1
|
Xiang Y, Yuan H, Mao M, Hu Q, Dong Y, Wang L, Wu B, Luo Z, Li L. Reciprocal inhibition of autophagy and Botrytis cinerea-induced programmed cell death in 'Shine Muscat' grapes. Food Chem 2024; 460:140512. [PMID: 39047497 DOI: 10.1016/j.foodchem.2024.140512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Botrytis cinerea causes gray mold, decreasing the quality of table grapes. The berry response to B. cinerea infection was explored in present study, focusing on the relationship between presence of autophagy and programmed cell death (PCD). Results demonstrated B. cinerea infection decreased cell viability, triggering cell death, possibly resulting in PCD occurrence. It was further verified by increased terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive nuclei, heightened caspase 3-like and caspase 9-like protease activity, and elevated expression of metacaspase genes. Additionally, autophagy was indicated by the increased VvATG expression and autophagosome formation. Notably, the autophagy activator rapamycin reduced TUNEL-positive nuclei, whereas the autophagy inhibitor 3-methyladenine increased caspase 9-like protease activity. The PCD activator C2-ceramide inhibited autophagy, whereas the PCD inhibitor Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) enhanced autophagy gene expression. Autophagy and B. cinerea-induced PCD in berry cells are reciprocally negatively regulated; and the rapamycin and Ac-DEVD-CHO could potentially maintain table grape edible quality.
Collapse
Affiliation(s)
- Yizhou Xiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Hemao Yuan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Mengfei Mao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Qiannan Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Yingying Dong
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Bin Wu
- Institute of Agro-products Storage and Processing & Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
2
|
Agorio A, Mena E, Rockenbach MF, Ponce De León I. The evolution of plant responses underlying specialized metabolism in host-pathogen interactions. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230370. [PMID: 39343011 PMCID: PMC11449219 DOI: 10.1098/rstb.2023.0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 10/01/2024] Open
Abstract
In the course of plant evolution from aquatic to terrestrial environments, land plants (embryophytes) acquired a diverse array of specialized metabolites, including phenylpropanoids, flavonoids and cuticle components, enabling adaptation to various environmental stresses. While embryophytes and their closest algal relatives share candidate enzymes responsible for producing some of these compounds, the complete genetic network for their biosynthesis emerged in embryophytes. In this review, we analysed genomic data from chlorophytes, charophytes and embryophytes to identify genes related to phenylpropanoid, flavonoid and cuticle biosynthesis. By integrating published research, transcriptomic data and metabolite studies, we provide a comprehensive overview on how these specialized metabolic pathways have contributed to plant defence responses to pathogens in non-vascular bryophytes and vascular plants throughout evolution. The evidence suggests that these biosynthetic pathways have provided land plants with a repertoire of conserved and lineage-specific compounds, which have shaped immunity against invading pathogens. The discovery of additional enzymes and metabolites involved in bryophyte responses to pathogen infection will provide evolutionary insights into these versatile pathways and their impact on environmental terrestrial challenges.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Astrid Agorio
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, Uruguay
| | - Eilyn Mena
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, Uruguay
| | - Mathias F Rockenbach
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, Uruguay
| | - Inés Ponce De León
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, Uruguay
| |
Collapse
|
3
|
Yang R, Zhang D, Wang D, Chen H, Jin Z, Fang Y, Huang Y, Lin H. Infection mechanism of Botryosphaeria dothidea and the disease resistance strategies of Chinese hickory (Carya cathayensis). BMC PLANT BIOLOGY 2024; 24:938. [PMID: 39385101 PMCID: PMC11462999 DOI: 10.1186/s12870-024-05664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Botryosphaeria dothidea is the main fungal pathogen responsible for causing Chinese hickory (Carya cathayensis) dry rot disease, posing a serious threat to the Chinese hickory industry. Understanding the molecular basis of B. dothidea infection and the host's resistance mechanisms is crucial for controlling and managing the ecological impact of Chinese hickory dry rot disease. This study utilized ultrastructural observations to reveal the process of B. dothidea infection and colonization in Chinese hickory, and investigated the impact of B. dothidea infection on Chinese hickory biochemical indicators and plant hormone levels. Through high-throughput transcriptome sequencing, the gene expression profiles associated with different stages of B. dothidea infection in Chinese hickory and their corresponding defense responses were described. Additionally, a series of key genes closely related to non-structural carbohydrate metabolism, hormone metabolism, and plant-pathogen interactions during B. dothidea infection in Chinese hickory were identified, including genes encoding DUF, Myb_DNA-binding, and ABC transporter proteins. These findings provide important insights into elucidating the pathogenic mechanisms of B. dothidea and the resistance genes in Chinese hickory.
Collapse
Affiliation(s)
- Ruifeng Yang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Da Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Dan Wang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Hongyi Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Zhexiong Jin
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Yan Fang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Youjun Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China.
