1
|
Digregorio P, Rorai C, Pagonabarraga I, Toschi F. Coexistence of Defect Morphologies in Three-Dimensional Active Nematics. PHYSICAL REVIEW LETTERS 2024; 132:258301. [PMID: 38996247 DOI: 10.1103/physrevlett.132.258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
We establish how active stress globally affects the morphology of disclination lines of a three-dimensional active nematic liquid crystal under chaotic flow. Thanks to a defect detection algorithm based on the local nematic orientation, we show that activity selects a crossover length scale in between the size of small defect loops and that of long and tangled defect lines of fractal dimension 2. This length scale crossover is consistent with the scaling of the average separation between defects as a function of activity. Moreover, on the basis of numerical simulation in a 3D periodic geometry, we show the presence of a network of regular defect loops, contractible onto the 3-torus, always coexisting with wrapping defect lines. While the length of regular defects scales linearly with the emerging active length scale, it verifies an inverse quadratic dependence for wrapping defects. The shorter the active length scale, the more the defect lines wrap around the periodic boundaries, resulting in extremely long and buckled structures.
Collapse
|
2
|
Yashunsky V, Pearce DJG, Ariel G, Be'er A. Topological defects in multi-layered swarming bacteria. SOFT MATTER 2024; 20:4237-4245. [PMID: 38747575 PMCID: PMC11135144 DOI: 10.1039/d4sm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Topological defects, which are singular points in a director field, play a major role in shaping active systems. Here, we experimentally study topological defects and the flow patterns around them, that are formed during the highly rapid dynamics of swarming bacteria. The results are compared to the predictions of two-dimensional active nematics. We show that, even though some of the assumptions underlying the theory do not hold, the swarm dynamics is in agreement with two-dimensional nematic theory. In particular, we look into the multi-layered structure of the swarm, which is an important feature of real, natural colonies, and find a strong coupling between layers. Our results suggest that the defect-charge density is hyperuniform, i.e., that long range density-fluctuations are suppressed.
Collapse
Affiliation(s)
- Victor Yashunsky
- The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel.
| | - Daniel J G Pearce
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel.
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
- The Department of Physics, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel.
| |
Collapse
|
3
|
Matsukiyo H, Fukuda JI. Oscillating edge current in polar active fluid. Phys Rev E 2024; 109:054604. [PMID: 38907507 DOI: 10.1103/physreve.109.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/11/2024] [Indexed: 06/24/2024]
Abstract
Dense bacterial suspensions exhibit turbulent behavior called bacterial turbulence. The behavior of the bulk unconstrained bacterial turbulence is described well by the Toner-Tu-Swift-Hohenberg (TTSH) equation for the velocity field. However, it remains unclear how we should treat boundary conditions on bacterial turbulence in contact with some boundaries (e.g., solid walls). To be more specific, although the importance of the edge current, the flow along the boundary, has been demonstrated in several experimental studies on confined bacterial suspensions, previous numerical studies based on the TTSH equation employ nonslip boundary conditions and do not seem to properly describe the behavior of bacteria near the boundaries. In this paper, we impose a slip boundary condition on the TTSH equation to describe the bacterial motion at boundaries. We develop a method to implement the slip boundary condition. Using this method, we have successfully produced edge current and discovered that the direction of the edge current temporally oscillates. The oscillation can be attributable to the advection term in the TTSH equation. Our paper demonstrates that boundary conditions could play an important role in the collective dynamics of active systems.
