1
|
Liang W, Zhou C, Jin S, Fu L, Zhang H, Huang X, Long H, Ming W, Zhao J. An update on the advances in the field of nanostructured drug delivery systems for a variety of orthopedic applications. Drug Deliv 2023; 30:2241667. [PMID: 38037335 PMCID: PMC10987052 DOI: 10.1080/10717544.2023.2241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 12/02/2023] Open
Abstract
Nanotechnology has made significant progress in various fields, including medicine, in recent times. The application of nanotechnology in drug delivery has sparked a lot of research interest, especially due to its potential to revolutionize the field. Researchers have been working on developing nanomaterials with distinctive characteristics that can be utilized in the improvement of drug delivery systems (DDS) for the local, targeted, and sustained release of drugs. This approach has shown great potential in managing diseases more effectively with reduced toxicity. In the medical field of orthopedics, the use of nanotechnology is also being explored, and there is extensive research being conducted to determine its potential benefits in treatment, diagnostics, and research. Specifically, nanophase drug delivery is a promising technique that has demonstrated the capability of delivering medications on a nanoscale for various orthopedic applications. In this article, we will explore current advancements in the area of nanostructured DDS for orthopedic use.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Songtao Jin
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of traditional Chinese Medicine, Shaoxing, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Langarizadeh MA, Salary A, Tavakoli MR, Nejad BG, Fadaei S, Jahani Z, Forootanfar H. An overview of the history, current strategies, and potential future treatment approaches in erectile dysfunction: a comprehensive review. Sex Med Rev 2023:7131122. [PMID: 37076171 DOI: 10.1093/sxmrev/qead014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is one of the most common urologic problems in men worldwide, with an approximately high incidence rate, significantly affecting patients' quality of life and their sexual partners. OBJECTIVES Due to the association of this disorder with essential diseases such as cardiovascular disease and diabetes, its prevention and treatment are vital for overall human physiologic and psychological health. Along with reviewing the history of treatment and current methods, we seek new approaches to curb this issue in the future. METHODS In this review, investigations were based on the focus of each section's content or conducted on an ad hoc basis. Searches were performed in Scopus and PubMed. RESULTS In recent years, many treatments for ED have been reported besides oral administration of phosphodiesterase 5 inhibitors such as sildenafil and tadalafil (approved by the Food and Drug Administration). Common oral medications, intracavernous injections, herbal therapies (eg, herbal phosphodiesterase 5 inhibitors), and topical/transdermal medications are routine ED treatment approaches. Moreover, some novel medications are innovative candidates for completing ED's treatment protocols: stem cell injection, low-intensity extracorporeal shock wave therapy, platelet-rich plasma injection, gene therapy, amniotic fluid matrices, rho-kinase inhibitors, melanocortin receptor antagonists, maxi-K channel activators (ie, large-conductance calcium-activated potassium channels), guanylate cyclase activators, and nitric oxide donors. CONCLUSION Due to the importance of this complicated problem in men's society, a faster course of treatment trends toward new methods is needed to increase efficiency. Combining the mentioned treatments and attentively examining their efficacy through programmed clinical trials can be a big step toward solving this global problem.
Collapse
Affiliation(s)
- Mohammad Amin Langarizadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Amirhossein Salary
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | | | - Behnam Ghorbani Nejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman Medical University, Kerman 7616913555, Iran
| | - Shirin Fadaei
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Zahra Jahani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
3
|
Chitosan Nanoparticles Alleviated the Adverse Effects of Sildenafil on the Oxidative Stress Markers and Antioxidant Enzyme Activities in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9944985. [PMID: 36891377 PMCID: PMC9988388 DOI: 10.1155/2023/9944985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 02/01/2023]
Abstract
Sildenafil (SF) is widely used for erectile dysfunction and other conditions, though with limitations regarding oral absorption and adverse effects. Despite nanotechnological improvements, the effect of nanocarriers on SF hepatotoxicity has not been documented to date. This study aimed at assessing the impact of chitosan nanoparticles either uncoated (CS NPs) or Tween 80-coated (T-CS NPs) on the effects of SF on oxidative stress markers and antioxidant enzyme activities in rats. Test SF-CS NPs prepared by ionic gelation were uniform positively charged nanospheres (diameter 178-215 nm). SF was administered intraperitoneally to male rats (1.5 mg/kg body weight) in free or nanoencapsulated forms as SF-CS NPs and T-SF-CS NPs for 3 weeks. Free SF significantly suppressed the activity of the antioxidant enzymes glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD), as well as the levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) as in an indirect measure of free radicals. Interestingly, SF-CS NPs and T-SF-CS-NPs treatments significantly attenuated the inhibitory effects of SF on the activity of these enzymes whereas, GST activity was inhibited. Moreover, the protein expression of GST was downregulated upon treatment of rats with free SF, SF-CS-NPs, and T-SF CS-NPs. In contrast, the activity and protein expression of GPx was induced by SF-CS NPs and T-SF-CS-NPs treatments. The histopathological study showed that SF induced multiple adverse effects on the rat liver architecture which were markedly suppressed particularly by T-SF-CS NPs. In conclusion, chitosan nanoencapsulation of SF counteracted the adverse effects of SF on the activity of antioxidant enzymes and liver architecture. Findings might have significant implications in improving the safety and efficacy of SF treatment of the widely expanding disease conditions.
