1
|
Wang Y, Yan H, Qiu X, Zhang H, Zhang Y, Jian H. A high-quality chromosome-scale genome assembly of the Cherokee rose (Rosa laevigata). Sci Data 2025; 12:132. [PMID: 39843470 PMCID: PMC11754454 DOI: 10.1038/s41597-025-04461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Rosa laevigata is an excellent rose germplasm, highly resistant to aphid, and immune to both rose black spot and powdery mildew disease. It is also a well-known edible plant with a long history of medicinal use in China, having the effects of improving kidney function, inhibiting arteriosclerosis, and reducing inflammation. In this study, we assembled a high-quality chromosome-scale genome for R. laevigata by combining Illumina, PacBio, and Hi-C data, which has a length of approximately 494.2 Mb with a scaffold N50 of 68.6 Mb. A total of 493.2 Mb (99.8%) of the draft genome sequences were anchored on seven pseudochromosomes and two gapless pseudochromosomes were included in the final genome assembly. A total of 37,117 protein-coding genes were predicted, 34,047 of which were functionally annotated. Repeat annotation revealed 659,558 (285.6 Mb) repeat elements, accounting for 57.8% of the genome. The chromosome-scale genome provides valuable information to facilitate comparative genomic analysis of rose family and will accelerate genome-guided breeding and germplasm improvement of both R. laevigata itself and modern roses.
Collapse
Affiliation(s)
- Yi Wang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Huijun Yan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Xianqin Qiu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Hao Zhang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yonghong Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
| | - Hongying Jian
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| |
Collapse
|
2
|
Huang R, Zhang X, Luo K, Tembrock LR, Li S, Wu Z. The Identification of Auxin Response Factors and Expression Analyses of Different Floral Development Stages in Roses. Genes (Basel) 2025; 16:41. [PMID: 39858591 PMCID: PMC11764539 DOI: 10.3390/genes16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives:Auxin response factors (ARFs) are important in plant growth and development, especially flower development. However, there is limited research on the comprehensive identification and characterization of ARF genes in roses. Methods: We employed bioinformatics tools to identify the ARF genes of roses. These genes were characterized for their phylogenetic relationships, chromosomal positions, conserved motifs, gene structures, and expression patterns. Results: In this study, a total of 17 ARF genes were identified in the genomes of Rosa chinensis 'OB', R. chinensis 'CH', R. rugosa, and R. wichurana. Based on RNA-seq analyses, we found that the ARF genes had diverse transcript patterns in various tissues and cultivars. In 'CH', the expression levels of RcCH_ARFs during different flower-development stages were classified into four clusters. In cluster 3 and cluster 4, RcCH_ARFs were specifically high and low in different stages of floral evocation. Gene expression and phylogenetic analyses showed that RcCH_ARF3, RcCH_ARF4, and RcCH_ARF18 were likely to be the key genes for rose flower development. Conclusions: The identification and characterization of ARF genes in Rosa were investigated. The results presented here provide a theoretical basis for the molecular mechanisms of ARF genes in plant development and flowering for roses, with a broader application for other species in the rose family and for the development of novel cultivars.
Collapse
Affiliation(s)
- Rui Huang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Kaiqing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zhiqiang Wu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
3
|
Zeng T, Zhu L, Su W, Gu L, Wang H, Du X, Zhu B, Wang C, Wu D. Comparative Analysis of Ca 2+/Cation Antiporter Gene Family in Rosa roxburghii and Enhanced Calcium Stress Tolerance via Heterologous Expression of RrCAX1a in Tobacco. PLANTS (BASEL, SWITZERLAND) 2024; 13:3582. [PMID: 39771280 PMCID: PMC11677073 DOI: 10.3390/plants13243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Rosa roxburghii, a calciphilic species native to the mountainous regions of Southwest China, is renowned for its high vitamin C and bioactive components, making it valuable for culinary and medicinal uses. This species exhibits remarkable tolerance to the high-calcium conditions typical of karst terrains. However, the underlying mechanisms of this calcium resilience remain unclear. The Ca2+/cation antiporter (CaCA) superfamily plays a vital role in the transport of Ca2+ and other cations and is crucial for plant tolerance to metal stress. However, the roles and evolutionary significance of the CaCA superfamily members in R. roxburghii remain poorly understood. This study identified 22 CaCA superfamily genes in R. roxburghii, categorized into four subfamilies. The gene structures of these RrCaCAs show considerable conservation across related species. Selection pressure analysis revealed that all RrCaCAs are subject to purifying selection. The promoter regions of these genes contain numerous hormone-responsive and stress-related elements. qRT-PCR analyses demonstrated that H+/cation exchanger (CAX) RrCAX1a and RrCAX3a were highly responsive to Ca2+ stress, cation/Ca2+ exchanger (CCX) RrCCX4 to Mg2+ stress, and RrCCX11a to Na+ stress. Subcellular localization indicated that RrCAX1a is localized to the plant cell membrane, and its stable transformation in tobacco confirmed its ability to confer enhanced resistance to heavy Ca2+ stresses, highlighting its crucial role in the high-calcium tolerance mechanisms of R. roxburghii. This research establishes a foundation for further molecular-level functional analyses of the adaptation mechanisms of R. roxburghii to high-calcium environments.
Collapse
Affiliation(s)
- Tuo Zeng
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.W.)
| | - Wenwen Su
- Guizhou Institute of Mountain Resources, Guiyang 550025, China;
| | - Lei Gu
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Xuye Du
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Bin Zhu
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.W.)
| | - Di Wu
- Guizhou Institute of Mountain Resources, Guiyang 550025, China;
| |
Collapse
|
4
|
Xu Y, Shi Y, Zhang W, Zhu K, Feng L, Wang J. C2H2 Zinc Finger Protein Family Analysis of Rosa rugosa Identified a Salt-Tolerance Regulator, RrC2H2-8. PLANTS (BASEL, SWITZERLAND) 2024; 13:3580. [PMID: 39771278 PMCID: PMC11678247 DOI: 10.3390/plants13243580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Rosa rugosa is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses. In this study, 102 C2H2-type zinc finger genes (RrC2H2s) were identified in R. rugosa via a comprehensive approach. These genes were categorized into three lineages, and their motif constitutions were grouped into four classes. RrC2H2s were distributed across all seven rose chromosomes, with 15 paralogous gene pairs identified within synteny regions. Additionally, 43 RrC2H2s showed differential expression across various tissues under salt stress, with RrC2H2-8 being the only gene consistently repressed in all tissues. Subcellular localization analysis revealed that the RrC2H2-8 protein was localized in the nucleus. The heterologous expression of RrC2H2-8 in Arabidopsis significantly improved its growth under salt stress compared to the wild-type (WT) plants. Furthermore, the malondialdehyde content in the roots of transgenic Arabidopsis was significantly lower than that in the WT, suggesting that RrC2H2-8 enhanced salt tolerance by reducing cellular damage. This study provides a systematic understanding of the RrC2H2 family and identifies RrC2H2-8 as a regulator of salt tolerance, laying a foundation for future research on the mechanisms of salt stress regulation by RrC2H2.
Collapse
Affiliation(s)
- Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Yuqing Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Weijie Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| |
Collapse
|
5
|
Shi Y, Lu T, Lai S, Li S, Zhang L, Liu R, Ouyang L, Zhao X, Jiang Y, Yan Z, Zhang J, Miao B. Rosa rugosa R2R3-MYB transcription factors RrMYB12 and RrMYB111 regulate the accumulation of flavonols and anthocyanins. FRONTIERS IN PLANT SCIENCE 2024; 15:1477278. [PMID: 39741671 PMCID: PMC11685124 DOI: 10.3389/fpls.2024.1477278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025]
Abstract
Roses (Rosa rugosa) are a famous flower with high ornamental and economic value. But the petals of roses are usually pink and purple, which restricted its application in garden settings. Flavonols and anthocyanins are crucial secondary metabolites related to flower pigmentation in plants. While MYB transcription factors involved in the biosynthesis pathway of anthocyanins have been identified in roses, the functional characterization of the MYB transcription factor regulating flavonol synthesis in R. rugosa remains unexplored. In this study, we isolated and characterized the R2R3-MYB transcription factors RrMYB12 and RrMYB111 involved in regulation of the flavonol biosynthetic pathway from R. rugosa. The bioinformatics analysis indicated that both the RrMYB12 and RrMYB111 belong to the R2R3-MYB subgroup 7 family. qRT-PCR analysis showed that RrMYB12 and RrMYB111 were expressed at low levels in roots and flowers. And transactivation activity assay indicated that RrMYB12 and RrMYB111 were transcriptional activators. The overexpression of RrMYB12 and RrMYB111 in tobacco resulted in an elevation of flavonol levels and a reduction in anthocyanin levels in flowers due to the upregulation of structural genes involved in flavonol synthesis, while the biosynthesis genes for the anthocyanin pathway were significantly downregulated. The transient reporter assay demonstrated that RrMYB12 exhibited strong activation of the promoters of RrCHS and RrFLS in Nicotiana benthamiana leaves following transient transformation. Furthermore, it was observed that RrMYBs displayed binding specificity to the promoter region of CsFLS.The functional characterization of the flavonol synthesis regulatory factors RrMYB12 and RrMYB111 offers a deeper understanding of the regulatory mechanism governing flavonol biosynthesis in roses, while also presenting an effective tool for genetic manipulation aimed at creating new varieties.