Collapse
Affiliation(s)
- Hiroki Matsukiyo
- Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun-Ichi Fukuda
- Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312956. [PMID: 38653192 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Leiming Xie
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Jinbo Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| |
Collapse
|
5
|
Vélez-Cerón I, Guillamat P, Sagués F, Ignés-Mullol J. Probing active nematics with in situ microfabricated elastic inclusions. Proc Natl Acad Sci U S A 2024; 121:e2312494121. [PMID: 38451942 PMCID: PMC10945829 DOI: 10.1073/pnas.2312494121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
In this work, we report a direct measurement of the forces exerted by a tubulin/kinesin active nematic gel as well as its complete rheological characterization, including the quantification of its shear viscosity, η, and its activity parameter, α. For this, we develop a method that allows us to rapidly photo-polymerize compliant elastic inclusions in the continuously remodeling active system. Moreover, we quantitatively settle long-standing theoretical predictions, such as a postulated relationship encoding the intrinsic time scale of the active nematic in terms of η and α. In parallel, we infer a value for the nematic elasticity constant, K, by combining our measurements with the theorized scaling of the active length scale. On top of the microrheology capabilities, we demonstrate strategies for defect encapsulation, quantification of defect mechanics, and defect interactions, enabled by the versatility of the microfabrication strategy that allows to combine elastic motifs of different shapes and stiffnesses that are fabricated in situ.
Collapse
Affiliation(s)
- Ignasi Vélez-Cerón
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| | - Pau Guillamat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona08028, Spain
| | - Francesc Sagués
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| | - Jordi Ignés-Mullol
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| |
Collapse
|
6
|
Mitchell KA, Sabbir MMH, Geumhan K, Smith SA, Klein B, Beller DA. Maximally mixing active nematics. Phys Rev E 2024; 109:014606. [PMID: 38366395 DOI: 10.1103/physreve.109.014606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 02/18/2024]
Abstract
Active nematics are an important new paradigm in soft condensed matter systems. They consist of rodlike components with an internal driving force pushing them out of equilibrium. The resulting fluid motion exhibits chaotic advection, in which a small patch of fluid is stretched exponentially in length. Using simulation, this paper shows that this system can exhibit stable periodic motion when confined to a sufficiently small square with periodic boundary conditions. Moreover, employing tools from braid theory, we show that this motion is maximally mixing, in that it optimizes the (dimensionless) "topological entropy"-the exponential stretching rate of a material line advected by the fluid. That is, this periodic motion of the defects, counterintuitively, produces more chaotic mixing than chaotic motion of the defects. We also explore the stability of the periodic state. Importantly, we show how to stabilize this orbit into a larger periodic tiling, a critical necessity for it to be seen in future experiments.
Collapse
Affiliation(s)
- Kevin A Mitchell
- Physics Department, University of California, Merced, California 95344, USA
| | | | - Kevin Geumhan
- Physics Department, University of California, Merced, California 95344, USA
| | - Spencer A Smith
- Physics Department, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Brandon Klein
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Daniel A Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
7
|
Caballero F, You Z, Marchetti MC. Vorticity phase separation and defect lattices in the isotropic phase of active liquid crystals. SOFT MATTER 2023; 19:7828-7835. [PMID: 37796173 DOI: 10.1039/d3sm00744h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ, and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows.
Collapse
Affiliation(s)
- Fernando Caballero
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Zhihong You
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
8
|
Molaei M, Redford SA, Chou WH, Scheff D, de Pablo JJ, Oakes PW, Gardel ML. Measuring response functions of active materials from data. Proc Natl Acad Sci U S A 2023; 120:e2305283120. [PMID: 37819979 PMCID: PMC10589671 DOI: 10.1073/pnas.2305283120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
From flocks of birds to biomolecular assemblies, systems in which many individual components independently consume energy to perform mechanical work exhibit a wide array of striking behaviors. Methods to quantify the dynamics of these so-called active systems generally aim to extract important length or time scales from experimental fields. Because such methods focus on extracting scalar values, they do not wring maximal information from experimental data. We introduce a method to overcome these limitations. We extend the framework of correlation functions by taking into account the internal headings of displacement fields. The functions we construct represent the material response to specific types of active perturbation within the system. Utilizing these response functions we query the material response of disparate active systems composed of actin filaments and myosin motors, from model fluids to living cells. We show we can extract critical length scales from the turbulent flows of an active nematic, anticipate contractility in an active gel, distinguish viscous from viscoelastic dissipation, and even differentiate modes of contractility in living cells. These examples underscore the vast utility of this method which measures response functions from experimental observations of complex active systems.
