1
|
Gallego-López MDC, Ojeda ML, Romero-Herrera I, Rua RM, Carreras O, Nogales F. Folic acid antioxidant supplementation to binge drinking adolescent rats improves hydric-saline balance and blood pressure, but fails to increase renal NO availability and glomerular filtration rate. FASEB J 2024; 38:e23341. [PMID: 38031982 DOI: 10.1096/fj.202301609r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.
Collapse
Affiliation(s)
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Li ZR, Liu CF, Guo DQ, Wei YJ. Association between serum homocysteine and postoperative acute kidney injury in patients undergoing cardiac surgery. Biomark Med 2024; 18:51-57. [PMID: 38358344 DOI: 10.2217/bmm-2023-0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background: To explore the relationship between homocysteine (Hcy) and cardiac surgery-associated acute kidney injury (AKI). Methods: A total of 944 patients who underwent cardiac surgery were enrolled. The association between Hcy levels and the risk of cardiac surgery-associated AKI was evaluated. Results: A total of 135 patients were diagnosed with AKI and the prevalence of AKI was 14.30%. The AKI group had significantly higher levels of Hcy compared with the non-AKI group (16.90 vs 13.56 umol/l; p < 0.001). The incidence rates of AKI increased from 7.2% to 26.72% across increasing Hcy quartiles (p < 0.001). Compared with the first Hcy quartile group, the odds ratio of cardiac surgery-associated AKI was 4.43 (95% CI: 2.27-8.66) in the highest Hcy group. Conclusion: Elevated Hcy level is an independent risk factor for cardiac surgery-associated AKI.
Collapse
Affiliation(s)
- Zheng-Rong Li
- Department of Clinical Pharmacy, Linyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - Cun-Fei Liu
- Department of Cardiology Medical Center, Linyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - De-Qun Guo
- Department of Cardiology Medical Center, Linyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - Yan-Jin Wei
- Department of Cardiology Medical Center, Linyi People's Hospital, Linyi City, Shandong Province, 276000, China
| |
Collapse
|
3
|
Lu Y, Zhang L, Wang C, Gong C. Comparison of the antihypertensive effects of folic acid and resveratrol in spontaneously hypertensive rats combined with hyperhomocysteinemia. SAGE Open Med 2023; 11:20503121231220813. [PMID: 38144881 PMCID: PMC10748542 DOI: 10.1177/20503121231220813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Objectives Studies have found that both folic acid and resveratrol have potential benefits in reducing complications of hypertension. The aim of this study was to compare the effects of resveratrol and folic acid on blood pressure in spontaneously hypertensive rats combined with hyperhomocystinemia, and to explore their potential mechanisms. Methods Twenty-four male specific pathogen free (SPF) SPF grade spontaneously hypertensive rats were randomly divided into four groups: the SHR group, the hypertension combined with hyperhomocystinemia group (SHR + HHcy), the folic acid intervention group (SHR + HHcy + FA), and the resveratrol intervention group (SHR + HHcy + Res). The rat model of hypertension combined with hyperhomocystinemia was constructed, and then folic acid or resveratrol were given by gavage. Rat tail artery blood pressure, serum homocysteine concentration, superoxide dismutase activity, malondialdehyde levels, and mRNA transcription and protein expression of endothelial nitric oxide synthase and angiotensin II were detected. Result Compared with the SHR group, the SHR + HHcy group significantly increased hyperhomocystinemia and malondialdehyde levels, and inhibited superoxide dismutase activity and endothelial nitric oxide synthase expression. Compared with the SHR + HHcy group, the SHR + HHcy + FA group significantly reduced hyperhomocystinemia and malondialdehyde levels, and significantly increased superoxide dismutase activity and endothelial nitric oxide synthase expression; the SHR + HHcy + Res group also inhibited malondialdehyde levels and promoted endothelial nitric oxide synthase expression, but did not reduce hyperhomocystinemia. When comparing between the SHR + HHcy + FA group and the SHR + HHcy + Res group, folic acid significantly decreased hyperhomocystinemia and increased superoxide dismutase activity, while resveratrol significantly decreased blood pressure and angiotensin II expression. Conclusions Both resveratrol and folic acid reduced the levels of oxidative stress and promoted the expression of endothelial nitric oxide synthase in SHRs combined with hyperhomocystinemia. Moreover, resveratrol exhibited superior antihypertensive efficacy compared to folic acid, potentially attributed to its ability to inhibit angiotensin II expression.