Collapse
Affiliation(s)
- Yufeng Shi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Taoran Lu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Song Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ling Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Rong Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Lin Ouyang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xinxin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yuqin Jiang
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Zhen Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Ju Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
6
|
Masand M, Sharma S, Kumari S, Pal P, Majeed A, Singh G, Sharma RK. High-quality haplotype-resolved chromosome assembly provides evolutionary insights and targeted steviol glycosides (SGs) biosynthesis in Stevia rebaudiana Bertoni. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3262-3277. [PMID: 39283816 PMCID: PMC11606428 DOI: 10.1111/pbi.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/28/2024] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
Stevia rebaudiana Bertoni is popular source of plant-derived low/no-calorie natural sweeteners (LNCSs), collectively known as steviol glycosides (SGs). Nevertheless, genetic predisposition for targeted biosynthesis of SGs is complex due to multi-substrate functionality of key uridine diphosphate glycosyltransferases (UGTs). Here, we created a high-quality monoploid assembly of 1.34 Gb with N50 value of 110 Mb, 55 551 predicted protein-coding genes, and ~80% repetitive regions in Rebaudioside-A (Reb-A) enriched cultivar of S. rebaudiana. Additionally, a haplotype-based chromosome assembly consisting of haplotype A and haplotype B with an overall genome size of 2.33Gb was resolved, harbouring 639 634 variants including single nucleotide polymorphisms (SNPs), indels and structural variants (SVs). Furthermore, a lineage-specific whole genome duplication analysis revealed that gene families encoding UGTs and Cytochrome-P450 (CYPs) were tandemly duplicated. Additionally, expression analysis revealed five tandemly duplicated gene copies of UGT76G1 having significant correlations with Reb-A content, and identified key residue (leu200val) in the glycosylation of Reb-A. Furthermore, missense variations identified in the acceptor region of UGT76G1 in haplotype resolve genome, transcriptional and molecular docking analysis were confirmed with resequencing of 10 diverse stevia genotypes (~25X). Gene regulatory network analysis identified key transcription factors (MYB, bHLH, bZIP and AP2-ERF) as potential regulators of SG biosynthesis. Overall, this study provides haplotype-resolved chromosome-level genome assembly for genome editing and enhancing breeding efforts for targeted biosynthesis of SGs in S. rebaudiana.
Collapse
Affiliation(s)
- Mamta Masand
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shikha Sharma
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sangeeta Kumari
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Poonam Pal
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Aasim Majeed
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Gopal Singh
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ram Kumar Sharma
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
7
|
Patzer L, Thomsen T, Wamhoff D, Schulz DF, Linde M, Debener T. Development of a robust SNP marker set for genotyping diverse gene bank collections of polyploid roses. BMC PLANT BIOLOGY 2024; 24:1076. [PMID: 39538167 PMCID: PMC11562693 DOI: 10.1186/s12870-024-05782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Due to genetic depletion in nature, gene banks play a critical role in the long-term conservation of plant genetic resources and the provision of a wide range of plant genetic diversity for research and breeding programs. Genetic information on accessions facilitates gene bank management and can help to conserve limited resources and to identify taxonomic misclassifications or mislabelling. Here, we developed SNP markers for genotyping 4,187 mostly polyploid rose accessions from large rose collections, including the German Genebank for Roses. RESULTS We filtered SNP marker information from the RhWag68k Axiom SNP array using call rates, uniformity of the four allelic dosage groups and chromosomal position to improve genotyping efficiency. After conversion to individual PACE® markers and further filtering, we selected markers with high discriminatory power. These markers were used to analyse 4,187 accessions with a mean call rate of 91.4%. By combining two evaluation methods, the mean call rate was increased to 95.2%. Additionally, the robustness against the genotypic groups used for calling was evaluated, resulting in a final set of 18 markers. Analyses of 94 pairs of assumed duplicate accessions included as controls revealed unexpected differences for eight pairs, which were confirmed using SSR markers. After removing the duplicates and filtering for accessions that were robustly called with all 18 markers, 141 out of the 1,957 accessions showed unexpected identical marker profiles with at least one other accession in our PACE® and SSR analysis. Given the attractiveness of NGS technologies, 13 SNPs from the marker set were also analysed using amplicon sequencing, with 76% agreement observed between PACE® and amplicon markers. CONCLUSIONS Although sampling error cannot be completely excluded, this is an indication that mislabelling occurs in rose collections and that molecular markers may be able to detect these cases. In future applications, our marker set could be used to develop a core reference set of representative accessions, and thus optimise the selection of gene bank accessions.
Collapse
Affiliation(s)
- Laurine Patzer
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany
| | - Tim Thomsen
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany
| | - David Wamhoff
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz University Hannover, Hannover, Germany
| | - Dietmar Frank Schulz
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany
- Current Address: Federal Office of Consumer Protection and Food Safety, Brunswick, Germany
| | - Marcus Linde
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany.
| |
Collapse
|
8
|
Bao M, Xu Y, Wei G, Bai M, Wang J, Feng L. The MYC Gene RrbHLH105 Contributes to Salt Stress-Induced Geraniol in Rose by Regulating Trehalose-6-Phosphate Signalling. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39526398 DOI: 10.1111/pce.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Rose (Rosa rugosa) is an important perfume plant, but its cultivation is significantly constrained by salt stress. Terpenes represent the most abundant volatile aromatic compounds in roses, yet little is known about how terpene metabolism responds to salt stress. In this study, salt-treated rose petals presented significant accumulation of monoterpenes, including geraniol, due to the disruption of jasmonic acid (JA) biosynthesis and signalling. Overexpression and silencing analyses revealed a MYC transcription factor involved in JA signalling (RrbHLH105) as a repressor of geraniol biosynthesis. RrbHLH105 was shown to activate the trehalose-6-phosphate synthase genes RrTPS5 and RrTPS8 by binding to the E-box (5'-CANNTG-3'). The increased trehalose-6-phosphate content and decreased geraniol content in rose petals overexpressing TPS5 or RrTPS8, along with the high accumulation of geraniol in petals where both RrbHLH105 and TPSs were cosilenced, indicate that trehalose signalling plays a role in the negative regulation of geraniol accumulation via the RrbHLH105-TPS module. In summary, the suppression of RrbHLH105 by salt stress leads to excessive geraniol accumulation through the inhibition of both RrbHLH105-mediated JA signalling and RrTPS-mediated trehalose signalling in rose petals. Additionally, this study highlights the emerging role of RrbHLH105 as a critical integrator of JA and trehalose signalling crosstalk.