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China.
| | - Haiping Lin
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China.
| |
Collapse
|
4
|
Yuan S, Jiang H, Wang Y, Zhang L, Shi Z, Jiao L, Meng D. A 3R-MYB transcription factor is involved in Methyl Jasmonate-Induced disease resistance in Agaricus bisporus and has implications for disease resistance in Arabidopsis. J Adv Res 2024:S2090-1232(24)00380-1. [PMID: 39233001 DOI: 10.1016/j.jare.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Methyl jasmonate (MeJA) and MYB transcription factors (TFs) play important roles in pathogen resistance in several plants, but MYB TFs in conjunction with MeJA-induced defense against Pseudomonas tolaasii in edible mushrooms remain unknown. OBJECTIVES To investigate the role of a novel 3R-MYB transcription factor (AbMYB11) in MeJA-induced disease resistance of Agaricus bisporus and in the resistance of transgenic Arabidopsis to P. tolaasii. METHODS Mushrooms were treated with MeJA alone or in combination with phenylpropanoid pathway inhibitors, and the effects of the treatments on the disease-related and physiological indicators of the mushrooms were determined to assess the role of MeJA in inducing resistance and the importance of the phenylpropanoid pathway involved. Subcellular localization, gene expression analysis, dual-luciferase reporter assay, electrophoretic mobility shift assay, and transgenic Arabidopsis experiments were performed to elucidate the molecular mechanism of AbMYB11 in regulating disease resistance. RESULTS MeJA application greatly improved mushroom resistance to P. tolaasii infection, and suppression of the phenylpropanoid pathway significantly weakened this effect. MeJA treatment stimulated the accumulation of phenylpropanoid metabolites, which was accompanied by increased the activities of biosynthetic enzymes and the expression of phenylpropanoid pathway-related genes (AbPAL1, Ab4CL1, AbC4H1) and an AbPR-like gene, further confirming the critical role of the phenylpropanoid pathway in MeJA-induced responses to P. tolaasii. Importantly, AbMYB11, localized in the nucleus, was rapidly induced by MeJA treatment under P. tolaasii infection; it transcriptionally activated the phenylpropanoid pathway-related and AbPR-like genes, and AbMYB11 overexpression in Arabidopsis significantly increased the transcription of phenylpropanoid-related genes, the accumulation of total phenolics and flavonoids, and improved resistance to P. tolaasii. CONCLUSION This study clarified the pivotal role of AbMYB11 as a regulator in disease resistance by modulating the phenylpropanoid pathway, providing a novel idea for the breeding of highly disease-resistant edible mushrooms and plants.
Collapse
Affiliation(s)
- Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zixuan Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lu Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Rahman MU, Liu X, Wang X, Fan B. Grapevine gray mold disease: infection, defense and management. HORTICULTURE RESEARCH 2024; 11:uhae182. [PMID: 39247883 PMCID: PMC11374537 DOI: 10.1093/hr/uhae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Grapevine (Vitis vinifera L.,) is among the world's leading fruit crops. The production of grapes is severely affected by many diseases including gray mold, caused by the necrotrophic fungus Botrytis cinerea. Although all Vitis species can be hosts for B. cinerea, V. vinifera are particularly susceptible. Accordingly, this disease poses a significant threat to the grape industry and causes substantial economic losses. Development of resistant V. vinifera cultivars has progressed from incidental selection by farmers, to targeted selection through the use of statistics and experimental design, to the employment of genetic and genomic data. Emerging technologies such as marker-assisted selection and genetic engineering have facilitated the development of cultivars that possess resistance to B. cinerea. A promising method involves using the CRISPR/Cas9 system to induce targeted mutagenesis and develop genetically modified non-transgenic crops. Hence, scientists are now engaged in the active pursuit of identifying genes associated with susceptibility and resistance. This review focuses on the known mechanisms of interaction between the B. cinerea pathogen and its grapevine host. It also explores innate immune systems that have evolved in V. vinifera, with the objective of facilitating the rapid development of resistant grapevine cultivars.