Collapse
|
4
|
Olubiyi MV, Kawu MU, Magaji MG, Salahdeen HM, Magaji RA. Influence of lauric acid on the relaxation of corpus cavernosum in streptozotocin-induced diabetic male Wistar rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Diabetes mellitus is a global health challenge and has been recognised as a risk factor for erectile dysfunction. Dissatisfaction with standard medications has been reported by some patients, hence therapeutic plants are being considered as a viable alternative therapy, with their active components being investigated to create a standard regimen. Lauric acid is the most abundant constituent of coconut oil and is proposed to be responsible for its therapeutic properties. The corpus cavernosum plays an important role in erectile function with its relaxation favouring erection. This study thus sought to investigate the possible relaxant action and mechanism of lauric acid on the corpus cavernosum of diabetic male Wistar rats. Diabetes was induced by intraperitoneal injection of streptozotocin after which graded doses of lauric acid were administered orally to three groups of diabetic rats, once daily for 4 weeks. At the end of the experiment, the corpus cavernosal tissues of the rat penis were extracted. Following phenylephrine or potassium chloride (KCl)—induced contraction, relaxation response to acetylcholine and sodium nitroprusside was used to evaluate endothelium-dependent and nitric oxide-mediated relaxation, respectively.
Results
Relaxation response to acetylcholine, following pre-contraction with phenylephrine, was significantly decreased in the cavernosal tissues of diabetic untreated rats and was not significantly improved in lauric acid treated diabetic groups. Relaxation response to acetylcholine, following pre-contraction with KCl, was significantly decreased in the diabetic untreated group but was significantly improved in lauric acid treated diabetic groups at the lowest dose. Decreased relaxation response to sodium nitroprusside, following pre-contraction with phenylephrine in tissues of diabetic untreated rats, was significantly improved in lauric acid-treated diabetic groups at lower doses. Decreased relaxation response to sodium nitroprusside, following pre-contraction with KCl, was significantly improved in lauric acid-treated diabetic groups at all doses.
Conclusion
Lauric acid improved relaxation of corpus cavernosum muscle in diabetic male rats by enhancing nitric oxide-mediated relaxing action of sodium nitroprusside and possibly inhibiting KCl-induced contraction.
Collapse
|
5
|
siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics 2022; 14:pharmaceutics14112520. [PMID: 36432711 PMCID: PMC9694336 DOI: 10.3390/pharmaceutics14112520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNAi (RNA interference)-based technology is emerging as a versatile tool which has been widely utilized in the treatment of various diseases. siRNA can alter gene expression by binding to the target mRNA and thereby inhibiting its translation. This remarkable potential of siRNA makes it a useful candidate, and it has been successively used in the treatment of diseases, including cancer. However, certain properties of siRNA such as its large size and susceptibility to degradation by RNases are major drawbacks of using this technology at the broader scale. To overcome these challenges, there is a requirement for versatile tools for safe and efficient delivery of siRNA to its target site. Lipid nanoparticles (LNPs) have been extensively explored to this end, and this paper reviews different types of LNPs, namely liposomes, solid lipid NPs, nanostructured lipid carriers, and nanoemulsions, to highlight this delivery mode. The materials and methods of preparation of the LNPs have been described here, and pertinent physicochemical properties such as particle size, surface charge, surface modifications, and PEGylation in enhancing the delivery performance (stability and specificity) have been summarized. We have discussed in detail various challenges facing LNPs and various strategies to overcome biological barriers to undertake the safe delivery of siRNA to a target site. We additionally highlighted representative therapeutic applications of LNP formulations with siRNA that may offer unique therapeutic benefits in such wide areas as acute myeloid leukaemia, breast cancer, liver disease, hepatitis B and COVID-19 as recent examples.