Collapse
Affiliation(s)
- Yi Lu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Drug and Equipment Section, The People’s Hospital of Huaiyin, Jinan, China
| | - Lihua Zhang
- Department of Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunli Wang
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunbo Gong
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Hejazian SM, Ardalan M, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Barzegari A, Gueguen V, Meddahi-Pellé A, Anagnostou F, Zununi Vahed S, Pavon-Djavid G. Biofactors regulating mitochondrial function and dynamics in podocytes and podocytopathies. J Cell Physiol 2023; 238:2206-2227. [PMID: 37659096 DOI: 10.1002/jcp.31110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Podocytes are terminally differentiated kidney cells acting as the main gatekeepers of the glomerular filtration barrier; hence, inhibiting proteinuria. Podocytopathies are classified as kidney diseases caused by podocyte damage. Different genetic and environmental risk factors can cause podocyte damage and death. Recent evidence shows that mitochondrial dysfunction also contributes to podocyte damage. Understanding alterations in mitochondrial metabolism and function in podocytopathies and whether altered mitochondrial homeostasis/dynamics is a cause or effect of podocyte damage are issues that need in-depth studies. This review highlights the roles of mitochondria and their bioenergetics in podocytes. Then, factors/signalings that regulate mitochondria in podocytes are discussed. After that, the role of mitochondrial dysfunction is reviewed in podocyte injury and the development of different podocytopathies. Finally, the mitochondrial therapeutic targets are considered.
Collapse
Affiliation(s)
| | | | | | | | - Abolfazl Barzegari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Fani Anagnostou
- Université de Paris, CNRS UMR 7052 INSERM U1271, B3OA, Paris, France
| | | | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| |
Collapse
|
5
|
Zhao X, Hui QC, Xu R, Gao N, Cao P. Resveratrol: A new approach to ameliorate hyperhomocysteinaemia-induced renal dysfunction. Exp Ther Med 2022; 24:510. [PMID: 35837032 DOI: 10.3892/etm.2022.11437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xuan Zhao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qing-Chen Hui
- Department of Cardiology, Jimo District Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong 266200, P.R. China
| | - Rui Xu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ning Gao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Ping Cao
- Department of Geriatric Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
6
|
D’Amico R, Cordaro M, Fusco R, Peritore AF, Genovese T, Gugliandolo E, Crupi R, Mandalari G, Caccamo D, Cuzzocrea S, Di Paola R, Siracusa R, Impellizzeri D. Consumption of Cashew ( Anacardium occidentale L.) Nuts Counteracts Oxidative Stress and Tissue Inflammation in Mild Hyperhomocysteinemia in Rats. Nutrients 2022; 14:1474. [PMID: 35406088 PMCID: PMC9002620 DOI: 10.3390/nu14071474] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is a methionine metabolism problem that causes a variety of inflammatory illnesses. Oxidative stress is among the processes thought to be involved in the pathophysiology of the damage produced by HHcy. HHcy is likely to involve the dysfunction of several organs, such as the kidney, liver, or gut, which are currently poorly understood. Nuts are regarded as an important part of a balanced diet since they include protein, good fatty acids, and critical nutrients. The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of cashew nuts in HHcy induced by oral methionine administration for 30 days, and to examine the possible pathways involved. In HHcy rats, cashew nuts (100 mg/kg orally, daily) were able to counteract clinical biochemical changes, oxidative and nitrosative stress, reduced antioxidant enzyme levels, lipid peroxidation, proinflammatory cytokine release, histological tissue injuries, and apoptosis in the kidney, colon, and liver, possibly by the modulation of the antioxidant nuclear factor erythroid 2-related factor 2 NRF-2 and inflammatory nuclear factor NF-kB pathways. Thus, the results suggest that the consumption of cashew nuts may be beneficial for the treatment of inflammatory conditions associated with HHcy.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (D.C.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Daniela Caccamo
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (D.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| |