Collapse
Affiliation(s)
- Mati Ur Rahman
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xia Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100 Yangling, Xianyang, Shaanxi, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| |
Collapse
|
6
|
Zhao T, Huang C, Li N, Ge Y, Wang L, Tang Y, Wang Y, Li Y, Zhang C. Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew. PLANT PHYSIOLOGY 2024; 195:2891-2910. [PMID: 38688011 DOI: 10.1093/plphys/kiae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Proanthocyanidins (PAs) are an important group of flavonoids that contribute to astringency, color, and flavor in grapes (Vitis vinifera) and wines. They also play a crucial role in enhancing plant resistance to various stresses. However, the underlying regulatory mechanism governing PAs biosynthesis, particularly in relation to conferring resistance to powdery mildew, has not been extensively explored. This study focused on identifying a key player in PAs biosynthesis, namely the plant U-box (PUB) E3 ubiquitin ligase VvPUB26. We discovered that overexpression of VvPUB26 in grapes leads to a significant increase in PAs content, whereas interfering with VvPUB26 has the opposite effect. Additionally, our findings demonstrated that overexpression of VvPUB26 in transgenic grapevines enhances defense against powdery mildew while interfering with VvPUB26 results in increased susceptibility to the pathogen. Interestingly, we observed that VvPUB26 interacts with the WRKY transcription factor VvWRKY24, thereby facilitating ubiquitination and degradation processes. Through RNA-Seq analysis, we found that VvWRKY24 primarily participates in secondary metabolites biosynthesis, metabolic pathways, and plant-pathogen interaction. Notably, VvWRKY24 directly interacts with the promoters of dihydroflavonol-4-reductase (DFR) and leucoanthocyanidin reductase (LAR) to inhibit PAs biosynthesis. Meanwhile, VvWRKY24 also influences the expression of MYB transcription factor genes related to PAs synthesis. In conclusion, our results unveil a regulatory module involving VvPUB26-VvWRKY24-VvDFR/VvLAR that plays a fundamental role in governing PAs biosynthesis in grapevines. These findings enhance our understanding of the relationship between PAs biosynthesis and defense mechanisms against powdery mildew.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yaqi Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Zhou M, Wang H, Yu X, Cui K, Hu Y, Xiao S, Wen YQ. Transcription factors VviWRKY10 and VviWRKY30 co-regulate powdery mildew resistance in grapevine. PLANT PHYSIOLOGY 2024; 195:446-461. [PMID: 38366578 DOI: 10.1093/plphys/kiae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Abstract
Grapevine (Vitis vinifera) is an economically important fruit crop worldwide. The widely cultivated grapevine is susceptible to powdery mildew caused by Erysiphe necator. In this study, we used CRISPR-Cas9 to simultaneously knock out VviWRKY10 and VviWRKY30 encoding two transcription factors reported to be implicated in defense regulation. We generated 53 wrky10 single mutant transgenic plants and 15 wrky10 wrky30 double mutant transgenic plants. In a 2-yr field evaluation of powdery mildew resistance, the wrky10 mutants showed strong resistance, while the wrky10 wrky30 double mutants showed moderate resistance. Further analyses revealed that salicylic acid (SA) and reactive oxygen species contents in the leaves of wrky10 and wrky10 wrky30 were substantially increased, as was the ethylene (ET) content in the leaves of wrky10. The results from dual luciferase reporter assays, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated that VviWRKY10 could directly bind to the W-boxes in the promoter of SA-related defense genes and inhibit their transcription, supporting its role as a negative regulator of SA-dependent defense. By contrast, VviWRKY30 could directly bind to the W-boxes in the promoter of ET-related defense genes and promote their transcription, playing a positive role in ET production and ET-dependent defense. Moreover, VviWRKY10 and VviWRKY30 can bind to each other's promoters and mutually inhibit each other's transcription. Taken together, our results reveal a complex mechanism of regulation by VviWRKY10 and VviWRKY30 for activation of measured and balanced defense responses against powdery mildew in grapevine.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Hongyan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Xuena Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Kaicheng Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Zhang Y, Wang Y, Liu R, Fei Z, Fan X, Jiang J, Sun L, Meng X, Liu C. Antibody array-based proteome approach reveals proteins involved in grape seed development. PLANT PHYSIOLOGY 2024; 195:462-478. [PMID: 38395446 PMCID: PMC11060674 DOI: 10.1093/plphys/kiad682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/16/2023] [Indexed: 02/25/2024]
Abstract
Grape (Vitis vinifera) is one of the most widely cultivated fruits globally, primarily used for processing and fresh consumption. Seedless grapes are favored by consumers for their convenience, making the study of seedlessness a subject of great interest to scientists. To identify regulators involved in this process in grape, a monoclonal antibody (mAb)-array-based proteomics approach, which contains 21,120 mAbs, was employed for screening proteins/antigens differentially accumulated in grape during development. Differences in antigen signals were detected between seeded and seedless grapes revealing the differential accumulation of 2,587 proteins. After immunoblotting validation, 71 antigens were further immunoprecipitated and identified by mass spectrometry (MS). An in planta protein-protein interaction (PPI) network of those differentially accumulated proteins was established using mAb antibody by immunoprecipitation (IP)-MS, which reveals the alteration of pathways related to carbon metabolism and glycolysis. To validate our result, a seedless-related protein, DUF642 domain-containing protein (VvDUF642), which is functionally uncharacterized in grapes, was ectopically overexpressed in tomato (Solanum lycopersicum "MicroTom") and led to a reduction in seed production. PPI network indicated that VvDUF642 interacts with pectin acetylesterase (VvPAE) in grapes, which was validated by BiFC and Co-IP. As anticipated, overexpression of VvPAE substantially reduced seed production in tomato. Moreover, S. lycopersicum colourless non-ripening expression was altered in VvDUF642- and VvPAE-overexpressing plants. Taken together, we provided a high-throughput method for the identification of proteins involved in the seed formation process. Among those, VvDUF642 and VvPAE are potential targets for breeding seedless grapes and other important fruits in the future.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
- Chuxiong Yunguo Agriculture Technology Research Institute (Yunnan), Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Henan 450008, China
| | - Yiming Wang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853-1801, USA