Collapse
|
6
|
Hamzehnejadi M, Tavakoli MR, Homayouni F, Jahani Z, Rezaei M, Langarizadeh MA, Forootanfar H. Prostaglandins as a Topical Therapy for Erectile Dysfunction: A Comprehensive Review. Sex Med Rev 2022; 10:764-781. [PMID: 37051966 DOI: 10.1016/j.sxmr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a substantial cause of dissatisfaction among many men. This discontentment has led to the emergence of various drug treatment options for this problem. OBJECTIVES Unfortunately, due to various interactions, contraindications, and side effects, systemic therapies such as phosphodiesterase-5 inhibitors (including sildenafil, tadalafil, vardenafil, avanafil, etc.) are not welcomed in many patients. These problems have led researchers to look for other ways to reduce these complications. METHODS This article holistically reviews the efficacy of topical prostaglandins and their role in treating ED. We sought to provide a comprehensive overview of recent findings on the current topic by using the extensive literature search to identify the latest scientific reports on the topic. RESULTS In this regard, topical and transdermal treatments can be suitable alternatives. In diverse studies, prostaglandins, remarkably PGE1 (also known as alprostadil), have been suggested to be an acceptable candidate for topical treatment. CONCLUSION Numerous formulations of PGE1 have been used to treat patients so far. Still, in general, with the evolution of classical formulation methods toward modern techniques (such as using nanocarriers and skin permeability enhancers), the probability of treatment success also increases.
Collapse
Affiliation(s)
- Mohammadsadegh Hamzehnejadi
- Pharmaceutical Sciences and Cosmetic Products Research Center Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Homayouni
- Student Research Committee Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jahani
- Student Research Committee Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaei
- Faculty of Medicine Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center Kerman University of Medical Sciences, Kerman, Iran
- Department of Medicinal Chemistry Faculty of Pharmacy Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Buyana B, Naki T, Alven S, Aderibigbe BA. Nanoparticles Loaded with Platinum Drugs for Colorectal Cancer Therapy. Int J Mol Sci 2022; 23:11261. [PMID: 36232561 PMCID: PMC9569963 DOI: 10.3390/ijms231911261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is a common cancer in both men and women. Numerous studies on the therapeutic effectiveness of nanoparticles against colorectal cancer have been reported. Platinum treatments as well as other medications comprising of nanoparticles have been utilized. Drug resistance restricts the use of platinum medicines, despite their considerable efficacy against a variety of cancers. This review reports clinically licensed platinum medicines (cisplatin, carboplatin, and oxaliplatin) combined with various nanoparticles that have been evaluated for their therapeutic efficacy in the treatment of colorectal cancer, including their mechanism of action, resistance, and limitations.
Collapse
Affiliation(s)
| | | | | | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape Province, South Africa
| |
Collapse
|
8
|
Loloi J, Babar M, Davies KP, Suadicani SO. Nanotechnology as a tool to advance research and treatment of non-oncologic urogenital diseases. Ther Adv Urol 2022; 14:17562872221109023. [PMID: 35924206 PMCID: PMC9340423 DOI: 10.1177/17562872221109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology represents an expanding area of research and innovation in almost every field of science, including Medicine, where nanomaterial-based products have been developed for diagnostic and therapeutic applications. Because of their small, nanoscale size, these materials exhibit unique physical and chemical properties that differ from those of each component when considered in bulk. In Nanomedicine, there is an increasing interest in harnessing these unique properties to engineer nanocarriers for the delivery of therapeutic agents. Nano-based drug delivery platforms have many advantages over conventional drug administration routes as this technology allows for local and transdermal applications of therapeutics that can bypass the first-pass metabolism, improves drug efficacy through encapsulation of hydrophobic drugs, and allows for a sustained and controlled release of encapsulated agents. In Urology, nano-based drug delivery platforms have been extensively investigated and implemented for cancer treatment. However, there is also great potential for use of nanotechnology to treat non-oncologic urogenital diseases. We provide an update on research that is paving the way for clinical translation of nanotechnology in the areas of erectile dysfunction (ED), overactive bladder (OAB), interstitial cystitis/bladder pain syndrome (IC/BPS), and catheter-associated urinary tract infections (CAUTIs). Overall, preclinical and clinical studies have proven the utility of nanomaterials both as vehicles for transdermal and intravesical delivery of therapeutic agents and for urinary catheter formulation with antimicrobial agents to treat non-oncologic urogenital diseases. Although clinical translation will be dependent on overcoming regulatory challenges, it is inevitable before there is universal adoption of this technology to treat non-oncologic urogenital diseases.
