proposed Prudul26A013473 as a candidate gene responsible for the main QTL found in crack-out percentage, Prudul26A012082 and Prudul26A017782 as candidate genes for the QTLs found in double kernels percentage, and Prudul26A000954 as a candidate gene for the QTL found in blooming time. Our study enhances our knowledge of almond dissemination history and will have a great impact on almond breeding.
Collapse
Affiliation(s)
- Felipe Pérez de los Cobos
- Fruticultura, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | | | | | | | - Ignasi Batlle
- Fruticultura, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain
| | - Pere Arús
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Iban Eduardo
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | | |
Collapse
|
5
|
Duval H, Coindre E, Ramos-Onsins SE, Alexiou KG, Rubio-Cabetas MJ, Martínez-García PJ, Wirthensohn M, Dhingra A, Samarina A, Arús P. Development and Evaluation of an Axiom TM 60K SNP Array for Almond ( Prunus dulcis). PLANTS (BASEL, SWITZERLAND) 2023; 12:242. [PMID: 36678957 PMCID: PMC9866729 DOI: 10.3390/plants12020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A high-density single nucleotide polymorphism (SNP) array is essential to enable faster progress in plant breeding for new cultivar development. In this regard, we have developed an Axiom 60K almond SNP array by resequencing 81 almond accessions. For the validation of the array, a set of 210 accessions were genotyped and 82.8% of the SNPs were classified in the best recommended SNPs. The rate of missing data was between 0.4% and 2.7% for the almond accessions and less than 15.5% for the few peach and wild accessions, suggesting that this array can be used for peach and interspecific peach × almond genetic studies. The values of the two SNPs linked to the RMja (nematode resistance) and SK (bitterness) genes were consistent. We also genotyped 49 hybrids from an almond F2 progeny and could build a genetic map with a set of 1159 SNPs. Error rates, less than 1%, were evaluated by comparing replicates and by detection of departures from Mendelian inheritance in the F2 progeny. This almond array is commercially available and should be a cost-effective genotyping tool useful in the search for new genes and quantitative traits loci (QTL) involved in the control of agronomic traits.
Collapse
Affiliation(s)
- Henri Duval
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Eva Coindre
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Sebastian E. Ramos-Onsins
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Konstantinos G. Alexiou
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| | - Maria J. Rubio-Cabetas
- CITA (Agrifood Research and Technology Centre of Aragon), Department of Plant Science, Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Pedro J. Martínez-García
- CEBAS (Centro de Edafología y Biología Aplicada del Segura), CSIC, Department of Plant Breeding, Campus Universitario de Espinardo, 30100 Espinardo, Spain
| | - Michelle Wirthensohn
- Waite Research Institute, University of Adelaide, PMB 1 Glen, Osmond, SA 5064, Australia
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Anna Samarina
- Thermo Fisher Scientific, Frankfurter Str. 129B, 64293 Darmstadt, Germany
| | - Pere Arús
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
6
|
Farneti B, Khomenko I, Ajelli M, Wells KE, Betta E, Aprea E, Giongo L, Biasioli F. Volatilomics of raspberry fruit germplasm by combining chromatographic and direct-injection mass spectrometric techniques. Front Mol Biosci 2023; 10:1155564. [PMID: 37122562 PMCID: PMC10133483 DOI: 10.3389/fmolb.2023.1155564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The application of direct-injection mass spectrometric (DI-MS) techniques, like Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF-MS) has been suggested as a reliable phenotyping tool for fruit volatilome assessment in both genetic and quality-related studies. In this study the complexity of raspberry aroma was investigated by a comprehensive untargeted VOC analysis, done by combining SPME-GC-MS and PTR-ToF-MS assessments with multi-block discriminant analysis using the DIABLO mixOmics framework. The aim was to acquire an exhaustive characterization of the raspberry volatilome according to different fruit ripening stages (pink, ripe, and overripe) and genetic variances (50 accessions), as well as to investigate the potential of PTR-ToF-MS as a rapid and high throughput VOC phenotyping tool to address issues related to raspberry fruit quality. Results of this study demonstrated the complementarity between SPME-GC-MS and PTR-ToF-MS techniques to evaluate the raspberry aroma composition. PTR-ToF-MS generates reliable raspberry VOC fingerprints mainly due to a reduced compound fragmentation and precise content estimation. In addition, the high collinearity between isomers of monoterpenes and norisoprenoids, discovered by GC analysis, reduces the main analytic limitation of PTR-ToF-MS of not being able to separate isomeric molecules. The high similarity between the VOC matrices obtained by applying PTR-ToF-MS and SPME-GC-MS confirmed the possibility of using PTR-ToF-MS as a reliable high throughput phenotyping tool for raspberry volatiolome assessment. In addition, results provided by the germplasm collection investigation enabled to distinguish the best performing accessions, based on VOCs composition, to be used as superior parental lines for future breeding programs.
