1
|
Walmsley T, McManus JW, Kumagai Y, Nagaya K, Harries J, Iwayama H, Ashfold MNR, Britton M, Bucksbaum PH, Downes-Ward B, Driver T, Heathcote D, Hockett P, Howard AJ, Lee JWL, Liu Y, Kukk E, Milesevic D, Minns RS, Niozu A, Niskanen J, Orr-Ewing AJ, Owada S, Robertson PA, Rolles D, Rudenko A, Ueda K, Unwin J, Vallance C, Brouard M, Burt M, Allum F, Forbes R. The Role of Momentum Partitioning in Covariance Ion Imaging Analysis. J Phys Chem A 2024; 128:4548-4560. [PMID: 38713032 PMCID: PMC11163424 DOI: 10.1021/acs.jpca.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.
Collapse
Affiliation(s)
- Tiffany Walmsley
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Joseph W. McManus
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Yoshiaki Kumagai
- Department
of Applied Physics, Tokyo University of
Agriculture and Technology, Tokyo 184-8588, Japan
| | - Kiyonobu Nagaya
- Department
of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - James Harries
- National
Institutes for Quantum Science and Technology (QST), SPring-8, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Iwayama
- Institute
for Molecular Science, Okazaki 444-8585, Japan
- Sokendai
(The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | | | - Mathew Britton
- Linac Coherent
Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Philip H. Bucksbaum
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Briony Downes-Ward
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Taran Driver
- Linac Coherent
Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - David Heathcote
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Paul Hockett
- National Research
Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Andrew J. Howard
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jason W. L. Lee
- Deutsches Elektronen-Synchrotron
(DESY), Hamburg 22607, Germany
| | - Yusong Liu
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Edwin Kukk
- Department
of Physics and Astronomy, University
of Turku, Turku FI-20014, Finland
| | - Dennis Milesevic
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Russell S. Minns
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Akinobu Niozu
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8526, Japan
| | - Johannes Niskanen
- Department
of Physics and Astronomy, University
of Turku, Turku FI-20014, Finland
| | | | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan
Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Patrick A. Robertson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Daniel Rolles
- J.R. Macdonald
Laboratory, Department of Physics, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Artem Rudenko
- J.R. Macdonald
Laboratory, Department of Physics, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Kiyoshi Ueda
- Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
| | - James Unwin
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Claire Vallance
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Mark Brouard
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Michael Burt
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Felix Allum
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
- Linac Coherent
Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ruaridh Forbes
- Linac Coherent
Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| |
Collapse
|
2
|
Wang J, Dong B, Zhang M, Deng Y, Jian X, Li Z, Liu Y. Ultrafast Imaging of Jahn-Teller Distortion and the Correlated Proton Migration in Photoionized Cyclopropane. J Am Chem Soc 2024; 146:10443-10450. [PMID: 38530937 DOI: 10.1021/jacs.3c13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The Jahn-Teller (JT) distortion is one of the fundamental processes in molecules and condensed phase matters. For photoionized organic molecules with high symmetry, the JT effect leads to geometric instability in certain electron configurations and thus has a significant effect on the subsequent isomerization and proton migration processes. Utilizing the femtosecond pump-probe Coulomb explosion method, we probe the isomerization dynamics process of a monovalent cyclopropane cation (C3H6+) caused by proton migration and reveal the relationship between proton migration and JT distortion. We found that the C3H6+ cation evolves from the D3h symmetric equilateral triangle geometry either to the acute triangle via two elongated C-C bonds (JT1) or to the obtuse triangle via a single elongated C-C bond (JT2). The JT1 pathway does not involve proton migration, while the JT2 pathway drives proton migration and can be mapped into the indirect dissociation channel of Coulomb explosion. The time-resolved experiment indicates that the delay time between those two JT pathways can be as large as ∼600 fs. After the JT distortion, the cyclopropane cation undergoes a subsequent structural evolution, which brings a greater variety of dissociation channels.
