1
|
Deng C, Guo Y, Zhang J, Feng G. Genome-wide investigation of glycoside hydrolase 9 (GH9) gene family unveils implications in orchestrating the mastication trait of Citrus sinensis fruits. BMC Genomics 2024; 25:905. [PMID: 39350029 PMCID: PMC11440705 DOI: 10.1186/s12864-024-10826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Mastication trait of citrus significantly influences the fruit's overall quality and consumer preference. The accumulation of cellulose in fruits significantly impacts the mastication trait of citrus fruits, and the glycoside hydrolase 9 (GH9) family plays a crucial role in cellulose metabolism. In this study, we successfully identified 32 GH9 genes from the Citrus sinensis genome and subsequently conducted detailed bioinformatics analyses of the GH9 family. Additionally, we profiled the spatiotemporal expression patterns of CsGH9 genes across four distinct fruit tissue types and six crucial developmental stages of citrus fruits, leveraging transcriptome data. Parallel to this, we undertook a comparative analysis of transcriptome profiles and cellulose content among diverse fruit tissues spanning six developmental stages. Furthermore, to identify the pivotal genes involved in cellulose metabolism within the GH9 family during fruit maturity, we employed correlation analysis between cellulose content and gene expression in varying tissues across diverse citrus varieties. This analysis highlighted key genes such as CsGH9A2/6 and CsGH9B12/13/14/22. Collectively, this study provides an in-depth analysis of the GH9 gene family in citrus and offers novel molecular insights into the underlying mechanisms governing the mastication trait formation in citrus fruits.
Collapse
Affiliation(s)
- Chengyan Deng
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Yingtian Guo
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Jingjuan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Guizhi Feng
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China.
| |
Collapse
|
2
|
A Aksenov A, Blacutt A, Ginnan N, Rolshausen PE, V Melnik A, Lotfi A, C Gentry E, Ramasamy M, Zuniga C, Zengler K, Mandadi KK, Dorrestein PC, Roper MC. Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus. Sci Rep 2024; 14:20306. [PMID: 39218988 PMCID: PMC11366753 DOI: 10.1038/s41598-024-70499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB-infected trees. We demonstrate how spatial information from molecular maps of branches and single leaves yields insight into the biology not accessible otherwise. In particular, we found evidence that flavonoid biosynthesis is disrupted in HLB-infected trees, and an increase in the polyamine, feruloylputrescine, is highly correlated with an increase in disease severity. Based on mechanistic details revealed by these molecular maps, followed by metabolic modeling, we formulated and tested the hypothesis that CLas infection either directly or indirectly converts the precursor compound, ferulic acid, to feruloylputrescine to suppress the antimicrobial effects of ferulic acid and biosynthetically downstream flavonoids. Using in vitro bioassays, we demonstrated that ferulic acid and bioflavonoids are indeed highly bactericidal to CLas, with the activity on par with a reference antibiotic, oxytetracycline, recently approved for HLB management. We propose these compounds should be evaluated as therapeutics alternatives to the antibiotics for HLB treatment. Overall, the utilized 3D metabolic mapping approach provides a promising methodological framework to identify pathogen-specific inhibitory compounds in planta for potential prophylactic or therapeutic applications.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA.