Collapse
Affiliation(s)
- Mingyue Bao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Mengjuan Bai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Wang Q, Du B, Bai Y, Chen Y, Li F, Du J, Wu X, Yan L, Bai Y, Chai G. Saline-alkali stress affects the accumulation of proanthocyanidins and sesquiterpenoids via the MYB5-ANR/TPS31 cascades in the rose petals. HORTICULTURE RESEARCH 2024; 11:uhae243. [PMID: 39534410 PMCID: PMC11554761 DOI: 10.1093/hr/uhae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/18/2024] [Indexed: 11/16/2024]
Abstract
Rose (Rosa rugosa) petals are rich in diverse secondary metabolites, which have important physiological functions as well as great economic values. Currently, it remains unclear how saline and/or alkaline stress(es) influence the accumulation of secondary metabolites in rose. In this study, we analyzed the transcriptome and metabolite profiles of rose petals under aline-alkali stress and uncovered the induction mechanism underlying major metabolites. Dramatic changes were observed in the expression of 1363 genes and the abundances of 196 metabolites in petals in response to saline-alkali stress. These differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) are mainly associated with flavonoid and terpenoid metabolism and the reconstruction of cell walls. Of them, TERPENE SYNTHASE 31 (TPS31) overexpression in tobacco leaves driven by its own promoter resulted in significant alterations in the levels of diverse terpenoids, which were differentially influenced by saline-alkali stress. An integrated analysis of metabolomic and transcriptomic data revealed a high correlation between the abundances of flavonoids/terpenoids and the expression of the transcription factor MYB5. MYB5 may orchestrate the biosynthesis of sesquiterpenoids and proanthocyanidins through direct regulation of TPS31 and ANR expression under aline-alkali stress. Our finding facilitates improving the bioactive substance accumulation of rose petals by metabolic engineering.
Collapse
Affiliation(s)
- Qiao Wang
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
| | - Baoquan Du
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Yujing Bai
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Yan Chen
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Forestry College, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Saihan District, Huhhot 010018, China
| | - Feng Li
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Jinzhe Du
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Xiuwen Wu
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, No. 42 Wenhua Dong Road, Lixia District, Jinan 250014, China
| | - Yue Bai
- Forestry College, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Saihan District, Huhhot 010018, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
| |
Collapse
|
10
|
Zhang Z, Yang T, Liu Y, Wu S, Sun H, Wu J, Li Y, Zheng Y, Ren H, Yang Y, Shi S, Wang W, Pan Q, Lian L, Duan S, Zhu Y, Cai Y, Zhou H, Zhang H, Tang K, Cui J, Gao D, Chen L, Jiang Y, Sun X, Zhou X, Fei Z, Ma N, Gao J. Haplotype-resolved genome assembly and resequencing provide insights into the origin and breeding of modern rose. NATURE PLANTS 2024; 10:1659-1671. [PMID: 39394508 DOI: 10.1038/s41477-024-01820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Modern rose (Rosa hybrida) is a recently formed interspecific hybrid and has become one of the most important and widely cultivated ornamentals. Here we report the haplotype-resolved chromosome-scale genome assembly of the tetraploid R. hybrida 'Samantha' ('JACmantha') and a genome variation map of 233 Rosa accessions involving various wild species, and old and modern cultivars. Homologous chromosomes of 'Samantha' exhibit frequent homoeologous exchanges. Population genomic and genomic composition analyses reveal the contributions of wild Rosa species to modern roses and highlight that R. odorata and its derived cultivars are important contributors to modern roses, much like R. chinensis 'Old Blush'. Furthermore, selective sweeps during modern rose breeding associated with major agronomic traits, including continuous and recurrent flowering, double flower, flower senescence and disease resistance, are identified. This study provides insights into the genetic basis of modern rose origin and breeding history, and offers unprecedented genomic resources for rose improvement.
Collapse
Affiliation(s)
- Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Tuo Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Yi Zheng
- Bioinformatics Center, Beijing University of Agriculture, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Haoran Ren
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuyong Yang
- Kunming Yang Chinese Rose Gardening Co. Ltd., Kunming, Yunnan, China
| | - Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Wenyan Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Lijuan Lian
- People's Government of Weishanzhuang Town, Daxing, Beijing, China
| | | | - Yingxiong Zhu
- Yunnan Xinhaihui Flower Industry Co. Ltd., Tonghai, Yunnan, China
| | - Youming Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hougao Zhou
- College Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hao Zhang
- National Engineering Research Center for Ornamental Horticulture, Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Kaixue Tang
- National Engineering Research Center for Ornamental Horticulture, Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | | | - Dan Gao
- Smartgenomics Technology Institute, Tianjin, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA.
- USDA-ARS Robert W Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Unravelling the complex origin and breeding history of modern roses. NATURE PLANTS 2024; 10:1621-1622. [PMID: 39424997 DOI: 10.1038/s41477-024-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
|
12
|
Tian J, Chen Z, Jiang C, Li S, Yun X, He C, Wang D. Chromosome-scale genome assembly of Docynia delavayi provides new insights into the α-farnesene biosynthesis. Int J Biol Macromol 2024; 278:134820. [PMID: 39154695 DOI: 10.1016/j.ijbiomac.2024.134820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Docynia delavayi is an economically significant fruit species with a high market potential due to the special aroma of its fruit. Here, a 653.34 Mb high-quality genome of D. delavayi was first reported, of which 93.8 % of the sequences (612.98 Mb) could be anchored to 17 chromosomes, containing 48,325 protein-coding genes. Ks analysis proved that two whole genome duplication (WGD) events occurred in D. delavayi, resulting in the expansion of genes associated with terpene biosynthesis, which promoted its fruit-specific aroma production. Combined multi-omics analysis, α-farnesene was detected as the most abundant aroma substance emitted by D. delavayi fruit during storage, meanwhile one α-farnesene synthase gene (AFS) and 15 transcription factors (TFs) were identified as the candidate genes potentially involved in α-farnesene biosynthesis. Further studies for the regulation network of α-farnesene biosynthesis revealed that DdebHLH, DdeERF1 and DdeMYB could activate the transcription of DdeAFS. To our knowledge, it is the first report that MYB TF plays a regulatory role in α-farnesene biosynthesis, which will greatly facilitate future breeding programs for D. delavayi.
Collapse
Affiliation(s)
- Jinhong Tian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zhuo Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Can Jiang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Siguang Li
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Xinhua Yun
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Chengzhong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
13
|
Zhou L, Wu S, Chen Y, Huang R, Cheng B, Mao Q, Liu T, Liu Y, Zhao K, Pan H, Yu C, Gao X, Luo L, Zhang Q. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nat Commun 2024; 15:8469. [PMID: 39349447 PMCID: PMC11443146 DOI: 10.1038/s41467-024-52782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Rose is an important ornamental crop cultivated globally for perfume production. However, our understanding of the mechanisms underlying scent production and molecular breeding for fragrance is hindered by the lack of a reference genome for tea roses. We present the first complete telomere-to-telomere (T2T) genome of Rosa gigantea, with high quality (QV > 60), including detailed characterization of the structural features of repetitive regions. The expansion of genes associated with phenylpropanoid biosynthesis may account for the unique tea scent. We uncover the release rhythm of aromatic volatile organic compounds and their gene regulatory networks through comparative genomics and time-ordered gene co-expression networks. Analyzes of eugenol homologs demonstrate how plants attract pollinators using specialized phenylpropanoids in specific tissues. This study highlights the conservation and utilization of genetic diversity from wild endangered species through multi-omics approaches, providing a scientific foundation for enhancing rose fragrance via de novo domestication.
Collapse
Affiliation(s)
- Lijun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Sihui Wu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yunyi Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Runhuan Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Bixuan Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qingyi Mao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tinghan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuchen Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China.
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
14
|
Li X, Chen Y, Zhang Z, He Q, Tian T, Jiao Y, Cao L. Genome-wide identification of starch phosphorylase gene family in Rosa chinensis and expression in response to abiotic stress. Sci Rep 2024; 14:13917. [PMID: 38886497 PMCID: PMC11183051 DOI: 10.1038/s41598-024-64937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Chinese rose (Rosa chinensis) is an important ornamental plant, with economic, cultural, and symbolic significance. During the application of outdoor greening, adverse environments such as high temperature and drought are often encountered, which affect its application scope and ornamental quality. The starch phosphorylase (Pho) gene family participate in the synthesis and decomposition of starch, not only related to plant energy metabolism, but also plays an important role in plant stress resistance. The role of Pho in combating salinity and high temperature stress in R. chinensis remains unknown. In this work, 4 Phos from R. chinensis were detected with Pfam number of Pho (PF00343.23) and predicted by homolog-based prediction (HBP). The Phos are characterized by sequence lengths of 821 to 997 bp, and the proteins are predicted to subcellularly located in the plastid and cytoplasm. The regulatory regions of the Phos contain abundant stress and phytohormone-responsive cis-acting elements. Based on transcriptome analysis, the Phos were found to respond to abiotic stress factors such as drought, salinity, high temperature, and plant phytohormone of jasmonic acid and salicylic acid. The response of Phos to abiotic stress factors such as salinity and high temperature was confirmed by qRT-PCR analysis. To evaluate the genetic characteristics of Phos, a total of 69 Phos from 17 species were analyzed and then classified into 3 groups in phylogenetic tree. The collinearity analysis of Phos in R. chinensis and other species was conducted for the first time. This work provides a view of evolution for the Pho gene family and indicates that Phos play an important role in abiotic stress response of R. chinensis.