Collapse
Affiliation(s)
- Jiguo Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Bowen Dong
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yongkai Deng
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaopeng Jian
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Guo Z, Zhang M, Dong X, Wang J, Li Z, Liu Y. Probing Conical Intersection in the Multipathway Isomerization of CH 3Cl Using Coulomb Explosion. J Phys Chem Lett 2024; 15:2369-2374. [PMID: 38393833 DOI: 10.1021/acs.jpclett.3c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Ubiquitous ultrafast isomerization is paramount in photoexcited molecules, in which non-adiabatic coupling among multiple electronic states can occur. We use the pump-probe Coulomb explosion imaging method to study the isomerization of CH3Cl molecules. We find that the isomerization under our strong field pump-probe scheme proceeds along multiple pathways, which are encoded in several distinct branches of the time-resolved kinetic energy release spectra for the CH2++HCl+ Coulomb explosion channel. Apart from the isomerized dissociative pathway in neutral and cationic excited states, the pump laser can also induce coherent vibrational dynamics in two coupled intermediate states and set up the initial conditions for the two concurrently proceeding isomerization pathways. The isomerization of CH3Cl provides an intriguing example of a chemical reaction consisting of multiple pathways and non-adiabatic dynamics.
Collapse
Affiliation(s)
- Zhenning Guo
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaolong Dong
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jiguo Wang
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong, Jiangsu 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Prlj A, Hollas D, Curchod BFE. Deciphering the Influence of Ground-State Distributions on the Calculation of Photolysis Observables. J Phys Chem A 2023; 127:7400-7409. [PMID: 37556330 PMCID: PMC10493954 DOI: 10.1021/acs.jpca.3c02333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Nonadiabatic molecular dynamics offers a powerful tool for studying the photochemistry of molecular systems. Key to any nonadiabatic molecular dynamics simulation is the definition of its initial conditions (ICs), ideally representing the initial molecular quantum state of the system of interest. In this work, we provide a detailed analysis of how ICs may influence the calculation of experimental observables by focusing on the photochemistry of methylhydroperoxide (MHP), the simplest and most abundant organic peroxide in our atmosphere. We investigate the outcome of trajectory surface hopping simulations for distinct sets of ICs sampled from different approximate quantum distributions, namely harmonic Wigner functions and ab initio molecular dynamics using a quantum thermostat (QT). Calculating photoabsorption cross-sections, quantum yields, and translational kinetic energy maps from the results of these simulations reveals the significant effect of the ICs, in particular when low-frequency (∼ a few hundred cm-1) normal modes are connected to the photophysics of the molecule. Overall, our results indicate that sampling ICs from ab initio molecular dynamics using a QT is preferable for flexible molecules with photoactive low-frequency modes. From a photochemical perspective, our nonadiabatic dynamics simulations offer an explanation for a low-energy tail observed at high excitation energy in the translational kinetic energy map of MHP.
Collapse
Affiliation(s)
- Antonio Prlj
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
- Division
of Physical Chemistry, Ruđer Bošković
Institute, Zagreb 10000, Croatia
| | - Daniel Hollas
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Basile F. E. Curchod
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
5
|
Matz F, Nijssen J, Jagau TC. Ab Initio Investigation of the Auger Spectra of Methane, Ethane, Ethylene, and Acetylene. J Phys Chem A 2023. [PMID: 37474285 DOI: 10.1021/acs.jpca.3c01649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
We present an ab initio computational study of the Auger spectra of methane, ethane, ethylene, and acetylene. Auger spectroscopy is an established technique to probe the electronic structure of molecules and exploits the Auger-Meitner effect that core-ionized states undergo. We compute partial decay widths using coupled-cluster theory with single and double substitutions (CCSD) and equation-of-motion CCSD theory combined with complex-scaled basis functions and Feshbach-Fano projection. We generate Auger spectra from these partial widths and draw conclusions about the strength of particular decay channels and trends among the four molecules. A connection to experimental results about fragmentation pathways of the electronic states produced by Auger decay is also made.
Collapse
Affiliation(s)
- Florian Matz
- Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Jonas Nijssen
- Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Thomas-C Jagau
- Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Kukk E, Pihlava L, Kooser K, Stråhlman C, Maclot S, Kivimäki A. Energy-dependent timescales in the dissociation of diiodothiophene dication. Phys Chem Chem Phys 2023; 25:5795-5807. [PMID: 36744651 DOI: 10.1039/d2cp05309h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ → C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.