- Arome Science Inc., Farmington, CT, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| | - Alex Blacutt
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Nichole Ginnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Arome Science Inc., Farmington, CT, USA
| | - Ali Lotfi
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Emily C Gentry
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Manikandan Ramasamy
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Cristal Zuniga
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
3
|
Liu Y, Zhu C, Yue X, Lin Z, Li H, Di X, Wang J, Gao Z. Evolutionary relationship of moso bamboo forms and a multihormone regulatory cascade involving culm shape variation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2578-2592. [PMID: 38743918 PMCID: PMC11331781 DOI: 10.1111/pbi.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Moso bamboo (Phyllostachys edulis) known as Mao Zhu (MZ) in Chinese exhibits various forms with distinct morphological characteristics. However, the evolutionary relationship among MZ forms and the mechanisms of culm shape variation are still lacking. Here, the main differences among MZ forms were identified as culm shape variation, which were confirmed by analysing MZ forms (799 bamboo culms) and MZ (458 bamboo culms) populations. To unravel the genetic basis underlying the morphological variations, 20 MZ forms were subjected to whole-genome resequencing. Further analysis yielded 3 230 107 high-quality SNPs and uncovered low genetic diversity and high genotype heterozygosity associated with MZ forms' formation. By integrating the SNP data of 427 MZ individuals representing 15 geographic regions, the origins of eight MZ forms were successfully traced using the phylogenetic tree and the identified common heterozygous loci. Meanwhile, transcriptomic analysis was performed using shoots from MZ and its two forms with culm shape variation. The results, combined with genomic analyses, demonstrated that hormone signalling related genes played crucial roles in culm variation. Co-expression network analysis uncovered genes associated with multiple plant hormone signal transduction, especially auxin and cytokinin were involved in culm shape variation. Furthermore, the regulatory relationships of a specific transcription factor and their target genes associated with auxin and ethylene signalling were validated by yeast one-hybrid, electrophoretic mobility shift assays, and dual-luciferase reporter. Overall, this study provides important insights into the culm shape variation formation in bamboo, which facilitates to breed new varieties with novel culms.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Xianghua Yue
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Sanya Research Base, International Centre for Bamboo and RattanSanyaChina
| | - Zeming Lin
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Jiangfei Wang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| |
Collapse
|
4
|
He S, Dong W, Chen J, Zhang J, Lin W, Yang S, Xu D, Zhou Y, Miao B, Wang W, Chen F. DataColor: unveiling biological data relationships through distinctive color mapping. HORTICULTURE RESEARCH 2024; 11:uhad273. [PMID: 38333729 PMCID: PMC10852383 DOI: 10.1093/hr/uhad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
In the era of rapid advancements in high-throughput omics technologies, the visualization of diverse data types with varying orders of magnitude presents a pressing challenge. To bridge this gap, we introduce DataColor, an all-encompassing software solution meticulously crafted to address this challenge. Our aim is to empower users with the ability to handle a wide array of data types through an assortment of tools, while simultaneously streamlining parameter selection for rapid insights and detailed enhancements. DataColor stands as a robust toolkit, encompassing 23 distinct tools coupled with over 600 parameters. The defining characteristic of this toolkit is its adept utilization of the color spectrum, allowing for the representation of data spanning diverse types and magnitudes. Through the integration of advanced algorithms encompassing data clustering, normalization, squarified layouts, and customizable parameters, DataColor unveils an abundance of insights that lay hidden within the intricate relationships embedded in the data. Whether you find yourself navigating the analysis of expansive datasets or embarking on the quest to visualize intricate patterns, DataColor stands as the comprehensive and potent solution. We extend the availability of DataColor to all users at no cost, accessible through the following link: https://github.com/frankgenome/DataColor.
Collapse
Affiliation(s)
- Shuang He
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Dong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Junhao Chen
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| | - Junyu Zhang
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Weiwei Lin
- Merkle Business Information Consultancy (Nanjing) Co., Ltd, Nanjing 210032, China
| | - Shuting Yang
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Dong Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuhan Zhou
- State Key Laboratory of Rice Biology & Breeding, Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Benben Miao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Wenquan Wang
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fei Chen
- Sanya Institute of Breeding and Multiplication, National Key Laboratory for Tropical Crop Breeding, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Wang J, Hou J, Huang C, Wang W, Liu Y, Zhang H, Yan D, Zeng K, Yao S. Activation of the phenylpropanoid pathway in Citrus sinensis collapsed vesicles during segment drying revealed by physicochemical and targeted metabolomics analysis. Food Chem 2023; 409:135297. [PMID: 36623356 DOI: 10.1016/j.foodchem.2022.135297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Segment drying is a common internal physiological disorder in citrus fruit, and vesicles get granulated or collapsed. This study aimed to probe whether and how the phenylpropanoid metabolism changes in vesicles during collapse of blood orange (Citrus sinensis cv. Tarocco). Vesicle collapse led to a decrease in the content of nutrients and flavonoids, while an increase in lignin content. This disorder was further associated with the increasing enzyme activities and gene expression levels of both the general phenylpropanoid pathway and branch pathway of lignin synthesis, while decreasing enzyme activities and gene expression levels of branch pathway of flavonoids synthesis. Targeted metabolomics analysis of 14 metabolites of the lignin pathway revealed that lignin precursors were accumulated in collapsed vesicles. We provide solid evidence that phenylpropanoid metabolism could be activated, and, intriguingly, metabolic flux may be shuttled to lignin precursors synthesis rather than flavonoids synthesis in vesicles during collapse of blood orange.