Collapse
Affiliation(s)
- Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| | - Qin He
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
15
|
Yang Y, Liu JF, Jiang XF. A chromosome-level genome assembly of Chinese quince ( Pseudocydonia sinensis). FRONTIERS IN PLANT SCIENCE 2024; 15:1368861. [PMID: 38887462 PMCID: PMC11180997 DOI: 10.3389/fpls.2024.1368861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Introduction Pseudocydonia sinensis, also known as Chinese quince, is a perennial shrub or small tree highly valued for its edibility and medicinal properties. Method This study presents the first chromosome-level genome assembly of P. sinensis, achieved using HiFi sequencing and Hi-C scaffolding technology. Results The assembly resulted in a high-quality genome of 576.39 Mb in size. The genome was anchored to 17 pseudo-chromosomes, with a contig N50 of 27.6 Mb and a scaffold N50 of 33.8 Mb. Comprehensive assessment using BUSCO, CEGMA and BWA tools indicates the high completeness and accuracy of the genome assembly. Our analysis identified 116 species-specific genes, 1196 expanded genes and 1109 contracted genes. Additionally, the distribution of 4DTv values suggests that the most recent duplication event occurred before the divergence of P. sinensis from both Chaenomeles pinnatifida and Pyrus pyrifolia. Discussion The assembly of this high-quality genome provides a valuable platform for the genetic breeding and cultivation of P. sinensis, as well as for the comparison of the genetic complexity of P. sinensis with other important crops in the Rosaceae family.
Collapse
Affiliation(s)
- Ying Yang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Jin Feng Liu
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Xian Feng Jiang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yunnan, China
| |
Collapse
|
16
|
Yang J, Zhang J, Yan H, Yi X, Pan Q, Liu Y, Zhang M, Li J, Xiao Q. The chromosome-level genome and functional database accelerate research about biosynthesis of secondary metabolites in Rosa roxburghii. BMC PLANT BIOLOGY 2024; 24:410. [PMID: 38760710 PMCID: PMC11100184 DOI: 10.1186/s12870-024-05109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.
Collapse
Affiliation(s)
- Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| | - Jingjie Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hengyu Yan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Yi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Qi Pan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Yahua Liu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Mian Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jun Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qiaoqiao Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| |
Collapse
|
17
|
Liu H, Zhang JQ, Zhang RR, Zhao QZ, Su LY, Xu ZS, Cheng ZMM, Tan GF, Xiong AS. The high-quality genome of Cryptotaenia japonica and comparative genomics analysis reveals anthocyanin biosynthesis in Apiaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:717-730. [PMID: 38213282 DOI: 10.1111/tpj.16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Qi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin-Zheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li-Yao Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Max Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
18
|
Zhang X, Wu Q, Lan L, Peng D, Guan H, Luo K, Bao M, Bendahmane M, Fu X, Wu Z. Haplotype-resolved genome assembly of the diploid Rosa chinensis provides insight into the mechanisms underlying key ornamental traits. MOLECULAR HORTICULTURE 2024; 4:14. [PMID: 38622744 PMCID: PMC11020927 DOI: 10.1186/s43897-024-00088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Roses are consistently ranked at the forefront in cut flower production. Increasing demands of market and changing climate conditions have resulted in the need to further improve the diversity and quality of traits. However, frequent hybridization leads to highly heterozygous nature, including the allelic variants. Therefore, the absence of comprehensive genomic information leads to them making it challenging to molecular breeding. Here, two haplotype-resolved chromosome genomes for Rosa chinensis 'Chilong Hanzhu' (2n = 14) which is high heterozygous diploid old Chinese rose are generated. An amount of genetic variation (1,605,616 SNPs, 209,575 indels) is identified. 13,971 allelic genes show differential expression patterns between two haplotypes. Importantly, these differences hold valuable insights into regulatory mechanisms of traits. RcMYB114b can influence cyanidin-3-glucoside accumulation and the allelic variation in its promoter leads to differences in promoter activity, which as a factor control petal color. Moreover, gene family expansion may contribute to the abundance of terpenes in floral scents. Additionally, RcANT1, RcDA1, RcAG1 and RcSVP1 genes are involved in regulation of petal number and size under heat stress treatment. This study provides a foundation for molecular breeding to improve important characteristics of roses.
Collapse
Affiliation(s)
- Xiaoni Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Quanshu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Huilin Guan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiqing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohammed Bendahmane
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratoire Reproduction Et Development Des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, 520074, Lyon, France.
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China.
| |
Collapse
|
19
|
Domes HS, Debener T. Genome-Wide Analysis of the WRKY Transcription Factor Family in Roses and Their Putative Role in Defence Signalling in the Rose-Blackspot Interaction. PLANTS (BASEL, SWITZERLAND) 2024; 13:1066. [PMID: 38674474 PMCID: PMC11054901 DOI: 10.3390/plants13081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
WRKY transcription factors are important players in plant regulatory networks, where they control and integrate various physiological processes and responses to biotic and abiotic stresses. Here, we analysed six rose genomes of 5 different species (Rosa chinensis, R. multiflora, R. roxburghii, R. sterilis, and R. rugosa) and extracted a set of 68 putative WRKY genes, extending a previously published set of 58 WRKY sequences based on the R. chinensis genome. Analysis of the promoter regions revealed numerous motifs related to induction by abiotic and, in some cases, biotic stressors. Transcriptomic data from leaves of two rose genotypes inoculated with the hemibiotrophic rose black spot fungus Diplocarpon rosae revealed the upregulation of 18 and downregulation of 9 of these WRKY genes after contact with the fungus. Notably, the resistant genotype exhibited the regulation of 25 of these genes (16 upregulated and 9 downregulated), while the susceptible genotype exhibited the regulation of 20 genes (15 upregulated and 5 downregulated). A detailed RT-qPCR analysis of RcWRKY37, an orthologue of AtWRKY75 and FaWRKY1, revealed induction patterns similar to those of the pathogenesis-related (PR) genes induced in salicylic acid (SA)-dependent defence pathways in black spot inoculation experiments. However, the overexpression of RcWRKY37 in rose petals did not induce the expression of any of the PR genes upon contact with black spot. However, wounding significantly induced the expression of RcWRKY37, while heat, cold, or drought did not have a significant effect. This study provides the first evidence for the role of RcWRKY37 in rose signalling cascades and highlights the differences between RcWRKY37 and AtWRKY75. These results improve our understanding of the regulatory function of WRKY transcription factors in plant responses to stress factors. Additionally, they provide foundational data for further studies.
Collapse
Affiliation(s)
- Helena Sophia Domes
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, 38104 Braunschweig, Germany
| | - Thomas Debener
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| |
Collapse
|
20
|
Noh YM, Ait Hida A, Raymond O, Comte G, Bendahmane M. The scent of roses, a bouquet of fragrance diversity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1252-1264. [PMID: 38015983 DOI: 10.1093/jxb/erad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Roses have been domesticated since antiquity for their therapeutic, cosmetic, and ornamental properties. Their floral fragrance has great economic value, which has influenced the production of rose varieties. The production of rose water and essential oil is one of the most lucrative activities, supplying bioactive molecules to the cosmetic, pharmaceutical, and therapeutic industries. In recent years, major advances in molecular genetics, genomic, and biochemical tools have paved the way for the identification of molecules that make up the specific fragrance of various rose cultivars. The aim of this review is to highlight current knowledge on metabolite profiles, and more specifically on fragrance compounds, as well as the specificities and differences between rose species and cultivars belonging to different rose sections and how they contribute to modern roses fragrance.