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| | - Xun Meng
- School of Life Science, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Chonghuai Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| |
Collapse
|
9
|
Huang LJ, Yang W, Chen J, Yu P, Wang Y, Li N. Molecular identification and functional characterization of an environmental stress responsive glutaredoxin gene ROXY1 in Quercus glauca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108367. [PMID: 38237422 DOI: 10.1016/j.plaphy.2024.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
Quercus glauca is a valuable natural resource with both economic and ecological values. It is one of the dominant forest tree species widely distributed in Southern China. As a perennial broadleaf plant, Q. glauca inevitably encounters numerous stresses from environment. Glutaredoxins (GRXs) are a kind of small oxidoreductases that play an important role in response to oxidative stress. CC-type GRXs also known as ROXYs are specific to land plants. In this study, we isolated a CC-type GRX gene, QgROXY1, from Q. glauca. Expression of QgROXY1 is induced by a variety of environmental stimuli. QgROXY1 protein localizes to both cytoplasm and nucleus; whereas the nucleus localized QgROXY1 could physically interact with the basic region/leucine zipper motif (bZIP) transcription factor AtTGA2 from Arabidopsis thaliana. Transgenic A. thaliana ectopically expressing QgROXY1 is hypersensitive to exogenously applied salicylic acid. Induction of plant defense gene is significantly impaired in QgROXY1 transgenic plants that results in enhanced susceptibility to infection of Botrytis cinerea pathogen, indicating the evolutionary conserved function among ROXY homologs in weedy and woody plants. This is the first described function for the ROXYs in tree plants. Through this case study, we demonstrated the feasibility and efficacy of molecular technology applied to characterization of gene function in tree species.
Collapse
Affiliation(s)
- Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wenhai Yang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiali Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peiyao Yu
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yukun Wang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ning Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
10
|
He S, Dong W, Chen J, Zhang J, Lin W, Yang S, Xu D, Zhou Y, Miao B, Wang W, Chen F. DataColor: unveiling biological data relationships through distinctive color mapping. HORTICULTURE RESEARCH 2024; 11:uhad273. [PMID: 38333729 PMCID: PMC10852383 DOI: 10.1093/hr/uhad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
In the era of rapid advancements in high-throughput omics technologies, the visualization of diverse data types with varying orders of magnitude presents a pressing challenge. To bridge this gap, we introduce DataColor, an all-encompassing software solution meticulously crafted to address this challenge. Our aim is to empower users with the ability to handle a wide array of data types through an assortment of tools, while simultaneously streamlining parameter selection for rapid insights and detailed enhancements. DataColor stands as a robust toolkit, encompassing 23 distinct tools coupled with over 600 parameters. The defining characteristic of this toolkit is its adept utilization of the color spectrum, allowing for the representation of data spanning diverse types and magnitudes. Through the integration of advanced algorithms encompassing data clustering, normalization, squarified layouts, and customizable parameters, DataColor unveils an abundance of insights that lay hidden within the intricate relationships embedded in the data. Whether you find yourself navigating the analysis of expansive datasets or embarking on the quest to visualize intricate patterns, DataColor stands as the comprehensive and potent solution. We extend the availability of DataColor to all users at no cost, accessible through the following link: https://github.com/frankgenome/DataColor.
Collapse
Affiliation(s)
- Shuang He
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Dong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Junhao Chen
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| | - Junyu Zhang
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Weiwei Lin
- Merkle Business Information Consultancy (Nanjing) Co., Ltd, Nanjing 210032, China
| | - Shuting Yang
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Dong Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuhan Zhou
- State Key Laboratory of Rice Biology & Breeding, Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Benben Miao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Wenquan Wang
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fei Chen
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Wang X, Tu M, Wang Y, Zhang Y, Yin W, Fang J, Gao M, Li Z, Zhan W, Fang Y, Song J, Xi Z, Wang X. Telomere-to-telomere and gap-free genome assembly of a susceptible grapevine species (Thompson Seedless) to facilitate grape functional genomics. HORTICULTURE RESEARCH 2024; 11:uhad260. [PMID: 38288254 PMCID: PMC10822838 DOI: 10.1093/hr/uhad260] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/26/2023] [Indexed: 01/31/2024]
Abstract
Grapes are globally recognized as economically significant fruit trees. Among grape varieties, Thompson Seedless holds paramount influence for fresh consumption and for extensive applications in winemaking, drying, and juicing. This variety is one of the most efficient genotypes for grape genetic modification. However, the lack of a high-quality genome has impeded effective breeding efforts. Here, we present the high-quality reference genome of Thompson Seedless with all 19 chromosomes represented as 19 contiguous sequences (N50 = 27.1 Mb) with zero gaps and prediction of all telomeres and centromeres. Compared with the previous assembly (TSv1 version), the new assembly incorporates an additional 31.5 Mb of high-quality sequenced data with annotation of a total of 30 397 protein-coding genes. We also performed a meticulous analysis to identify nucleotide-binding leucine-rich repeat genes (NLRs) in Thompson Seedless and two wild grape varieties renowned for their disease resistance. Our analysis revealed a significant reduction in the number of two types of NLRs, TIR-NB-LRR (TNL) and CC-NB-LRR (CNL), in Thompson Seedless, which may have led to its sensitivity to many fungal diseases, such as powdery mildew, and an increase in the number of a third type, RPW8 (resistance to powdery mildew 8)-NB-LRR (RNL). Subsequently, transcriptome analysis showed significant enrichment of NLRs during powdery mildew infection, emphasizing the pivotal role of these elements in grapevine's defense against powdery mildew. The successful assembly of a high-quality Thompson Seedless reference genome significantly contributes to grape genomics research, providing insight into the importance of seedlessness, disease resistance, and color traits, and these data can be used to facilitate grape molecular breeding efforts.