Collapse
|
7
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|
8
|
Li D, Long Y, Yu S, Shi A, Wan J, Wen J, Li X, Liu S, Zhang Y, Li N, Zheng C, Yang M, Shen L. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front Pharmacol 2022; 12:832673. [PMID: 35173614 PMCID: PMC8841966 DOI: 10.3389/fphar.2021.832673] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Xie L, Ma S, Ding N, Wang Y, Lu G, Xu L, Wang Q, Liu K, Jie Y, Zhang H, Yang A, Gao Y, Zhang H, Jiang Y. Homocysteine induces podocyte apoptosis by regulating miR-1929-5p expression through c-Myc, DNMT1 and EZH2. Mol Oncol 2021; 15:3203-3221. [PMID: 34057794 PMCID: PMC8564658 DOI: 10.1002/1878-0261.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a common and complex disease in kidneys which has been associated with an increased risk of renal cell carcinoma. Elevated homocysteine (Hcy) levels are known to influence the development and progression of CKD by regulating podocyte injury and apoptosis. To investigate the molecular mechanisms triggered in podocytes by Hcy, we used cbs+/- mice and observed that higher Hcy levels increased the apoptosis rate of podocytes with accompanying glomerular damage. Hcy-induced podocyte injury and apoptosis in cbs+/- mice was regulated by inhibition of microRNA (miR)-1929-5p expression. Overexpression of miR-1929-5p in podocytes inhibited apoptosis by upregulating Bcl-2. Furthermore, the expression of miR-1929-5p was regulated by epigenetic modifications of its promoter. Hcy upregulated DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, resulting in increased DNA methylation and H3K27me3 levels on the miR-1929-5p promoter. Additionally, we observed that c-Myc recruited DNMT1 and EZH2 to the miR-1929-5p promoter and suppressed the expression of miR-1929-5p. In summary, we demonstrated that Hcy promotes podocyte apoptosis through the regulation of the epigenetic modifiers DNMT1 and EZH2, which are recruited by c-Myc to the promoter of miR-1929-5p to silence miR-1929-5p expression.
Collapse
Affiliation(s)
- Lin Xie
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Shengchao Ma
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Ning Ding
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Yanhua Wang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Guanjun Lu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Lingbo Xu
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Qingqing Wang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Kun Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Yuzheng Jie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Hui Zhang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Anning Yang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Yujing Gao
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Prenatal Diagnosis Center of General HospitalNingxia Medical UniversityYinchuanChina
| | - Yideng Jiang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| |
Collapse
|
10
|
Afsar B, Afsar RE, Demiray A, Covic A, Kanbay M. Deciphering nutritional interventions for podocyte structure and function. Pharmacol Res 2021; 172:105852. [PMID: 34450318 DOI: 10.1016/j.phrs.2021.105852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Despite increasing awareness and therapeutic options chronic kidney disease (CKD) is still and important health problem and glomerular diseases constitute and important percentage of CKD. Proteinuria/albuminuria is not just a marker; but it also plays a direct pathogenic role in renal disease progression of CKD. Glomerular filtration barrier (GFB) which consists of fenestrated endothelial cells, fused basal membrane and interdigitating podocyte foot process and filtration slits between foot process is the major barrier for proteinuria/albuminuria. Many glomerular diseases are characterized by disruption of GFB podocytes, foot process and slit diaphragm. Many proteinuric diseases are non-specifically targeted by therapeutic agents such as steroids and calcineurin inhibitors with systemic side effects. Thus, there is unmet need for more efficient and less toxic therapeutic options to treat glomerular diseases. In recent years, modification of dietary intake, has been gained to treat pathologic processes introducing the concept of 'food as a medicine'. The effect of various nutritional products on podocyte function and structure is also trending, especially in recent years. In the current review, we summarized the effect of nutritional interventions on podocyte function and structure.