Collapse
Affiliation(s)
- Yuo-Myoung Noh
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Amal Ait Hida
- Institut Agronomique et Vétérinaire, Complexe Horticole, Agadir, Morocco
| | - Olivier Raymond
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
21
|
Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C. Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1264-1280. [PMID: 37964640 DOI: 10.1111/tpj.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinde Yu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peilin Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Tao Jiang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Qingqing Yang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Deguo Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Xu Qiu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | | | - Yonghe Li
- Yunnan Agricultural University, Kunming, 650201, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
22
|
Tang Q, Chen Y, Jiang L, Chen J, Li C, Zeng W, Liu Q, Li P. Characterization and mechanism of seed dormancy in Symplocos paniculata. FRONTIERS IN PLANT SCIENCE 2024; 14:1322238. [PMID: 38259922 PMCID: PMC10801264 DOI: 10.3389/fpls.2023.1322238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Symplocos paniculata is a highly desirable oil species for biodiesel and premium edible oil feedstock. While germplasm preservation and breeding are crucial, the severity of seed dormancy poses a challenge to successful germination. We employed S. paniculata seeds as experimental materials and conducted an investigation into the types and causes of seed dormancy by analyzing the morphology and developmental characteristics of its embryo, exploring the water permeability property of the endocarp, and examining the presence of endogenous inhibitors, aiming to establish a theoretical foundation for overcoming seed dormancy and maximizing germplasm resource utilization. The findings revealed that the seed embryo had matured into a fully developed embryo, and no dormancy in terms of embryo morphology was observed. Upon reaching maturity, the endocarp of seeds undergoes significant lignification, resulting in notable differences in water absorption between cracked and intact seeds. The impermeability of the endocarp is one of the factors contributing to mechanical restriction. The different phases of endosperm extraction exerted varying effects on the germination of Chinese cabbage seeds, with the methanol phase exhibiting the most potent inhibitory effect. The presence of endogenous inhibitors emerged as the primary factor contributing to physiological dormancy in seeds. GC-MS analysis and validation trials revealed that fatty acids and phenolics, including hexadecanoic acid, oxadecanoic acid, and m-cresol, constituted the main types of endogenous inhibitory compounds found within the endosperm. These findings suggest that the seed dormancy in S. paniculata seeds has endocarp mechanical restriction, and the presence of endogenous inhibitors causes physiological dormancy.
Collapse
Affiliation(s)
- Qiaoyu Tang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Lijuan Jiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Jingzhen Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Wenbin Zeng
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Qiang Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
23
|
Wamhoff D, Patzer L, Schulz DF, Debener T, Winkelmann T. GWAS of adventitious root formation in roses identifies a putative phosphoinositide phosphatase (SAC9) for marker-assisted selection. PLoS One 2023; 18:e0287452. [PMID: 37595005 PMCID: PMC10437954 DOI: 10.1371/journal.pone.0287452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2023] [Indexed: 08/20/2023] Open
Abstract
Rose propagation by cuttings is limited by substantial genotypic differences in adventitious root formation. To identify possible genetic factors causing these differences and to develop a marker for marker-assisted selection for high rooting ability, we phenotyped 95 cut and 95 garden rose genotypes in a hydroponic rooting system over 6 weeks. Data on rooting percentage after 3 to 6 weeks, root number, and root fresh mass were highly variable among genotypes and used in association mappings performed on genotypic information from the WagRhSNP 68 K Axiom SNP array for roses. GWAS analyses revealed only one significantly associated SNP for rooting percentage after 3 weeks. Nevertheless, prominent genomic regions/peaks were observed and further analysed for rooting percentage after 6 weeks, root number and root fresh mass. Some of the SNPs in these peak regions were associated with large effects on adventitious root formation traits. Very prominent were ten SNPs, which were all located in a putative phosphoinositide phosphatase SAC9 on chromosome 2 and showed very high effects on rooting percentage after 6 weeks of more than 40% difference between nulliplex and quadruplex genotypes. SAC9 was reported to be involved in the regulation of endocytosis and in combination with other members of the SAC gene family to regulate the translocation of auxin-efflux PIN proteins via the dephosphorylation of phosphoinositides. For one SNP within SAC9, a KASP marker was successfully derived and used to select genotypes with a homozygous allele configuration. Phenotyping these homozygous genotypes for adventitious root formation verified the SNP allele dosage effect on rooting. Hence, the presented KASP derived from a SNP located in SAC9 can be used for marker-assisted selection in breeding programs for high rooting ability in the future.
Collapse
Affiliation(s)
- David Wamhoff
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| | - Laurine Patzer
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz Universität Hannover, Hannover, Germany
| | - Dietmar Frank Schulz
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz Universität Hannover, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz Universität Hannover, Hannover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
24
|
Da L, Li J, Zhao F, Liu H, Shi P, Shi S, Zhang X, Yang J, Zhang H. RoseAP: an analytical platform for gene function of Rosa rugosa. FRONTIERS IN PLANT SCIENCE 2023; 14:1197119. [PMID: 37457357 PMCID: PMC10348015 DOI: 10.3389/fpls.2023.1197119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Rosa rugosa, a perennial shrub belonging to family Rosaceae, is a well-known ornamental plant. Its petals contain an abundance of essential oils and anthocyanins with enormous economic and health benefits when used as edible or cosmetic ingredients. The whole genome of R. rugosa was sequenced in 2021, which provided opportunities and challenges for gene regulation. However, many gene functions remain unknown. Therefore, an analytical platform named RoseAP (http://www.gzybioinformatics.cn/RoseAP/index.php) for the functional analysis of R. rugosa genes was constructed. It improved the gene annotation rate by integrating and analyzing genomic and transcriptomic datasets. First, 38,815 genes, covering 97.76% of the coding genes, were annotated functionally and structurally using a variety of algorithms and rules. Second, a total of 33 transcriptome samples were integrated, including 23 samples from our lab and 10 samples from the SRA database. A co-expression network containing approximately 29,657 positive or negative gene pairs, covering 74.7% of the coding genes, was constructed based on PCC and MR algorithms. Network analysis revealed that the DFR function was closely related to anthocyanin metabolism. It demonstrated the reliability of the network. Several SAUR genes of R. rugosa shared similar expression patterns. RoseAP was used to determine the sequence, structure, functional annotation, expression profile, regulatory network, and functional modules at the transcriptional and protein levels by inputting gene IDs. In addition, auxiliary analytical tools, including BLAST, gene set enrichment, orthologue conversion, gene sequence extraction, gene expression value extraction, and JBrowse, were utilized. Regular updates to RoseAP are expected to facilitate mining of gene function and promote genetic improvement in R. rugosa.
Collapse
Affiliation(s)
- Lingling Da
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jiande Li
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Fan Zhao
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Huilin Liu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Pengxia Shi
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Shaoming Shi
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Xinxin Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
25
|
Quan W, Jin J, Qian C, Li C, Zhou H. Characterization of volatiles in flowers from four Rosa chinensis cultivars by HS-SPME-GC × GC-QTOFMS. FRONTIERS IN PLANT SCIENCE 2023; 14:1060747. [PMID: 37251764 PMCID: PMC10211245 DOI: 10.3389/fpls.2023.1060747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Rosa chinensis cultivars with volatile aromas are important resources in the perfume industry. The four rose cultivars introduced to Guizhou province are rich in volatile substances. In this study, volatiles from four Rosa chinensis cultivars were extracted using headspace-solid phase microextraction (HS-SPME), and analyzed with two-dimensional gas chromatography quadrupole time of flight mass spectrometry (GC × GC-QTOFMS). A total of 122 volatiles were identified; the main compounds in these samples were benzyl alcohol, phenylethyl alcohol, citronellol, beta-myrcene and limonene. A total of 68, 78, 71, and 56 volatile compounds were identified in Rosa 'Blue River' (RBR), Rosa 'Crimson Glory' (RCG), Rosa 'Pink Panther' (RPP), and Rosa 'Funkuhr' (RF) samples, respectively. The total volatile contents were in the following order: RBR > RCG > RPP > RF. Four cultivars exhibited similar volatility profiles, with alcohols, alkanes, and esters as the major chemical groups, followed by aldehydes, aromatic hydrocarbons, ketones, benzene, and other compounds. Alcohols and aldehydes were quantitatively the two most abundant chemical groups that included the highest number and highest content of compounds. Different cultivars have different aromas, and RCG had high contents of phenyl acetate, rose oxide, trans-rose oxide, phenylethyl alcohol and 1,3,5-trimethoxybenzene, characterized by floral and rose descriptors. RBR contained a high content of phenylethyl alcohol, and RF contained a high content of 3,5-dimethoxytoluene. Hierarchical cluster analysis (HCA) of all volatiles showed that the three cultivars (RCG, RPP, and RF) had similar volatile characteristics and were significantly different from RBR. Differential metabolites among cultivars were screened based on the OPLS-DA model, and there were six main enriched pathways of differential metabolites: biosynthesis of secondary metabolites, monoterpenoid biosynthesis, metabolic pathways, limonene and pinene degradation, sesquiterpenoid and triterpenoid biosynthesis, and alpha-linolenic acid metabolism. The biosynthesis of secondary metabolites is the most differential metabolic pathway.