Collapse
Affiliation(s)
- Jiajie Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiao Hou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chunlian Huang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yaci Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Haoyue Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dandan Yan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
6
|
Wu B, Yu Q, Deng Z, Duan Y, Luo F, Gmitter Jr F. A chromosome-level phased genome enabling allele-level studies in sweet orange: a case study on citrus Huanglongbing tolerance. HORTICULTURE RESEARCH 2022; 10:uhac247. [PMID: 36643761 PMCID: PMC9832951 DOI: 10.1093/hr/uhac247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 05/30/2023]
Abstract
Sweet orange originated from the introgressive hybridizations of pummelo and mandarin resulting in a highly heterozygous genome. How alleles from the two species cooperate in shaping sweet orange phenotypes under distinct circumstances is unknown. Here, we assembled a chromosome-level phased diploid Valencia sweet orange (DVS) genome with over 99.999% base accuracy and 99.2% gene annotation BUSCO completeness. DVS enables allele-level studies for sweet orange and other hybrids between pummelo and mandarin. We first configured an allele-aware transcriptomic profiling pipeline and applied it to 740 sweet orange transcriptomes. On average, 32.5% of genes have a significantly biased allelic expression in the transcriptomes. Different cultivars, transgenic lineages, tissues, development stages, and disease status all impacted allelic expressions and resulted in diversified allelic expression patterns in sweet orange, but particularly citrus Huanglongbing (HLB) shifted the allelic expression of hundreds of genes in leaves and calyx abscission zones. In addition, we detected allelic structural mutations in an HLB-tolerant mutant (T19) and a more sensitive mutant (T78) through long-read sequencing. The irradiation-induced structural mutations mostly involved double-strand breaks, while most spontaneous structural mutations were transposon insertions. In the mutants, most genes with significant allelic expression ratio alterations (≥1.5-fold) were directly affected by those structural mutations. In T19, alleles located at a translocated segment terminal were upregulated, including CsDnaJ, CsHSP17.4B, and CsCEBPZ. Their upregulation is inferred to keep phloem protein homeostasis under the stress from HLB and enable subsequent stress responses observed in T19. DVS will advance allelic level studies in citrus.
Collapse
Affiliation(s)
- Bo Wu
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29643, USA
| | - Qibin Yu
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Yongping Duan
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Feng Luo
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29643, USA
| | - Frederick Gmitter Jr
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
7
|
Combined Transcriptome and Metabolome Analyses Reveal Candidate Genes Involved in Tangor ( Citrus reticulata × Citrus sinensis) Fruit Development and Quality Formation. Int J Mol Sci 2022; 23:ijms23105457. [PMID: 35628266 PMCID: PMC9141862 DOI: 10.3390/ijms23105457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Tangor, an important citrus type, is a hybrid of orange and mandarin and possesses their advantageous characteristics. Fruit quality is an important factor limiting the development of the citrus industry and highly depends on fruit development and ripening programs. However, fruit development and quality formation have not been completely explored in mandarin-orange hybrids. We sequenced the metabolome and transcriptome of three mandarin-orange hybrid cultivars at the early fruiting [90 days after full bloom (DAFB)], color change (180 DAFB), and ripening (270 DAFB) stages. Metabolome sequencing was performed to preliminarily identify the accumulation patterns of primary and secondary metabolites related to fruit quality and hormones regulating fruit development. Transcriptome analysis showed that many genes related to primary metabolism, secondary metabolism, cell wall metabolism, phytohormones, and transcriptional regulation were up-regulated in all three cultivars during fruit development and ripening. Additionally, multiple key genes were identified that may play a role in sucrose, citric acid and flavonoid accumulation, cell wall modification, and abscisic acid signaling, which may provide a valuable resource for future research on enhancement of fruit quality of hybrid citrus. Overall, this study provides new insights into the molecular basis of pulp growth and development regulation and fruit quality formation in mandarin-orange hybrids.
Collapse
|