Collapse
Affiliation(s)
- Mehdi Molaei
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| | - Steven A. Redford
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL60637
| | - Wen-Hung Chou
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL60637
| | - Danielle Scheff
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Department of Physics, University of Chicago, Chicago, IL60637
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| | - Margaret L. Gardel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Department of Physics, University of Chicago, Chicago, IL60637
| |
Collapse
|
9
|
Rønning J, Renaud J, Doostmohammadi A, Angheluta L. Spontaneous flows and dynamics of full-integer topological defects in polar active matter. SOFT MATTER 2023; 19:7513-7527. [PMID: 37493084 DOI: 10.1039/d3sm00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Polar active matter of self-propelled particles sustain spontaneous flows through the full-integer topological defects. We study theoretically the incompressible flow profiles around ±1 defects induced by polar and dipolar active forces. We show that dipolar forces induce vortical flows around the +1 defect, while the flow around the -1 defect has an 8-fold rotational symmetry. The vortical flow changes its chirality near the +1 defect core in the absence of the friction with a substrate. We show analytically that the flow induced by polar active forces is vortical near the +1 defect and is 4-fold symmetric near the -1 defect, while it becomes uniform in the far-field. For a pair of oppositely charged defects, this polar flow contributes to a mutual interaction force that depends only on the orientation of the defect pair relative to the background polarization, and that enhances defect pair annihilation. This is in contradiction with the effect of dipolar active forces which decay inversely proportional with the defect separation distance. As such, our analyses reveals a long-ranged mechanism for the pairwise interaction between topological defects in polar active matter.
Collapse
Affiliation(s)
- Jonas Rønning
- Department of Physics, Njord Centre, University of Oslo, P.O. Box 1048, 0316 Oslo, Norway.
| | - Julian Renaud
- École Normale Supérieure, PSL Research University, 45 rue d'Ulm, 75005 Paris, France
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Luiza Angheluta
- Department of Physics, Njord Centre, University of Oslo, P.O. Box 1048, 0316 Oslo, Norway.
| |
Collapse
|
10
|
Kinoshita Y, Uchida N. Flow patterns and defect dynamics of active nematic liquid crystals under an electric field. Phys Rev E 2023; 108:014605. [PMID: 37583184 DOI: 10.1103/physreve.108.014605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/19/2023] [Indexed: 08/17/2023]
Abstract
The effects of an electric field on the flow patterns and defect dynamics of two-dimensional active nematic liquid crystals are numerically investigated. We found that field-induced director reorientation causes anisotropic active turbulence characterized by enhanced flow perpendicular to the electric field. The average flow speed and its anisotropy are maximized at an intermediate field strength. Topological defects in the anisotropic active turbulence are localized and show characteristic dynamics with simultaneous creation of two pairs of defects. A laning state characterized by stripe domains with alternating flow directions is found at a larger field strength near the transition to the uniformly aligned state. We obtained periodic oscillations between the laning state and active turbulence, which resembles an experimental observation of active nematics subject to anisotropic friction.
Collapse
Affiliation(s)
- Yutaka Kinoshita
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | - Nariya Uchida
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Abstract
Matter self-assembling into layers generates unique properties, including structures of stacked surfaces, directed transport, and compact area maximization that can be highly functionalized in biology and technology. Smectics represent the paradigm of such lamellar materials - they are a state between fluids and solids, characterized by both orientational and partial positional ordering in one layering direction, making them notoriously difficult to model, particularly in confining geometries. We propose a complex tensor order parameter to describe the local degree of lamellar ordering, layer displacement and orientation of the layers for simple, lamellar smectics. The theory accounts for both dislocations and disclinations, by regularizing singularities within defect cores and so remaining continuous everywhere. The ability to describe disclinations and dislocation allows this theory to simulate arrested configurations and inclusion-induced local ordering. This tensorial theory for simple smectics considerably simplifies numerics, facilitating studies on the mesoscopic structure of topologically complex systems.