Collapse
Affiliation(s)
- Wenxuan Quan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Jing Jin
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, China
| | - Chenyu Qian
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chaochan Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Hongying Zhou
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, China
| |
Collapse
|
26
|
Zang F, Ma Y, Wu Q, Tu X, Xie X, Huang P, Tong B, Zheng Y, Zang D. Resequencing of Rosa rugosa accessions revealed the history of population dynamics, breed origin, and domestication pathways. BMC PLANT BIOLOGY 2023; 23:235. [PMID: 37142995 PMCID: PMC10158352 DOI: 10.1186/s12870-023-04244-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rosa rugosa is a shrub that originated in China and has economic and ecological value. However, during the development of R. rugosa, the genetic background was chaotic, and the genetic structure among different wild populations was unclear, as well as wild and cultivated accessions. Here, we report whole-genome resequencing of wild and cultivated R. rugosa accessions. RESULTS A total of 19,041,284 SNPs were identified in 188 R. rugosa accessions and 3 R. chinensis accessions by resequencing. Population genetic analysis revealed that cultivated and wild groups were separated very early. All R. rugosa accessions were divided into 8 categories based on genetic structure: (1) Weihai, Yantai, and Liaoning category, (2) Jilin category, and (3) Hammonasset category (above three are wild); (4) traditional varieties, (5) hybrids between R. rugosa and R. chinensis, (6) Zizhi Rose, (7) Kushui Rose, (8) hybrids between R. rugosa and R. multiflora. We found that the heterozygosity and genetic diversity of wild accessions were generally lower than those of cultivated individuals. The genes that were selected during cultivation were identified, and it was found that these genes were mainly related to environmental adaptation and growth. CONCLUSIONS The Jilin population was the oldest population and later migrated to Liaoning and then migrated to Yantai and Weihai by sea regression in the Bohai Basin. The Hammonasset naturalized population probably originated from the Jilin population and then experienced separate differentiation. The long-term asexual reproduction pattern of R. rugosa decreased genetic diversity in the wild population. During R. rugosa cultivation, the ancestors of the Jilin population were involved in breeding traditional varieties, after which almost no wild individuals were engaged in breeding. However, in recent decades, cross breeding of R. rugosa started the utilization of wild germplasms. In comparison, some other species play important roles in variety formation. Few genes related to economic traits were selected, suggesting no directional domestication in the R. rugosa cultivation process.
Collapse
Affiliation(s)
- Fengqi Zang
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Yan Ma
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Qichao Wu
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Xiaolong Tu
- State Key Laboratory of Genetic Resources and Evolution, Center for excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, P. R. China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan, 650204, P. R. China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, P. R. China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, P. R. China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China.
| | - Dekui Zang
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China.
| |
Collapse
|
27
|
Shen C, Li L, Ouyang L, Su M, Guo K. E. urophylla × E. grandis high-quality genome and comparative genomics provide insights on evolution and diversification of eucalyptus. BMC Genomics 2023; 24:223. [PMID: 37118687 PMCID: PMC10148406 DOI: 10.1186/s12864-023-09318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Eucalyptus urophylla × Eucalyptus grandis, an economically important forest tree, provides important raw material for energy and reduces damage to native forests. However, the absence of a high-quality E. urophylla × E. grandis reference genome has significantly hindered its evolution and genetic analysis. RESULTS We successfully presented a high-quality reference genome of E. urophylla × E. grandis (545.75 Mb; scaffold N50, 51.62 Mb) using a combination of the Illumina, PacBio HiFi, and Hi-C sequencing platforms. A total of 34,502 genes and 58.56% of the repetitive sequences in this genome were annotated. Using genome evolution analyses, we identified a recent whole-genome duplication (WGD) event in E. urophylla × E. grandis. We further found that gene families associated with starch and sucrose metabolism, flavonoid biosynthesis, and plant-pathogen interaction were significantly expanded in E. urophylla × E. grandis. Moreover, comparative genomic and evolutionary analyses showed large structural variations among the different chromosomes of the 34 Eucalyptus accessions, which were divided into six clades. CONCLUSIONS Overall, our findings provide a valuable resource for expanding our understanding of the E. urophylla × E. grandis genome evolution, genetic improvement, and its comparative biology.
Collapse
Affiliation(s)
- Chao Shen
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Limei Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Lejun Ouyang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China.
| | - Min Su
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Kexin Guo
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
28
|
Zhou Y, Xiong J, Shu Z, Dong C, Gu T, Sun P, He S, Jiang M, Xia Z, Xue J, Khan WU, Chen F, Cheng ZM. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. HORTICULTURE RESEARCH 2023; 10:uhad027. [PMID: 37090094 PMCID: PMC10116950 DOI: 10.1093/hr/uhad027] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.
Collapse
Affiliation(s)
| | | | - Ziqiang Shu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, China
| | - Chao Dong
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Tingting Gu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shuang He
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Mian Jiang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, China
| | - Zhiqiang Xia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute from Hainan University, Sanya 572025, China
| | - Jiayu Xue
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wasi Ullah Khan
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Fei Chen
- Corresponding authors. E-mail: ,
| | | |
Collapse
|
29
|
Jiao Y, Li X, Huang X, Liu F, Zhang Z, Cao L. The Identification of SQS/ SQE/ OSC Gene Families in Regulating the Biosynthesis of Triterpenes in Potentilla anserina. Molecules 2023; 28:2782. [PMID: 36985754 PMCID: PMC10051230 DOI: 10.3390/molecules28062782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The tuberous roots of Potentilla anserina (Pan) are an edible and medicinal resource in Qinghai-Tibetan Plateau, China. The triterpenoids from tuberous roots have shown promising anti-cancer, hepatoprotective, and anti-inflammatory properties. In this study, we carried out phylogenetic analysis of squalene synthases (SQSs), squalene epoxidases (SQEs), and oxidosqualene cyclases (OSCs) in the pathway of triterpenes. In total, 6, 26, and 20 genes of SQSs, SQEs, and OSCs were retrieved from the genome of Pan, respectively. Moreover, 6 SQSs and 25 SQEs genes expressed in two sub-genomes (A and B) of Pan. SQSs were not expanded after whole-genome duplication (WGD), and the duplicated genes were detected in SQEs. Twenty OSCs were divided into two clades of cycloartenol synthases (CASs) and β-amyrin synthases (β-ASs) by a phylogenetic tree, characterized with gene duplication and evolutionary divergence. We speculated that β-ASs and CASs may participate in triterpenes synthesis. The data presented act as valuable references for future studies on the triterpene synthetic pathway of Pan.
Collapse
Affiliation(s)
- Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Fan Liu
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| |
Collapse
|
30
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
31
|
Wang Y, Li S, Zhu Z, Xu Z, Qi S, Xing S, Yu Y, Wu Q. Transcriptome and chemical analyses revealed the mechanism of flower color formation in Rosa rugosa. FRONTIERS IN PLANT SCIENCE 2022; 13:1021521. [PMID: 36212326 PMCID: PMC9539313 DOI: 10.3389/fpls.2022.1021521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Rosa rugosa is a famous Chinese traditional flower with high ornamental value and well environmental adapt ability. The cultivation of new colorful germplasms to improve monotonous flower color could promote its landscape application. However, the mechanism of flower color formation in R. rugosa remains unclear. In this study, combined analyses of the chemical and transcriptome were performed in the R. rugosa germplasms with representative flower colors. Among the identified anthocyanins, cyanidin 3,5-O-diglucoside (Cy3G5G) and peonidin 3,5-O-diglucoside (Pn3G5G) were the two dominant anthocyanins in the petals of R. rugosa. The sum content of Cy3G5G and Pn3G5G was responsible for the petal color intensity, such as pink or purple, light- or dark- red. The ratio of Cy3G5G to Pn3G5G was contributed to the petal color hue, that is, red or pink/purple. Maintaining both high relative and high absolute content of Cy3G5G may be the precondition for forming red-colored petals in R. rugosa. Cyanidin biosynthesis shunt was the dominant pathway for anthocyanin accumulation in R. rugosa, which may be the key reason for the presence of monotonous petal color in R. rugosa, mainly pink/purple. In the upstream pathway of cyanidin biosynthesis, 35 differentially expressed structural genes encoding 12 enzymes co-expressed to regulate the sum contents of Cy3G5G and Pn3G5G, and then determined the color intensity of petals. RrAOMT, involved in the downstream pathway of cyanidin biosynthesis, regulated the ratio of Cy3G5G to Pn3G5G via methylation and then determined the color hue of petals. It was worth mentioning that significantly higher delphinidin-3,5-O-diglucoside content and RrF3'5'H expression were detected from deep purple-red-flowered 8-16 germplasm with somewhat unique and visible blue hue. Three candidate key transcription factors identified by correlation analysis, RrMYB108, RrC1, and RrMYB114, might play critical roles in the control of petal color by regulating the expression of both RrAOMT and other multiple structural genes. These results provided novel insights into anthocyanin accumulation and flower coloration mechanism in R. rugosa, and the candidate key genes involved in anthocyanin biosynthesis could be valuable resources for the breeding of ornamental plants in future.