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Xiao W, Ye P, Wang F, Cao R, Bai Y, Wang X. Plasma Homocysteine Is a Predictive Factor for Accelerated Renal Function Decline and Chronic Kidney Disease in a Community-Dwelling Population. Kidney Blood Press Res 2021; 46:541-549. [PMID: 34365457 DOI: 10.1159/000514360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Whether elevated plasma total homocysteine (tHcy) is a risk factor for the progression of kidney disease in general population has not been well established. The purpose of this study was to investigate the prognostic properties of plasma tHcy for renal function decrement and early chronic kidney disease (CKD) in community-dwelling populations with normal renal function at baseline. METHODS A total of 1,426 participants were enrolled and followed for a median of 4.8 years (interquartile range, 4.5-5.2), and estimated glomerular filtration rate (eGFR) was evaluated. One main outcome was the rapid eGFR decline defined as a decline in eGFR of >3 mL/min per 1.73 m2 per year; the other was the new incidence of CKD. RESULTS At the end of follow-up, the incidence of rapid eGFR decline and new-onset CKD was 20.7 and 5.6%, respectively. In multivariate linear regression analysis, age, central pulse pressure, fasting blood glucose, and concentration of tHcy were independent determinants of the change in eGFR. There was a graded association between tHcy quartiles and eGFR decline. Compared with participants with the lowest quartile of tHcy levels, those with the highest quartile had significantly increased risk for rapid eGFR decline (adjusted odds ratio [aOR] = 1.81; 95% confidence interval [CI]: 1.25-2.94) and new onset of CKD (adjusted hazard ratio = 4.29; 95% CI: 1.42-12.99) after adjusting for various confounders. Similarly, significant associations were also found when baseline tHcy was classified as hyperhomocysteinemia (>15 μmol/L) versus normal tHcy level (≤15 μmol/L). However, there was only association between the change in tHcy levels and new occurrence of CKD but not with rapid eGFR decline (aOR = 0.99, p = 0.613). CONCLUSIONS In this prospective cohort of individuals from community-based population, elevated plasma tHcy emerged as an independent predictor of renal function decline and incident CKD, which might support selection of at-risk individuals.
Collapse
Affiliation(s)
- Wenkai Xiao
- Department of Geriatric Cardiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ping Ye
- Department of Geriatric Cardiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fan Wang
- Department of Geriatric Cardiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruihua Cao
- Department of Geriatric Cardiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yongyi Bai
- Department of Geriatric Cardiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaona Wang
- Department of Geriatric Cardiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Homocysteine level is positively and independently associated with serum creatinine and urea nitrogen levels in old male patients with hypertension. Sci Rep 2020; 10:18050. [PMID: 33093546 PMCID: PMC7581807 DOI: 10.1038/s41598-020-75073-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
A cross-sectional study to show whether and how serum fasting homocysteine levels are associated with renal function changes in patients with hypertension. Homocysteine levels were associated with serum creatinine and blood urea nitrogen (BUN) levels with coefficients of 2.04 and 0.07, respectively, only in males and independent of confounders. In addition, low density lipoprotein cholesterol (LDL-C) levels were positively and left ventricular ejection fraction (LVEF) was negatively associated with serum creatinine level in males; age was positively associated with serum creatinine levels in females. Age was a common risk factor positively associated with BUN levels in both sexes, while total cholesterol (TC) levels and glycemic control were independent risk factors that were positively associated with BUN levels only in males. LDL-C levels and LVEF were negatively associated with BUN levels in females. Body mass index (BMI) was positively associated and hemoglobin A1c (HbA1c) levels, high density lipoprotein cholesterol (HDL-C) levels and the presence of stroke were negatively associated with serum uric acid levels in male patients. In contrast, only LVEF was positively associated with uric acid levels in females. In conclusion, homocysteine level is an independent risk factor associated with serum creatinine and BUN levels in male patients with hypertension.
Collapse
|