Collapse
|
12
|
Rønning J, Marchetti MC, Angheluta L. Defect self-propulsion in active nematic films with spatially varying activity. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221229. [PMID: 36816847 PMCID: PMC9929493 DOI: 10.1098/rsos.221229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
We study the dynamics of topological defects in active nematic films with spatially varying activity and consider two set-ups: (i) a constant activity gradient and (ii) a sharp jump in activity. A constant gradient of extensile (contractile) activity endows the comet-like +1/2 defect with a finite vorticity that drives the defect to align its nose in the direction of decreasing (increasing) gradient. A constant gradient does not, however, affect the known self-propulsion of the +1/2 defect and has no effect on the -1/2 that remains a non-motile particle. A sharp jump in activity acts like a wall that traps the defects, affecting the translational and rotational motion of both charges. The +1/2 defect slows down as it approaches the interface and the net vorticity tends to reorient the defect polarization so that it becomes perpendicular to the interface. The -1/2 defect acquires a self-propulsion towards the activity interface, while the vorticity-induced active torque tends to align the defect to a preferred orientation. This effective attraction of the negative defects to the wall is consistent with the observation of an accumulation of negative topological charge at both active/passive interfaces and physical boundaries.
Collapse
Affiliation(s)
- Jonas Rønning
- Njord Centre, Department of Physics, University of Oslo, PO Box 1048, Oslo 0316, Norway
| | - M. Cristina Marchetti
- Department of Physics and Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Luiza Angheluta
- Njord Centre, Department of Physics, University of Oslo, PO Box 1048, Oslo 0316, Norway
| |
Collapse
|
13
|
Tejedor AR, Carracedo R, Ramírez J. Molecular dynamics simulations of active entangled polymers reptating through a passive mesh. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Nasirimarekani V, Subramani S, Herzog S, Vilfan A, Guido I. Active Bending of Disordered Microtubule Bundles by Kinesin Motors. ACS OMEGA 2022; 7:43820-43828. [PMID: 36506136 PMCID: PMC9730755 DOI: 10.1021/acsomega.2c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Active networks of biopolymers and motor proteins in vitro self-organize and exhibit dynamic structures on length scales much larger than the interacting individual components of which they consist. How the dynamics is related across the range of length scales is still an open question. Here, we experimentally characterize and quantify the dynamic behavior of isolated microtubule bundles that bend due to the activity of motor proteins. At the motor level, we track and describe the motion features of kinesin-1 clusters stepping within the bending bundles. We find that there is a separation of length scales by at least 1 order of magnitude. At a run length of <1 μm, kinesin-1 activity leads to a bundle curvature in the range of tens of micrometers. We propose that the distribution of microtubule polarity plays a crucial role in the bending dynamics that we observe at both the bundle and motor levels. Our results contribute to the understanding of fundamental principles of vital intracellular processes by disentangling the multiscale dynamics in out-of-equilibrium active networks composed of cytoskeletal elements.
Collapse
Affiliation(s)
- Vahid Nasirimarekani
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
| | - Smrithika Subramani
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
- Department
of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin53211, United States
| | - Sebastian Herzog
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
- Department
for Computational Neuroscience, Third Institute of Physics −
Biophysics, University of Göttingen, Friedrich-Hund-Platz 1, 37077Göttingen, Germany
| | - Andrej Vilfan
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
- Jožef
Stefan Institute, Jamova
39, 1000Ljubljana, Slovenia
| | - Isabella Guido
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
| |
Collapse
|
15
|
Active boundary layers in confined active nematics. Nat Commun 2022; 13:6675. [PMID: 36335213 PMCID: PMC9637202 DOI: 10.1038/s41467-022-34336-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
The role of boundary layers in conventional liquid crystals is commonly related to the mesogen anchoring on confining walls. In the classical view, anchoring enslaves the orientational field of the passive material under equilibrium conditions. In this work, we show that an active nematic can develop active boundary layers that topologically polarize the confining walls. We find that negatively-charged defects accumulate in the boundary layer, regardless of the wall curvature, and they influence the overall dynamics of the system to the point of fully controlling the behavior of the active nematic in situations of strong confinement. Further, we show that wall defects exhibit behaviors that are essentially different from those of their bulk counterparts, such as high motility or the ability to recombine with another defect of like-sign topological charge. These exotic behaviors result from a change of symmetry induced by the wall in the director field around the defect. Finally, we suggest that the collective dynamics of wall defects might be described in terms of a model equation for one-dimensional spatio-temporal chaos.