Collapse
Affiliation(s)
- Xianhang Wang
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Tu
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yali Zhang
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghao Fang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Zhan
- Xi'an Haorui Genomics Technology Co., Ltd, Xi'an 710116, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyang Song
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhumei Xi
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Ma F, Zhou H, Yang H, Huang D, Xing W, Wu B, Li H, Hu W, Song S, Xu Y. WRKY transcription factors in passion fruit analysis reveals key PeWRKYs involved in abiotic stress and flavonoid biosynthesis. Int J Biol Macromol 2024; 256:128063. [PMID: 37963507 DOI: 10.1016/j.ijbiomac.2023.128063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
WRKY transcription factors (TFs) are a superfamily of regulators involved in plant responses to pathogens and abiotic stress. Passion fruit is famous for its unique flavor and nutrient-rich juice, but its growth is limited by environmental factors and pathogens. In this study, 55 WRKY genes were identified from the Passiflora edulis genome. The structure and evolutionary characteristics of PeWRKYs were analyzed using a bioinformatics approach. PeWRKYs were classified into seven subgroups (I, IIa, IIb, IIc, IId, IIe, III) according to their homologs in Arabidopsis thaliana. Group IIa PeWRKY48 gene was highly up-regulated under cold stress by RNA expression analysis, and transgenic PeWRKY48 in yeast and Arabidopsis showed resistance exposure to cold, salt, and drought stress. Metabolome and transcriptome co-expression analysis of two different disease resistance genotypes of P. edulis identified PeWRKY30 as a key TF co-expressed with flavonoid accumulation in yellow fruit P. edulis, which may contribute to biotic or abiotic resistance. The qRT-PCR verified the expression of key genes in different tissues of P. edulis and in different species of Passiflora. This study provides a set of WRKY candidate genes that will facilitate the genetic improvement of disease and abiotic tolerance in passion fruit.
Collapse
Affiliation(s)
- Funing Ma
- Tropical Crops Genetic Resources Institute, CATAS, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, National Key Laboratory for Tropical Crop Breeding, Germplasm Repository of Passiflora, Haikou 571101, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hongwu Zhou
- Yunnan Agricultural University, Yunnan 650201, China
| | - Huiting Yang
- Yunnan Agricultural University, Yunnan 650201, China
| | - Dongmei Huang
- Tropical Crops Genetic Resources Institute, CATAS, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, National Key Laboratory for Tropical Crop Breeding, Germplasm Repository of Passiflora, Haikou 571101, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Wenting Xing
- Tropical Crops Genetic Resources Institute, CATAS, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, National Key Laboratory for Tropical Crop Breeding, Germplasm Repository of Passiflora, Haikou 571101, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Bin Wu
- Tropical Crops Genetic Resources Institute, CATAS, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, National Key Laboratory for Tropical Crop Breeding, Germplasm Repository of Passiflora, Haikou 571101, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hongli Li
- Tropical Crops Genetic Resources Institute, CATAS, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, National Key Laboratory for Tropical Crop Breeding, Germplasm Repository of Passiflora, Haikou 571101, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Wenbin Hu
- Tropical Crops Genetic Resources Institute, CATAS, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, National Key Laboratory for Tropical Crop Breeding, Germplasm Repository of Passiflora, Haikou 571101, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shun Song
- Tropical Crops Genetic Resources Institute, CATAS, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, National Key Laboratory for Tropical Crop Breeding, Germplasm Repository of Passiflora, Haikou 571101, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Yi Xu
- Tropical Crops Genetic Resources Institute, CATAS, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, National Key Laboratory for Tropical Crop Breeding, Germplasm Repository of Passiflora, Haikou 571101, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