Collapse
|
9
|
Islam MM, Naveen NR, Anitha P, Goudanavar PS, Rao GSNK, Fattepur S, Rahman MM, Shiroorkar PN, Habeebuddin M, Meravanige G, Telsang M, Nagaraja S, Asdaq SMB, Anwer MDK. The Race to Replace PDE5i: Recent Advances and Interventions to Treat or Manage Erectile Dysfunction: Evidence from Patent Landscape (2016-2021). J Clin Med 2022; 11:jcm11113140. [PMID: 35683526 PMCID: PMC9181403 DOI: 10.3390/jcm11113140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
For a few decades, globally, erectile dysfunction (ED) has become more prominent even in young adults and represents a mounting health concern causing a significant effect on men’s quality of life. There is an expectation that by the end of 2025, the number of ED cases can rise to 322 million. We aimed to comprehensively analyze the scientific output of scholarly articles and studies in the field of ED (2016–2021). Data from scholarly articles were collected using Pubmed, and clinical trials-related information was accessed from the clinical trials website. An extensive patent search was conducted using databases such as USPTO (United States patent and trademark office) and EPO (European patent office), WIPO (World Intellectual Property Organization), etc. Owing to the high market value of ED drugs, considerable interest was attained to grab the opportunities. The race to replace the phosphodiesterase type 5 inhibitor (PDE5 inhibitor-PDE5i) can be identified as evident from the significant number of patents filed and the inventions cleared with clinical trials. Some other intriguing interventions are identified for ED treatment but have yet to gain public acceptance. The current analysis confirms the overall evolution and unexplored corners of research on ED treatment strategies with a current global projection.
Collapse
Affiliation(s)
- Mohammed Monirul Islam
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.M.I.); (N.R.N.); (S.F.)
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
- Correspondence: (M.M.I.); (N.R.N.); (S.F.)
| | - Posina Anitha
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet 516126, Andhra Pradesh, India; (P.A.); (P.S.G.)
| | - Prakash S. Goudanavar
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet 516126, Andhra Pradesh, India; (P.A.); (P.S.G.)
| | - G. S. N. Koteswara Rao
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India;
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Selangor, Malaysia
- Correspondence: (M.M.I.); (N.R.N.); (S.F.)
| | - Muhammad Muhitur Rahman
- Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | | - Mohammed Habeebuddin
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (P.N.S.); (M.H.); (G.M.)
| | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (P.N.S.); (M.H.); (G.M.)