Collapse
Affiliation(s)
- Brian Farneti
- Berries Genetics and Breeding Unit, Research and Innovation Centre of Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Brian Farneti,
| | - Iuliia Khomenko
- Sensory Quality Unit, Research and Innovation Centre of Fondazione Edmund Mach, Trento, Italy
| | - Matteo Ajelli
- Berries Genetics and Breeding Unit, Research and Innovation Centre of Fondazione Edmund Mach, Trento, Italy
| | - Karen Elizabeth Wells
- Berries Genetics and Breeding Unit, Research and Innovation Centre of Fondazione Edmund Mach, Trento, Italy
| | - Emanuela Betta
- Sensory Quality Unit, Research and Innovation Centre of Fondazione Edmund Mach, Trento, Italy
| | - Eugenio Aprea
- Sensory Quality Unit, Research and Innovation Centre of Fondazione Edmund Mach, Trento, Italy
- Center Agriculture Food Environment C3A, University of Trento, Trento, Italy
| | - Lara Giongo
- Berries Genetics and Breeding Unit, Research and Innovation Centre of Fondazione Edmund Mach, Trento, Italy
| | - Franco Biasioli
- Sensory Quality Unit, Research and Innovation Centre of Fondazione Edmund Mach, Trento, Italy
| |
Collapse
|
7
|
E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels. Nutrients 2022; 15:nu15010130. [PMID: 36615787 PMCID: PMC9823971 DOI: 10.3390/nu15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Almonds contain around 50% fat with a health-promoting fatty acid profile that can be extracted by pressing to obtain high-quality oils. To improve oil sensory properties, the almonds can be subjected to roasting treatments before oil extraction. However, intense thermal treatments may cause the appearance of undesirable volatile compounds causing unpleasant aromas. Thus, oils from almonds subjected to different roasting treatments (30, 45, 60 and 90 min at 150 °C) were analyzed from sensory and the chemical points of view. In addition, an electronic device (E-nose) was used in order to evaluate its usefulness in discriminating samples according to their aromas. The almonds’ roasting treatments caused changes in the sensory properties, since defects such as a burned, dry smell or wood fragrance appeared when almonds were subjected to roasting treatments (>45 min). These data agree with the analysis of volatile compounds, which showed an increase in the content of aldehyde and aromatic groups in roasted almonds oils while alcohols and terpenes decreased. Partial least squares discriminant analysis and partial least squares obtained from the E-nose were able to classify samples (97.5% success) and quantify the burned defect of the oils (Rp2 of 0.88), showing that the E-nose can be an effective tool for classifying oils.
Collapse
|
8
|
Valorization of Traditional Italian Walnut (Juglans regia L.) Production: Genetic, Nutritional and Sensory Characterization of Locally Grown Varieties in the Trentino Region. PLANTS 2022; 11:plants11151986. [PMID: 35956464 PMCID: PMC9370163 DOI: 10.3390/plants11151986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
Juglans regia (L.) is cultivated worldwide for its nutrient-rich nuts. In Italy, despite the growing demand, walnut cultivation has gone through a strong decline in recent decades, which led to Italy being among the top five net importing countries. To promote the development of local high-quality Italian walnut production, we devised a multidisciplinary project to highlight the distinctive traits of three varieties grown in the mountainous region Trentino (northeast of Italy): the heirloom ‘Bleggiana’, a second local accession called local Franquette and the French cultivar ‘Lara’, recently introduced in the local production to increase yield. The genetic characterization confirmed the uniqueness of ‘Bleggiana’ and revealed local Franquette as a newly described autochthonous variety, thus named ‘Blegette’. The metabolic profiles highlighted a valuable nutritional composition of the local varieties, richer in polyphenols and with a lower ω-6/ω-3 ratio than the commercial ‘Lara’. ‘Blegette’ obtained the highest preference scores from consumers for both the visual aspect and tasting; however, the volatile organic compound profiles did not discriminate among the characterized cultivars. The described local varieties represent an interesting reservoir of walnut genetic diversity and quality properties, which deserve future investigation on agronomically useful traits (e.g., local adaptation and water usage) for a high-quality and sustainable production.
Collapse
|