13
|
Zhao S, Tan M, Zhu Y, Zhang Y, Zhang C, Jiao J, Wu P, Feng K, Li L. Combined analysis of microRNA and mRNA profiles provides insights into the pathogenic resistant mechanisms of the lotus rhizome rot. PHYSIOLOGIA PLANTARUM 2023; 175:e14045. [PMID: 37882296 DOI: 10.1111/ppl.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Lotus rhizome rot caused by Fusarium oxysporum is a common vascular fungal disease in plants that significantly impacts the yield. However, only a few studies have studied the mechanism of Nelumbo nucifera responding to lotus rhizome rot. Here, we investigated the pathogenic genes and miRNAs in lotus rhizome rot to uncover the pathogenic resistant mechanisms by transcriptome and small RNA sequencing of lotus roots after inoculation with Fusarium oxysporum. GO and KEGG functional enrichment analysis showed that differential miRNAs were mostly enriched in starch and sucrose metabolism, biosynthesis of secondary metabolites, glutathione metabolism, brassinosteroid biosynthesis and flavonoid biosynthesis pathways. Twenty-seven upregulated miRNAs, 19 downregulated miRNAs and their target genes were identified. Correlation analysis found that miRNAs negatively regulate target genes, which were also enriched in starch and sucrose metabolism and glutathione metabolism pathways. Their expression was measured by reverse transcription quantitative PCR (qRT-PCR), and the results were consistent with the transcriptome analysis, thus verifying the reliability of transcriptome data. We selected three miRNAs (miRNA858-y, miRNA171-z and a novel miRNA novel-m0005-5p) to test the relationship between miRNAs and their target genes. The activity of the GUS testing assay indicated that miRNA could decrease the GUS activity by inhibiting the expression of their target genes. Collectively, this study provides a comprehensive analysis of transcriptome and small RNA sequencing of lotus root after inoculation with Fusarium oxysporum, and we identified candidate miRNAs and their target genes for breeding strategies of Nelumbo nucifera.
Collapse
Affiliation(s)
- Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Mengying Tan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yamei Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Chuyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jiao Jiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Pan LY, Zhou J, Sun Y, Qiao BX, Wan T, Guo RQ, Zhang J, Shan DQ, Cai YL. Comparative transcriptome and metabolome analyses of cherry leaves spot disease caused by Alternaria alternata. FRONTIERS IN PLANT SCIENCE 2023; 14:1129515. [PMID: 36844070 PMCID: PMC9947566 DOI: 10.3389/fpls.2023.1129515] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Alternaria alternata is a necrotrophic fungal pathogen with a broad host range that causes widespread and devastating disease in sweet cherry (Prunus avium). We selected a resistant cultivar (RC) and a susceptible cultivar (SC) of cherry and used a combined physiological, transcriptomic, and metabolomic approach to investigate the molecular mechanisms underlying the plant's resistance to A. alternata, of which little is known. We found that A. alternata infection stimulated the outbreak of reactive oxygen species (ROS) in cherry. The responses of the antioxidant enzymes and chitinase to disease were observed earlier in the RC than in the SC. Moreover, cell wall defense ability was stronger in the RC. Differential genes and metabolites involved in defense responses and secondary metabolism were primarily enriched in the biosynthesis of phenylpropanoids, tropane, piperidine and pyridine alkaloids, flavonoids, amino acids, and α-linolenic acid. Reprogramming the phenylpropanoid pathway and the α-linolenic acid metabolic pathway led to lignin accumulation and early induction of jasmonic acid signaling, respectively, in the RC, which consequently enhanced antifungal and ROS scavenging activity. The RC contained a high level of coumarin, and in vitro tests showed that coumarin significantly inhibited A. alternata growth and development and had antifungal effect on cherry leaves. In addition, differentially expressed genes encoding transcription factors from the MYB, NAC, WRKY, ERF, and bHLH families were highly expressed, they could be the key responsive factor in the response of cherry to infection by A. alternata. Overall, this study provides molecular clues and a multifaceted understanding of the specific response of cherry to A. alternata.