Collapse
Affiliation(s)
- Edwin Kukk
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland. .,CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, 4 Pl. Jussieu, 75005, Paris, France
| | - Lassi Pihlava
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland.
| | - Kuno Kooser
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland. .,Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Christian Stråhlman
- Department of Materials Science and Applied Mathematics, Malmö University, SE-20506 Malmö, Sweden
| | - Sylvain Maclot
- Department of Physics, Gothenburg University, Box 100, SE-40530 Gothenburg, Sweden
| | - Antti Kivimäki
- MAX IV Laboratory, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
7
|
Varvarezos L, Delgado-Guerrero J, Di Fraia M, Kelly TJ, Palacios A, Callegari C, Cavalieri AL, Coffee R, Danailov M, Decleva P, Demidovich A, DiMauro L, Düsterer S, Giannessi L, Helml W, Ilchen M, Kienberger R, Mazza T, Meyer M, Moshammer R, Pedersini C, Plekan O, Prince KC, Simoncig A, Schletter A, Ueda K, Wurzer M, Zangrando M, Martín F, Costello JT. Controlling Fragmentation of the Acetylene Cation in the Vacuum Ultraviolet via Transient Molecular Alignment. J Phys Chem Lett 2023; 14:24-31. [PMID: 36562987 PMCID: PMC9841558 DOI: 10.1021/acs.jpclett.2c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
An open-loop control scheme of molecular fragmentation based on transient molecular alignment combined with single-photon ionization induced by a short-wavelength free electron laser (FEL) is demonstrated for the acetylene cation. Photoelectron spectra are recorded, complementing the ion yield measurements, to demonstrate that such control is the consequence of changes in the electronic response with molecular orientation relative to the ionizing field. We show that stable C2H2+ cations are mainly produced when the molecules are parallel or nearly parallel to the FEL polarization, while the hydrogen fragmentation channel (C2H2+ → C2H+ + H) predominates when the molecule is perpendicular to that direction, thus allowing one to distinguish between the two photochemical processes. The experimental findings are supported by state-of-the art theoretical calculations.
Collapse
Affiliation(s)
- L. Varvarezos
- School
of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| | - J. Delgado-Guerrero
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Instituto
Madrileño de Estudios Advanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain
| | - M. Di Fraia
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - T. J. Kelly
- Department
of Computer Science and Applied Physics, Atlantic Technological University, T91 T8NW Galway, Ireland
| | - A. Palacios
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chimical Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - C. Callegari
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - A. L. Cavalieri
- Institute
of Applied Physics, University of Bern, 3012 Bern, Switzerland
- Paul
Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - R. Coffee
- Linac
Coherent Light Source/SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - M. Danailov
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - P. Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, 34121 Trieste, Italy
| | - A. Demidovich
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - L. DiMauro
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - S. Düsterer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - L. Giannessi
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - W. Helml
- Fakultät
Physik, Technische Universität Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227 Dortmund, Germany
| | - M. Ilchen
- Institut
fur Physik und CINSaT, Universitat Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel
4, 22869 Schenefeld, Germany
| | - R. Kienberger
- Physics
Department, Technische Universität
München, 85748 Garching, Germany
| | - T. Mazza
- European XFEL, Holzkoppel
4, 22869 Schenefeld, Germany
| | - M. Meyer
- European XFEL, Holzkoppel
4, 22869 Schenefeld, Germany
| | - R. Moshammer
- Max-Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C. Pedersini
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - O. Plekan
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - K. C. Prince
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
- Department
of Chemistry and Biotechnology, Swinburne
University of Technology, Melbourne, Victoria 3122, Australia
| | - A. Simoncig
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - A. Schletter
- Physics
Department, Technische Universität
München, 85748 Garching, Germany
| | - K. Ueda
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - M. Wurzer
- Physics
Department, Technische Universität
München, 85748 Garching, Germany
| | - M. Zangrando
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
- Istituto
Officina dei Materiali, Consiglio Nazionale
delle Ricerche, 34149 Trieste, Italy
| | - F. Martín
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Instituto
Madrileño de Estudios Advanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain
- Condensed
Matter Physics Center, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - J. T. Costello
- School
of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
8
|
Yadav J, Safvan CP, Bhatt P, Kumari P, Kumar A, Rajput J. Hydrogen migration in triply charged acetylene. J Chem Phys 2022; 156:141101. [DOI: 10.1063/5.0086427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on the direct experimental evidence of hydrogen migration in triply charged acetylene. The roaming hydrogen atom in a triply charged molecular ion is counter intuitive. The three body breakup channel [Formula: see text] is studied using the technique of recoil ion momentum spectroscopy. The triply charged ion was generated in collisions of the neutral parent with a slow highly charged Xe9+ ion. Three different dissociation pathways have been identified and separated, namely, concerted breakup in an acetylene configuration, concerted breakup in a vinylidene configuration, and sequential breakup via a [Formula: see text] intermediate, and the branching ratio for all three pathways are determined.