Collapse
Affiliation(s)
- Yiting Wang
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shaopeng Li
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ziqi Zhu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Zongda Xu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shuai Qi
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shutang Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Yunyan Yu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Qikui Wu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| |
Collapse
|
32
|
Li F, Gao Y, Jin C, Wen X, Geng H, Cheng Y, Qu H, Liu X, Feng S, Zhang F, Ruan J, Yang C, Zhang L, Wang J. The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity. HORTICULTURE RESEARCH 2022; 9:uhac176. [PMID: 36204200 PMCID: PMC9533222 DOI: 10.1093/hr/uhac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Gypsophila paniculata, belonging to the Caryophyllaceae of the Caryophyllales, is one of the most famous worldwide cut flowers. It is commonly used as dried flowers, whereas the underlying mechanism of flower senescence has not yet been addressed. Here, we present a chromosome-scale genome assembly for G. paniculata with a total size of 749.58 Mb. Whole-genome duplication signatures unveil two major duplication events in its evolutionary history: an ancient one occurring before the divergence of Caryophyllaceae and a more recent one shared with Dianthus caryophyllus. The integrative analyses combining genomic and transcriptomic data reveal the mechanisms regulating floral development and ethylene response of G. paniculata. The reduction of AGAMOUS expression probably caused by sequence polymorphism and the mutation in miR172 binding site of PETALOSA are associated with the double flower formation in G. paniculata. The low expression of ETHYLENE RESPONSE SENSOR (ERS) and the reduction of downstream ETHYLENE RESPONSE FACTOR (ERF) gene copy number collectively lead to the ethylene insensitivity of G. paniculata, affecting flower senescence and making it capable of making dried flowers. This study provides a cornerstone for understanding the underlying principles governing floral development and flower senescence, which could accelerate the molecular breeding of the Caryophyllaceae species.
Collapse
Affiliation(s)
- Fan Li
- Corresponding authors. E-mail: ; ;
| | | | | | | | - Huaiting Geng
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
- School of Agriculture, Yunnan University, 650504, Kunming, China
| | - Ying Cheng
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
- School of Agriculture, Yunnan University, 650504, Kunming, China
| | - Haoyue Qu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shan Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Fan Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiwei Ruan
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
| | | | | |
Collapse
|
33
|
Effect of Developmental Stages on Genes Involved in Middle and Downstream Pathway of Volatile Terpene Biosynthesis in Rose Petals. Genes (Basel) 2022; 13:genes13071177. [PMID: 35885960 PMCID: PMC9320630 DOI: 10.3390/genes13071177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Terpenoids are economically and ecologically important compounds, and they are vital constituents in rose flower fragrance and rose essential oil. The terpene synthase genes (TPSs), trans-prenyltransferases genes (TPTs), NUDX1 are involved in middle and downstream pathway of volatile terpene biosynthesis in rose flowers. We identified 7 complete RcTPTs, 49 complete RcTPSs, and 9 RcNUDX1 genes in the genome of Rosachinensis. During the flower opening process of butterfly rose (Rosachinensis ‘Mutabilis’, MU), nine RcTPSs expressed in the petals of opening MU flowers exhibited two main expression trends, namely high and low, in old and fresh petals. Five short-chain petal-expressed RcTPTs showed expression patterns corresponding to RcTPSs. Analysis of differential volatile terpenes and differential expressed genes indicated that higher emission of geraniol from old MU petals might be related to the RcGPPS expression. Comprehensive analysis of volatile emission, sequence structure, micro-synteny and gene expression suggested that RcTPS18 may encode (E,E)-α-farnesene synthase. These findings may be useful for elucidating the molecular mechanism of terpenoid metabolism in rose and are vital for future studies on terpene regulation.
Collapse
|
34
|
Comprehensive Genome-Wide Analysis of Histone Acetylation Genes in Roses and Expression Analyses in Response to Heat Stress. Genes (Basel) 2022; 13:genes13060980. [PMID: 35741743 PMCID: PMC9222719 DOI: 10.3390/genes13060980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Roses have high economic values as garden plants and for cut-flower and cosmetics industries. The growth and development of rose plants is affected by exposure to high temperature. Histone acetylation plays an important role in plant development and responses to various stresses. It is a dynamic and reversible process mediated by histone deacetylases (HDAC) and histone acetyltransferases (HAT). However, information on HDAC and HAT genes of roses is scarce. Here, 23 HDAC genes and 10 HAT genes were identified in the Rosa chinensis ‘Old Blush’ genome. Their gene structures, conserved motifs, physicochemical properties, phylogeny, and synteny were assessed. Analyses of the expression of HDAC and HAT genes using available RNAseq data showed that these genes exhibit different expression patterns in different organs of the three analyzed rose cultivars. After heat stress, while the expression of most HDAC genes tend to be down-regulated, that of HAT genes was up-regulated when rose plants were grown at high-temperature conditions. These data suggest that rose likely respond to high-temperature exposure via modification in histone acetylation, and, thus, paves the way to more studies in order to elucidate in roses the molecular mechanisms underlying rose plants development and flowering.
Collapse
|
35
|
Kawamura K, Ueda Y, Matsumoto S, Horibe T, Otagaki S, Wang L, Wang G, Hibrand-Saint Oyant L, Foucher F, Linde M, Debener T. The identification of the Rosa S-locus provides new insights into the breeding and wild origins of continuous-flowering roses. HORTICULTURE RESEARCH 2022; 9:uhac155. [PMID: 36196069 PMCID: PMC9527601 DOI: 10.1093/hr/uhac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/01/2022] [Accepted: 07/03/2022] [Indexed: 06/16/2023]
Abstract
This study aims to: (i) identify the Rosa S-locus controlling self-incompatibility (SI); (ii) test the genetic linkage of the S-locus with other loci controlling important ornamental traits, such as the continuous-flowering (CF) characteristic; (iii) identify the S-alleles (SC ) of old Chinese CF cultivars (e.g, Old Blush, Slater's Crimson China) and examine the changes in the frequency of cultivars with Sc through the history of breeding; (iv) identify wild species carrying the Sc-alleles to infer wild origins of CF cultivars. We identified a new S-RNase (SC2 ) of Rosa chinensis in a contig from a genome database that has not been integrated into one of the seven chromosomes yet. Genetic mapping indicated that SC2 is allelic to the previously-identified S-RNase (SC1 ) in chromosome 3. Pollination experiments with half-compatible pairs of roses confirmed that they are the pistil-determinant of SI. The segregation analysis of an F1 -population indicated genetic linkage between the S-locus and the floral repressor gene KSN. The non-functional allele ksn is responsible for the CF characteristic. A total of five S-alleles (SC1-5 ) were identified from old CF cultivars. The frequency of cultivars with SC dramatically increased after the introgression of ksn from Chinese to European cultivars and remains high (80%) in modern cultivars, suggesting that S-genotyping is helpful for effective breeding. Wild individuals carrying SC were found in Rosa multiflora (SC1 ), Rosa chinensis var. spontanea (SC3 ), and Rosa gigantea (SC2 , SC4 ), supporting the hypothesis of hybrid origins of CF cultivars and providing a new evidence for the involvement of Rosa multiflora.