Collapse
Affiliation(s)
- Liu-Yi Pan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Bai-Xue Qiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Wan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui-Quan Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- College of Horticulture and Forestry, Tarim University, Alar, Xinjiang, China
| | - Dong-Qian Shan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Liang Cai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Su K, Zhao W, Lin H, Jiang C, Zhao Y, Guo Y. Candidate gene discovery of Botrytis cinerea resistance in grapevine based on QTL mapping and RNA-seq. FRONTIERS IN PLANT SCIENCE 2023; 14:1127206. [PMID: 36824203 PMCID: PMC9941706 DOI: 10.3389/fpls.2023.1127206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Grape gray mold disease (Botrytis cinerea) is widespread during grape production especially in Vitis vinifera and causes enormous losses to the grape industry. In nature, the grapevine cultivar 'Beta ' (Vitis riparia × Vitis labrusca) showed high resistance to grape gray mold. Until now, the candidate genes and their mechanism of gray mold resistance were poorly understood. In this study, we firstly conducted quantitative trait locus (QTL) mapping for grape gray mold resistance based on two hybrid offspring populations that showed wide separation in gray mold resistance. Notably, two stable QTL related to gray mold resistance were detected and located on linkage groups LG2 and LG7. The phenotypic variance ranged from 6.86% to 13.70% on LG2 and 4.40% to 11.40% on LG7. Combined with RNA sequencing (RNA-seq), one structural gene VlEDR2 (Vitvi02g00982) and three transcription factors VlERF039 (Vitvi00g00859), VlNAC047 (Vitvi08g01843), and VlWRKY51 (Vitvi07g01847) that may be involved in VlEDR2 expression and grape gray mold resistance were selected. This discovery of candidate gray mold resistance genes will provide an important theoretical reference for grape gray mold resistance mechanisms, research, and gray mold-resistant grape cultivar breeding in the future.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Wei Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| |
Collapse
|
16
|
Yu D, Wei W, Fan Z, Chen J, You Y, Huang W, Zhan J. VabHLH137 promotes proanthocyanidin and anthocyanin biosynthesis and enhances resistance to Colletotrichum gloeosporioides in grapevine. HORTICULTURE RESEARCH 2023; 10:uhac261. [PMID: 36778186 PMCID: PMC9907051 DOI: 10.1093/hr/uhac261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/20/2022] [Indexed: 06/18/2023]
Abstract
Proanthocyanidins (PAs) and anthocyanins are involved in the response of plants to various environmental stresses. However, the mechanism behind defense-induced PA biosynthetic regulation is still not completely elucidated, also in grapevine. This study performed a transcriptome sequencing analysis of grape berries infected with Colletotrichum gloeosporioides to highlight the induction of the VabHLH137 factor from the basic helix-loop-helix (bHLH) XII subfamily by the fungus, which appeared to be significantly co-expressed with PA-related genes. The functional analysis of VabHLH137 overexpression and knockdown in transgenic grape calli showed that it positively regulated PA and anthocyanin biosynthesis. Moreover, VabHLH137 overexpression in the grape calli significantly increased resistance to C. gloeosporioides. A yeast one-hybrid and electrophoretic mobility shift assay revealed that VabHLH137 directly bound to the VaLAR2 promoter, enhancing its activity and interacting with VaMYBPAR, a transcriptional activator of PA biosynthesis. Furthermore, transient experiments showed that although the VabHLH137 + VaMYBPAR complex activated VaLAR2 expression, it failed to further enhance VaLAR2 expression compared to VaMYBPAR alone. The findings indicated that VabHLH137 enhanced PA biosynthesis by activating of VaLAR2 expression, providing new insight into the transcriptional regulation of defense-induced PA biosynthesis in grapevine.
Collapse
Affiliation(s)
- Dan Yu
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhongqi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| |
Collapse
|
17
|
Wang ZL, Wu D, Hui M, Wang Y, Han X, Yao F, Cao X, Li YH, Li H, Wang H. Screening of cold hardiness-related indexes and establishment of a comprehensive evaluation method for grapevines ( V. vinifera). FRONTIERS IN PLANT SCIENCE 2022; 13:1014330. [PMID: 36507445 PMCID: PMC9731228 DOI: 10.3389/fpls.2022.1014330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 06/17/2023]
Abstract
The goals of this work were to screen physiological and biochemical indexes to assess a set of V. vinifera germplasm resources, to compare evaluation methods for cold hardiness, and to establish a comprehensive method that can be used for more accurate screening for cold hardiness in V. vinifera. Four single methods were used to evaluate the cold hardiness of 20 germplasms resources and 18 physiological and biochemical indexes related to cold hardiness were determined. The LT50 values determined by electrical conductivity (EL), 2,3,5-triphenyltetrazolium chloride staining (TTC), differential thermal analysis (DTA), and recovery growth (RG) methods showed extremely significant positive correlation. Bound water content (BW), proline content (Pro), total soluble sugar content (TSS), malondialdehyde content (MDA), catalase content (CAT), and ascorbic acid content (ASA) exhibited significant correlation with LT50 values measured by different evaluation methods. The comprehensive cold hardiness index calculated by principal component analysis (PCA) combined with subordinate function (SF) was negatively correlated with LT50 values measured by different evaluation methods. Meili and Ecolly exhibited the highest cold hardiness, indicating their potential for use as parents for cold hardiness breeding. EL, DTA, TTC, and RG methods successfully distinguished cold hardiness among different V. vinifera germplasm lines. Measurements of BW, Pro, TSS, MDA, CAT, and ASA in dormant shoots also can be used as main physiological and biochemical indexes related to cold hardiness of V. vinifera. Comprehensive evaluation by PCA combined with SF can accurately screen cold hardiness in V. vinifera. This study provides a reference and accurate identification method for the selection of cold hardiness parents and the evaluation of cold hardiness of germplasm of V. vinifera.