Collapse
Affiliation(s)
- Jatin Yadav
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - C. P. Safvan
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pragya Bhatt
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pooja Kumari
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Aditya Kumar
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jyoti Rajput
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| |
Collapse
|
9
|
Zhang M, Guo Z, Mi X, Li Z, Liu Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J Phys Chem Lett 2022; 13:1668-1680. [PMID: 35147438 DOI: 10.1021/acs.jpclett.1c03916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The requirement of high space-time resolution and brightness is a great challenge for imaging atomic motion and making molecular movies. Important breakthroughs in ultrabright tabletop laser, X-ray, and electron sources have enabled the direct imaging of evolving molecular structures in chemical processes, and recent experimental advances in preparing ultrafast laser and electron pulses resulted in molecular imaging with femtosecond time resolution. This Perspective presents an overview of the versatile imaging methods of molecular dynamics. High-order harmonic generation imaging and photoelectron diffraction imaging are based on laser-induced ionization and rescattering processes. Coulomb explosion imaging retrieves molecular structural information by detecting the momentum vectors of fragmented ions. Diffraction imaging encodes molecular structural and electronic information in reciprocal space. We also present various applications of these ultrafast imaging methods in resolving laser-induced nuclear and electronic dynamics.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhengning Guo
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoyu Mi
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
A Reaction Microscope for AMO Science at Shanghai Soft X-ray Free-Electron Laser Facility. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report on the design and capabilities of a reaction microscope (REMI) end-station at the Shanghai Soft X-ray Free-Electron Laser Facility (SXFEL). This apparatus allows high-resolution and 4π solid-angle coincidence detection of ions and electrons. The components of REMI, including a supersonic gas injection system, spectrometer, detectors and data acquisition system, are described in detail. By measuring the time of flight and the impact positions of ions and electrons on the corresponding detectors, three-dimensional momentum vectors can be reconstructed to study specific reaction processes. Momentum resolutions of ions and electrons with 0.11 a.u. are achieved, which have been measured from a single ionization experiment of oxygen molecules in an infrared (IR), femtosecond laser field, under vacuum at 1.2×10−10 torr, in a reaction chamber. As a demonstration, a Coulomb explosion experiment of oxygen molecules in the IR field is presented. These results demonstrate the performance of this setup, which provides a basic tool for the study of atomic and molecular reactions at SXFEL.
Collapse
|
11
|
Coutinho LH, de A Ribeiro F, Tenorio BNC, Coriani S, Dos Santos ACF, Nicolas C, Milosavljevic AR, Bozek JD, Wolff W. NEXAFS and MS-AES spectroscopy of the C 1s and Cl 2p excitation and ionization of chlorobenzene: Production of dicationic species. Phys Chem Chem Phys 2021; 23:27484-27497. [PMID: 34873605 DOI: 10.1039/d1cp03121j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on single- and double-charge photofragment formation by synchrotron radiation, following C 1s core excitation and ionization and Cl 2p inner excitation and ionization of chlorobenzene, C6H5Cl. From a comparison of experimental near-edge X-ray absorption fine structure spectra and theoretical ab initio calculations, the nature of various core and inner shell transitions of the molecule and pure atomic features were identified. To shed light on the normal Auger processes following excitation or ionization of the molecule at the Cl 2p or C 1s sites, we addressed the induced ionic species formation. With energy resolved electron spectra and ion time-of-flight spectra coincidence measurements, the ionic species were correlated with binding energy regions and initial states of vacancies. We explored the formation of the molecular dication C6H5Cl2+, the analogue benzene dication C6H42+, and the singly charged species produced by single loss of a carbon atom, C5HnCl+. The appearance and intensities of the spectral features associated with these ionic species are shown to be strongly site selective and dependent on the energy ranges of the Auger electron emission. Unexpected intensities for the analogue double charged benzene C6H42+ ion were observed with fast Auger electrons. The transitions leading to C6H5Cl2+ were identified from the binding energy representation of high resolution electron energy spectra. Most C6H5Cl2+ ions decay into two singly charged moieties, but intermediate channels are opened leading to other heavy dicationic species, C6H42+ and C6H4Cl2+, the channel leading to the first of these being much more favored than the other.