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, Karnataka, India
| | | | - MD. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Alkharj 11942, Saudi Arabia;
| |
Collapse
|
10
|
A Review on Phosphodiesterase-5 Inhibitors as a Topical Therapy for Erectile Dysfunction. Sex Med Rev 2022; 10:376-391. [DOI: 10.1016/j.sxmr.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
|
11
|
Soliman ME, Adewumi AT, Akawa OB, Subair TI, Okunlola FO, Akinsuku OE, Khan S. Simulation Models for Prediction of Bioavailability of Medicinal Drugs-the Interface Between Experiment and Computation. AAPS PharmSciTech 2022; 23:86. [PMID: 35292867 DOI: 10.1208/s12249-022-02229-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
The oral drug bioavailability (BA) problems have remained inevitable over the years, impairing drug efficacy and indirectly leading to eventual human morbidity and mortality. However, some conventional lab-based methods improve drug absorption leading to enhanced BA, and the recent experimental techniques are up-and-coming. Nevertheless, some have inherent drawbacks in improving the efficacy of poorly insoluble and low impermeable drugs. Drug BA and strategies to overcome these challenges were briefly highlighted. This review has significantly unravelled the different computational models for studying and predicting drug bioavailability. Several computational approaches provide mechanistic insights into the oral drug delivery system simulation of descriptors like solubility, permeability, transport protein-ligand interactions, and molecular structures. The in silico techniques have long been known still are just being applied to unravel drug bioavailability issues. Many publications have reported novel applications of the computational models towards achieving improved drug BA, including predicting gastrointestinal tract (GIT) drug absorption properties and passive intestinal membrane permeability, thus maximizing time and resources. Also, the classical molecular simulation models for free solvation energies of soluble-related processes such as solubilization, dissolutions, supersaturation, and precipitation have been used in virtual screening studies. A few of the tools are GastroPlusTM that supports biowaiver for drugs, mainly BCS class III and predicts drug compounds' absorption and pharmacokinetic process; SimCyp® simulator for mechanistic modelling and simulation of drug formulation processes; pharmacodynamics analysis on non-linear mixed-effects modelling; and mathematical models, predicting absorption potential/maximum absorption dose. This review provides in silico-experiment annexation in the drug bioavailability enhancement, possible insights that lead to critical opinion on the applications and reliability of the various in silico models as a growing tool for drug development and discovery, thus accelerating drug development processes.
Collapse
|
12
|
Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnology 2022; 20:109. [PMID: 35248080 PMCID: PMC8898455 DOI: 10.1186/s12951-022-01309-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is considered one of the deadliest diseases with one of the highest disease burdens worldwide. Among the different types of liver cancer, hepatocellular carcinoma is considered to be the most common type. Multiple conventional approaches are being used in treating hepatocellular carcinoma. Focusing on drug treatment, regular agents in conventional forms fail to achieve the intended clinical outcomes. In order to improve the treatment outcomes, utilizing nanoparticles-specifically lipid based nanoparticles-are considered to be one of the most promising approaches being set in motion. Multiple forms of lipid based nanoparticles exist including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, phytosomes, lipid coated nanoparticles, and nanoassemblies. Multiple approaches are used to enhance the tumor uptake as well tumor specificity such as intratumoral injection, passive targeting, active targeting, and stimuli responsive nanoparticles. In this review, the effect of utilizing lipidic nanoparticles is being discussed as well as the different tumor uptake enhancement techniques used.
Collapse
Affiliation(s)
- Khaled Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
13
|
Nanotechnology-based drug delivery systems in orthopedics. Jt Dis Relat Surg 2021; 32:267-273. [PMID: 33463450 PMCID: PMC8073448 DOI: 10.5606/ehc.2021.80360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanotechnology has led to significant scientific and technological advances in diverse fields, specifically within the field of medicine. Owing to the revolutionary implications in drug delivery, nanotechnology-based drug delivery systems have gained an increasing research interest in the current medical field. A variety of nanomaterials with unique physical, chemical and biological properties have been engineered to develop new drug delivery systems for the local, sustained and targeted delivery of drugs with improved therapeutic efficiency and less or no toxicity, representing a very promising approach for the effective management of diseases. The utility of nanotechnology, particularly in the field of orthopedics, is a topic of extensive research. Nanotechnology has a great potential to revolutionize treatment, diagnostics, and research in the field of orthopedics. Nanophase drug delivery has shown great promise in their ability to deliver drugs at nanoscale for a variety of orthopedic applications. In this review, we discuss recent advances in the field of nanostructured drug delivery systems for orthopedic applications.
Collapse
|
14
|
Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics 2020; 12:pharmaceutics12030217. [PMID: 32131531 PMCID: PMC7150957 DOI: 10.3390/pharmaceutics12030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Applications of nanoparticles in various fields have been addressed. Nanomaterials serve as carriers for transporting conventional drugs or proteins through lysosomes to various cellular targets. The basic function of lysosomes is to trigger degradation of proteins and lipids. Understanding of lysosomal functions is essential for enhancing the efficacy of nanoparticles-mediated therapy and reducing the malfunctions of cellular metabolism. The lysosomal function is modulated by the movement of ions through various ion channels. Thus, in this review, we have focused on the recruited ion channels for lysosomal function, to understand the lysosomal modulation through the nanoparticles and its applications. In the future, lysosomal channels-based targets will expand the therapeutic application of nanoparticles-associated drugs.
Collapse
|