Collapse
Affiliation(s)
| | - Yoshihiro Ueda
- Gifu International Academy of Horticulture, Japan
- Gifu World Rose Garden, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Takanori Horibe
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
- College of Bioscience and Biotechnology, Chubu University, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Li Wang
- College of Life Sciences, Sichuan University, China
| | - Guoliang Wang
- Jiangsu Provincial Department of Agriculture and Rural Affairs, China
- Agricultural University of Nanjing, China
| | | | - Fabrice Foucher
- Univ Angers, INRAE, Institut Agro, IRHS, SFR QUASAV, F-49000 Angers, France
| | | | | |
Collapse
|
36
|
Gao P, Dong J, Wang S, Zhang W, Yang T, Zhang J, Che D. Cool-Warm Temperature Stratification and Simulated Bird Digestion Optimize Removal of Dormancy in Rosa rugosa Seeds. FRONTIERS IN PLANT SCIENCE 2022; 12:808206. [PMID: 35111183 PMCID: PMC8801612 DOI: 10.3389/fpls.2021.808206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Rosa rugosa Thunb. has been explored multi-function in medicinal, edible, cosmetic, ornamental and ecological etc. However, R. rugosa natural populations have recently declined substantially in China, besides of global climate change, this species also has the defect of limiting the reproduction of itself such as the hard-to-release seed dormancy. In this study, only 30% of R. rugosa seeds were viable, and the others were incompletely developed or diseased seeds. Without stratification, morphologically complete viable seeds imbibed water but those seeds could not germinate even after seed husk removal under suitable condition to exhibit a physiological dormancy. After cold (4°C) and warm (18 ± 2°C) stratification, macromolecular substances containing carbon or nitrogen accumulated, and respiration, antioxidant enzyme activity, and gibberellin (GA3) /abscisic acid (ABA) and auxin (IAA)/ABA ratios increased significantly in seeds. Water absorption also increased as endocarps softened. Thus, physiological dormancy of seed was broken. Although warm and cold stratification increased separation between endocarp and embryo, the endocarp binding force was removed insufficiently, because only 10.20% of seeds germinated. Therefore, stratified seeds were treated with simulated bird digestion. Then, folds and cracks in loosened endocarps increased permeability, and water absorption rate increased to 64.43% compare to 21.14% in cold and warm stratification treatment. With simulated digestion, 24.20% of radicles broke through the endocarp with plumules and cambiums to develop into seedlings. Thus, the seed dormancy type of R. rugosa is physiological as seeds imbibed water and possessed fully developed embryos with a low growth potential in combination with a mechanical constraint from the endocarp. Cold stratification helped remove physiological dormancy, and additional warm stratification accelerated the process. The optimal stratification treatment was 4°C for 45 days followed by 18 ± 2°C for 15 days. After warm and cold stratification, simulated bird digestion broke the mechanical constraint from the seed covering layers. Based on this research, production of R. rugosa seedlings can be greatly increased to help protect the species from further declines.
Collapse
Affiliation(s)
- Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin, China
| | - Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin, China
| | - Sihan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin, China
- Aerospace Shenzhou Biotechnology Group Corporation Limited, Beijing, China
| | - Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin, China
| |
Collapse
|
37
|
Cui WH, Du XY, Zhong MC, Fang W, Suo ZQ, Wang D, Dong X, Jiang XD, Hu JY. Complex and reticulate origin of edible roses (Rosa, Rosaceae) in China. HORTICULTURE RESEARCH 2022; 9:6497884. [PMID: 35031798 PMCID: PMC8788372 DOI: 10.1093/hr/uhab051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
While roses are today among the most popular ornamental plants, the petals and fruits of some cultivars have flavored foods for millennia. The genetic origins of these edible cultivars remain poorly investigated. We collected the major varieties of edible roses available in China, assembled their plastome sequences, and phased the haplotypes for internal transcribed spacers (ITS1/ITS2) of the 18S-5.8S-26S nuclear ribosomal cistron. Our phylogenetic reconstruction using 88 plastid genomes, of primarily maternal origin, uncovered well-supported genetic relationships within Rosa, including all sections and all subgenera. We phased the ITS sequences to identify potential donor species ancestral to the development of known edible cultivars. The tri-parental Middle-Eastern origin of R. × damascena, the species most widely used in perfume products and food additives, was confirmed as a descendent of past hybridizations among R. moschata, R. gallica, and R. majalis/R. fedtschenkoana/R. davurica. In contrast, R. chinensis, R. rugosa, and R. gallica, in association with six other wild species, were the main donors for fifteen varieties of edible roses. The domesticated R. rugosa 'Plena' was shown to be a hybrid between R. rugosa and R. davurica, sharing a common origin with R. 'Fenghua'. Only R. 'Jinbian' and R. 'Crimson Glory' featured continuous flowering. All remaining cultivars of edible roses bloomed only once a year. Our study provides important resources for clarifying the origin of edible roses and suggests a future for breeding new cultivars with unique traits, such as continuous flowering.
Collapse
Affiliation(s)
- Wei-Hua Cui
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Mi-Cai Zhong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Wei Fang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Zhi-Quan Suo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
| | - Dan Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
| | - Xue Dong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Xiao-Dong Jiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
- Corresponding authors. ,
| | - Jin-Yong Hu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Corresponding authors. ,
| |
Collapse
|
38
|
Genome-Wide Identification of LATERAL ORGAN BOUNDARIES DOMAIN (LBD) Transcription Factors and Screening of Salt Stress Candidates of Rosa rugosa Thunb. BIOLOGY 2021; 10:biology10100992. [PMID: 34681091 PMCID: PMC8533445 DOI: 10.3390/biology10100992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023]
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors are regulators of lateral organ morphogenesis, boundary establishment, and secondary metabolism in plants. The responsive role of LBD gene family in plant abiotic stress is emerging, whereas its salt stress responsive mechanism in Rosa spp. is still unclear. The wild plant of Rosa rugosa Thunb., which exhibits strong salt tolerance to stress, is an ideal material to explore the salt-responsive LBD genes. In our study, we identified 41 RrLBD genes based on the R. rugosa genome. According to phylogenetic analysis, all RrLBD genes were categorized into Classes I and II with conserved domains and motifs. The cis-acting element prediction revealed that the promoter regions of most RrLBD genes contain defense and stress responsiveness and plant hormone response elements. Gene expression patterns under salt stress indicated that RrLBD12c, RrLBD25, RrLBD39, and RrLBD40 may be potential regulators of salt stress signaling. Our analysis provides useful information on the evolution and development of RrLBD gene family and indicates that the candidate RrLBD genes are involved in salt stress signaling, laying a foundation for the exploration of the mechanism of LBD genes in regulating abiotic stress.
Collapse
|
39
|
Zang F, Ma Y, Tu X, Huang P, Wu Q, Li Z, Liu T, Lin F, Pei S, Zang D, Zhang X, Zheng Y, Yu Y. A high-quality chromosome-level genome of wild Rosa rugosa. DNA Res 2021; 28:6367774. [PMID: 34499118 DOI: 10.1093/dnares/dsab017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
Rosa rugosa is an important shrub with economic, ecological, and pharmaceutical value. A high-quality chromosome-scale genome for R. rugosa sequences was assembled using PacBio and Hi-C technologies. The final assembly genome sequences size was about 407.1 Mb, the contig N50 size was 2.85 Mb, and the scaffold N50 size was 56.6 Mb. More than 98% of the assembled genome sequences were anchored to seven pseudochromosomes (402.9 Mb). The genome contained 37,512 protein-coding genes, with 37,016 genes (98.68%) that were functionally annotated, and 206.67 Mb (50.76%) of the assembled sequences are repetitive sequences. Phylogenetic analyses indicated that R. rugosa diverged from Rosa chinensis ∼6.6 million years ago, and no lineage-specific whole-genome duplication event occurred after divergence from R. chinensis. Chromosome synteny analysis demonstrated highly conserved synteny between R. rugosa and R. chinensis, between R. rugosa and Prunus persica as well. Comparative genome and transcriptome analysis revealed genes related to colour, scent, and environment adaptation. The chromosome-level reference genome provides important genomic resources for molecular-assisted breeding and horticultural comparative genomics research.
Collapse
Affiliation(s)
- Fengqi Zang
- State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Yan Ma
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, P. R. China
| | - Xiaolong Tu
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, P. R. China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Qichao Wu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, P. R. China
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, P. R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, P. R. China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, P. R. China
| | - Dekui Zang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, P. R. China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, P. R. China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Yunyan Yu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, P. R. China
| |
Collapse
|