Collapse
Affiliation(s)
- Lúcia H Coutinho
- Physics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| | | | - Bruno N C Tenorio
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Antonio C F Dos Santos
- Physics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| | | | | | - John D Bozek
- Synchrotron SOLEIL, Gif-sur-Yvette, 91192, France
| | - Wania Wolff
- Physics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| |
Collapse
|
12
|
Mandal S, Gopal R, Srinivas H, D'Elia A, Sen A, Sen S, Richter R, Coreno M, Bapat B, Mudrich M, Sharma V, Krishnan SR. Coincident angle-resolved state-selective photoelectron spectroscopy of acetylene molecules: a candidate system for time-resolved dynamics. Faraday Discuss 2021; 228:242-265. [PMID: 33687396 DOI: 10.1039/d0fd00120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range 19-40 eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the C2H2+ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the 4π-collection geometry of the velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.
Collapse
Affiliation(s)
- S Mandal
- Indian Institute of Science Education and Research, Pune 411008, India
| | - R Gopal
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - H Srinivas
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - A D'Elia
- IOM-CNR, Laboratorio TASC, Basovizza SS-14, km 163.5, 34149 Trieste, Italy
| | - A Sen
- Indian Institute of Science Education and Research, Pune 411008, India
| | - S Sen
- Indian Institute of Technology Hyderabad, Kandi 502285, India.
| | - R Richter
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Italy
| | - M Coreno
- Istituto di Struttura della Materia - Consiglio Nazionale delle Ricerche (ISM-CNR), 34149 Trieste, Italy and INFN-LNF, via Enrico Fermi 54, 00044 Frascati, Italy
| | - B Bapat
- Indian Institute of Science Education and Research, Pune 411008, India
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark and Department of Physics, QuCenDiEm-Group, Indian Institute of Technology Madras, Chennai 600036, India.
| | - V Sharma
- Indian Institute of Technology Hyderabad, Kandi 502285, India.
| | - S R Krishnan
- Department of Physics, QuCenDiEm-Group, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
13
|
Wang E, Shan X, Chen L, Pfeifer T, Chen X, Ren X, Dorn A. Ultrafast Proton Transfer Dynamics on the Repulsive Potential of the Ethanol Dication: Roaming-Mediated Isomerization versus Coulomb Explosion. J Phys Chem A 2020; 124:2785-2791. [PMID: 32159968 PMCID: PMC7307916 DOI: 10.1021/acs.jpca.0c02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
If
a molecular dication is produced on a repulsive potential energy
surface (PES), it normally dissociates. Before that, however, ultrafast
nuclear dynamics can change the PES and significantly influence the
fragmentation pathway. Here, we investigate the electron-impact-induced
double ionization and subsequent fragmentation processes of the ethanol
molecule using multiparticle coincident momentum spectroscopy and
ab initio dynamical simulations. For the electronic ground state of
the ethanol dication, we observe several fragmentation channels that
cannot be reached by direct Coulomb explosion (CE) but require preceding
isomerization. Our simulations show that ultrafast hydrogen or proton
transfer (PT) can stabilize the repulsive PES of the dication before
the direct CE and form intermediate H2 or H2O. These neutrals stay in the vicinity of the precursor, and roaming
mechanisms lead to isomerization and finally PT resulting in emission
of H3+ or H3O+. The present
findings can help to understand the complex fragmentation dynamics
of molecular cations.