Collapse
Affiliation(s)
- Zhi-Lei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Wu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Miao Hui
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Science, Langfang Normal University, Langfang, Hebei, China
| | - Xing Han
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Yao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Cao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi-Han Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
- China Wine Industry Technology Institute, Yinchuan, Ningxia, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, Shaanxi, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
- China Wine Industry Technology Institute, Yinchuan, Ningxia, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Zhang Y, Dong W, Zhao C, Ma H. Comparative transcriptome analysis of resistant and susceptible Kentucky bluegrass varieties in response to powdery mildew infection. BMC PLANT BIOLOGY 2022; 22:509. [PMID: 36319971 PMCID: PMC9628184 DOI: 10.1186/s12870-022-03883-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Poa pratensis is one of the most common cold-season turfgrasses used for urban turf building, and it is also widely used in ecological environment management worldwide. Powdery mildew is a common disease of P. pratensis. To scientifically and ecologically control lawn powdery mildew, the molecular mechanism underlying the response of P. pratensis to powdery mildew infection must better understood. RESULTS To explore molecular mechanism underlying the response of P. pratensis to powdery mildew infection, this study compared physiological changes and transcriptomic level differences between the highly resistant variety 'BlackJack' and the extremely susceptible variety 'EverGlade' under powdery mildew infection conditions. We analyzed DEGs using reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that "starch and sucrose metabolism", "photosynthesis" and "fatty acid metabolism"pathways were only enriched in 'BlackJack', and the expression of DEGs such as HXK, INV, GS, SS, AGpase and β-amylase in "starch and sucrose metabolism" pathway of 'BlackJack' were closely related to powdery mildew resistance. Meanwhile, compared with 'EverGlade', powdery mildew infection promoted synthesis of sucrose, expression of photosynthesis parameters and photosynthesis-related enzymes in leaves of 'BlackJack' and decreased accumulation of monosaccharides such as glucose and fructose. CONCLUSIONS This study identified the key metabolic pathways of a P. pratensis variety with high resistance to powdery mildew infection and explored the differences in physiological characteristics and key genes related to sugar metabolism pathways under powdery mildew stress. These findings provide important insights for studying underlying molecular response mechanism.
Collapse
Affiliation(s)
- Yujuan Zhang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenke Dong
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Chunxu Zhao
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huiling Ma
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
19
|
Wang L, Liu S, Gao M, Wang L, Wang L, Wang Y, Dai L, Zhao J, Liu M, Liu Z. The Crosstalk of the Salicylic Acid and Jasmonic Acid Signaling Pathways Contributed to Different Resistance to Phytoplasma Infection Between the Two Genotypes in Chinese Jujube. Front Microbiol 2022; 13:800762. [PMID: 35369447 PMCID: PMC8971994 DOI: 10.3389/fmicb.2022.800762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Jujube witches’ broom disease (JWB), one of the most serious phytoplasma diseases, usually results in the destruction of Chinese jujube (Ziziphus jujuba Mill.). Although most jujube cultivars are sensitive to JWB, we found a few genotypes that are highly resistant to JWB. However, the molecular mechanism of phytoplasma resistance has seldom been studied. Here, we used Chinese jujube “T13,” which has strong resistance to JWB, and a typical susceptible cultivar, “Pozao” (“PZ”), as materials to perform comparative transcriptome, hormone, and regulation analyses. After phytoplasma infection, the differential expression genes (DEGs) were detected at all three growth phases (S1, S2, and S3) in “PZ,” but DEGs were detected only at the first growth phase in “T13.” Meanwhile, no phytoplasma was detected, and the symptoms especially witches’ broom caused by JWB were not observed at the last two growth phases (S2 and S3) in “T13.” Protein–protein interaction analysis also showed that the key genes were mainly involved in hormone and reactive oxygen species (ROS) signaling. In addition, during the recovered growth phase in “T13” from S1 to S2, the level of hydrogen peroxide (H2O2) was significantly increased and then decreased from S2 to S3. Moreover, jasmonic acid (JA) was significantly accumulated in “PZ” diseased plants, especially at the S2 phase and at the S2 phase in “T13,” while the content of salicylic acid (SA) decreased significantly at the S2 phase of “T13” compared to that in “PZ.” The changes in H2O2 and JA or SA were consistent with the changes in their key synthesis genes in the transcriptome data. Finally, exogenous application of an SA inhibitor [1-aminobenzotriazole (ABT)] rescued witches’ broom symptoms, while the contents of both JA and MeJA increased after ABT treatment compared to the control, demonstrating that exogenous application of an SA inhibitor rescued the symptoms of jujube after phytoplasma infection by decreasing the contents of SA and increasing the contents of JA and MeJA. Collectively, our study provides a new perspective on the transcriptional changes of Chinese jujube in response to JWB and novel insights that the crosstalk of JA and SA signaling communicated together to contribute to “T13” JWB resistance.
Collapse
Affiliation(s)
- Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Shiyan Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Mengjiao Gao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Linxia Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yunjie Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Dai
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
- Mengjun Liu,
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
- *Correspondence: Zhiguo Liu,
| |
Collapse
|
20
|
Zhong Y, Chen Z, Cheng ZM. Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species. Mol Genet Genomics 2022; 297:263-276. [PMID: 35031863 PMCID: PMC8803762 DOI: 10.1007/s00438-021-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.
Collapse
Affiliation(s)
- Yan Zhong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhao Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Cheng
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|