Collapse
Affiliation(s)
- Enliang Wang
- Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany
| | - Xu Shan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Thomas Pfeifer
- Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany
| | - Xiangjun Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xueguang Ren
- Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany.,School of Science, Xi'an Jiaotong University, Xianning West Road 28, Xi'an 710049, China
| | - Alexander Dorn
- Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany
| |
Collapse
|
14
|
Hua W, Mukamel S, Luo Y. Transient X-ray Absorption Spectral Fingerprints of the S 1 Dark State in Uracil. J Phys Chem Lett 2019; 10:7172-7178. [PMID: 31625754 DOI: 10.1021/acs.jpclett.9b02692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low-lying dark nπ* states play an important role in many photophysical and photochemical processes of organic chromophores. Transient X-ray absorption spectroscopy (TXAS) provides a powerful technique for probing the dynamics of valence states by exciting the electrons into high-lying core excited states. We employ multiconfigurational self-consistent field calculations to investigate the TXAS of uracil along its nonradiative photodecay pathways. An open issue is whether dark nπ* state S1 (n is the lone pair localized on an oxygen atom) is accessible when bright ππ* state S2 is selectively excited. Vertical core excitations were calculated along the potential energy surfaces of the three lowest states, S0-S2, interpolated between two minima and two minimum-energy conical intersections. Computed TXAS data from the C, N, and O K edges show distinct spectral fingerprints of the dark state in all spectral regimes. At the O 1s edge, the nπ* state has a very strong absorption at 526-527 eV, while at the C (N) 1s edge, by contrast, there is almost zero (very weak) absorption at 279-282 eV (397-398 eV). All K-edge spectra can be used to sensitively detect the dark states. Our proposed O 1s feature has already been observed in a recent TXAS experiment with thymine. Natural transition orbital analysis is used to interpret all dominant features of the three lowest-valence states along the reaction coordinate and reveal some important valence fine-structure information from the core excitation.
Collapse
Affiliation(s)
- Weijie Hua
- Department of Applied Physics, School of Science , Nanjing University of Science and Technology , 210094 Nanjing , China
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , S-106 91 Stockholm , Sweden
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy , University of California, Irvine , Irvine , California 92697 , United States
| | - Yi Luo
- Hefei National Laboratory for Physical Science at the Microscale , University of Science and Technology of China , 230026 Hefei , China
| |
Collapse
|
15
|
Ibele LM, Nicolson A, Curchod BFE. Excited-state dynamics of molecules with classically driven trajectories and Gaussians. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1665199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|
16
|
Zhang Y, Wang B, Wei L, Jiang T, Yu W, Hutton R, Zou Y, Chen L, Wei B. Proton migration in hydrocarbons induced by slow highly charged ion impact. J Chem Phys 2019; 150:204303. [PMID: 31153159 DOI: 10.1063/1.5088690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Different from most of the previous studies using light or photons, we use highly charged ions as projectiles to activate proton migration in the smallest saturated and unsaturated hydrocarbon molecules, i.e., CH4 and C2H2. The H3 + formation channel (H3 + + CH+) and isomerization channel (C+ + CH2 +), serving as indicators of proton migration, are observed in the fragmentation of CH4 and C2H2 dications. Corresponding kinematical information, i.e., kinetic energy release, is for the first time obtained in the collisions with highly charged ions. In particular, for the C+ + CH2 + channel, a new pathway is identified, which is tentatively attributed to the isomerization on high-lying states of acetylene dication. The kinetic energy release spectra for other two-body breakup channels are also determined and precursor dication states could thus be identified.
Collapse
Affiliation(s)
- Y Zhang
- Department of Nuclear Science and Technology, Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - B Wang
- Department of Nuclear Science and Technology, Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - L Wei
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - T Jiang
- Department of Nuclear Science and Technology, Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - W Yu
- Department of Nuclear Science and Technology, Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - R Hutton
- Department of Nuclear Science and Technology, Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - Y Zou
- Department of Nuclear Science and Technology, Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - L Chen
- Department of Nuclear Science and Technology, Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - B Wei
- Department of Nuclear Science and Technology, Institute of Modern Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Jochim B, Berry B, Severt T, Feizollah P, Zohrabi M, P KR, Wells E, Carnes KD, Ben-Itzhak I. Dependence on the Initial Configuration of Strong Field-Driven Isomerization of C 2H 2 Cations and Anions. J Phys Chem Lett 2019; 10:2320-2327. [PMID: 31002520 DOI: 10.1021/acs.jpclett.9b00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have investigated the femtosecond laser-induced fragmentation of C2H2 q ion beam targets in various initial configurations, including acetylene (linear HCCH), vinylidene (H2CC), and cis/ trans. The initial configuration is shown to have a tremendous impact on the branching ratio of acetylene-like (CH q1 + CH q2) and vinylidene-like (C q1' + CH2 q2') dissociation of a specific C2H2 q molecular ion. In particular, whereas C2H2+ generated from C2H2, a linear HCCH target, exhibits comparable levels of acetylene-like and vinylidene-like fragmentation, vinylidene or cis/ trans configuration ion beams preferably undergo vinylidene-like fragmentation, with an acetylene branching ratio ranging from 13.9% to zero.
Collapse
Affiliation(s)
- Bethany Jochim
- J. R. Macdonald Laboratory, Department of Physics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Ben Berry
- J. R. Macdonald Laboratory, Department of Physics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - T Severt
- J. R. Macdonald Laboratory, Department of Physics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Peyman Feizollah
- J. R. Macdonald Laboratory, Department of Physics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - M Zohrabi
- J. R. Macdonald Laboratory, Department of Physics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Kanaka Raju P
- J. R. Macdonald Laboratory, Department of Physics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - E Wells
- Department of Physics , Augustana University , Sioux Falls , South Dakota 57197 , United States
| | - K D Carnes
- J. R. Macdonald Laboratory, Department of Physics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - I Ben-Itzhak
- J. R. Macdonald Laboratory, Department of Physics , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
18
|
Oberli S, González-Vázquez J, Rodríguez-Perelló E, Sodupe M, Martín F, Picón A. Site-selective-induced isomerization of formamide. Phys Chem Chem Phys 2019; 21:25626-25634. [DOI: 10.1039/c9cp04441h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We theoretically demonstrate the possibility to site-selectively induce and track isomerization in formamide by using a femtosecond X-ray-pump/X-ray-probe scheme.
Collapse
Affiliation(s)
- S. Oberli
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | | | - M. Sodupe
- Departament de Química
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - F. Martín
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia)
| | - A. Picón
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
19
|
Hartmann N, Bhattacharyya S, Schlaepfer F, Volkov M, Schumacher Z, Lucchini M, Gallmann L, Rothlisberger U, Keller U. Ultrafast nuclear dynamics of the acetylene cation C 2H 2+ and its impact on the infrared probe pulse induced C–H bond breaking efficiency. Phys Chem Chem Phys 2019; 21:18380-18385. [DOI: 10.1039/c9cp03138c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We track the few-femtosecond excited-state dynamics of the acetylene cation through modulations of the C2H+ photofragment yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry
- EPFL
- 1015 Lausanne
- Switzerland
| | - Ursula Keller
- Department of Physics
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
20
|
Luo S, Zhou S, Hu W, Yu J, Li X, Ma P, He L, Wang C, Guo F, Yang Y, Ding D. Identifying the Multielectron Effect on Chemical Bond Rearrangement of CH 3Cl Molecules in Strong Laser Fields. J Phys Chem A 2018; 122:8427-8432. [PMID: 30339005 DOI: 10.1021/acs.jpca.8b06415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strong field double ionization that triggers the chemical bond rearrangement of CH3Cl is investigated by impulsive control of the alignment of molecules. The alignment and laser intensity dependent H2+ and H3+ yields in linearly polarized femtosecond laser have been measured, and the obtained data show that the maximum signal of H2+ appears at the laser polarization parallel to the C-Cl axis of molecules and H3+ species are more likely to eject at the laser polarization parallel to the C-Cl axis at low laser intensity while the H3+ signal peaks at laser polarization perpendicular to the C-Cl axis at high laser intensity. The measurements indicate that electrons from HOMO - 1 and HOMO - 2 orbitals have been ionized for the generation of bond rearrangement at different laser intensity. Our results demonstrate the importance of multielectron effects and also provide an effective control method in the process of chemical bond rearrangement of the molecules in strong laser fields.
Collapse
Affiliation(s)
- Sizuo Luo
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Shushan Zhou
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Wenhui Hu
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Jiaqi Yu
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Xiaokai Li
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Pan Ma
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Lanhai He
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Chuncheng Wang
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Fuming Guo
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Yujun Yang
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| | - Dajun Ding
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
21
|
Joubert-Doriol L, Izmaylov AF. Nonadiabatic Quantum Dynamics with Frozen-Width Gaussians. J Phys Chem A 2018; 122:6031-6042. [DOI: 10.1021/acs.jpca.8b03404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Loïc Joubert-Doriol
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F. Izmaylov
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|