Collapse
|
16
|
Hickl V, Juarez G. Tubulation and dispersion of oil by bacterial growth on droplets. SOFT MATTER 2022; 18:7217-7228. [PMID: 36102194 DOI: 10.1039/d2sm00813k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria on surfaces exhibit collective behaviors, such as active turbulence and active stresses, which result from their motility, growth, and interactions with their local surroundings. However, interfacial deformations on soft surfaces and liquid interfaces caused by active growth, particularly over long time scales, are not well understood. Here, we describe experimental observations on the emergence of tubular structures arising from the growth of rod-shaped bacteria at the interface of oil droplets in water. Using microfluidics and timelapse microscopy, the dimensions and extension rates of individual tubular structures as well as bulk bio-aggregate formation are quantified for hundreds of droplets over 72 hours. Tubular structures are comparable in length to the initial droplet radius and are composed of an outer shell of bacteria that stabilize an inner filament of oil. The oil filament breaks up into smaller microdroplets dispersed within the bacterial shell. This work provides insight into active stresses at deformable interfaces and improves our understanding of microbial oil biodegradation and its potential influence on the transport of droplets in the ocean water column.
Collapse
Affiliation(s)
- Vincent Hickl
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gabriel Juarez
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
17
|
Saghatchi R, Yildiz M, Doostmohammadi A. Nematic order condensation and topological defects in inertial active nematics. Phys Rev E 2022; 106:014705. [PMID: 35974636 DOI: 10.1103/physreve.106.014705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Living materials at different length scales manifest active nematic features such as orientational order, nematic topological defects, and active nematic turbulence. Using numerical simulations we investigate the impact of fluid inertia on the collective pattern formation in active nematics. We show that an incremental increase in inertial effects due to reduced viscosity results in gradual melting of nematic order with an increase in topological defect density before a discontinuous transition to a vortex-condensate state. The emergent vortex-condensate state at low enough viscosities coincides with nematic order condensation within the giant vortices and the drop in the density of topological defects. We further show flow field around topological defects is substantially affected by inertial effects. Moreover, we demonstrate the strong dependence of the kinetic energy spectrum on the inertial effects, recover the Kolmogorov scaling within the vortex-condensate phase, but find no evidence of universal scaling at higher viscosities. The findings reveal complexities in active nematic turbulence and emphasize the important cross-talk between active and inertial effects in setting flow and orientational organization of active particles.
Collapse
Affiliation(s)
- Roozbeh Saghatchi
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956 Istanbul, Turkey; Integrated Manufacturing Technology Research & Application Center, Sabanci University, Tuzla 34956 Istanbul, Turkey; and Composite Technologies Center of Excellence, Sabanci University-Kordsa, Pendik 34906 Istanbul, Turkey
| | - Mehmet Yildiz
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956 Istanbul, Turkey; Integrated Manufacturing Technology Research & Application Center, Sabanci University, Tuzla 34956 Istanbul, Turkey; and Composite Technologies Center of Excellence, Sabanci University-Kordsa, Pendik 34906 Istanbul, Turkey
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Sultan SA, R Nejad M, Doostmohammadi A. Quadrupolar active stress induces exotic patterns of defect motion in compressible active nematics. SOFT MATTER 2022; 18:4118-4126. [PMID: 35579323 DOI: 10.1039/d1sm01683k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A wide range of living and artificial active matter exists in close contact with substrates and under strong confinement, where in addition to dipolar active stresses, quadrupolar active stresses can become important. Here, we numerically investigate the impact of quadrupolar non-equilibrium stresses on the emergent patterns of self-organisation in non-momentum conserving active nematics. Our results reveal that beyond having stabilising effects, the quadrupolar active forces can induce various modes of topological defect motion in active nematics. In particular, we find the emergence of both polar and nematic ordering of the defects, as well as new patterns of self-organisation that comprise topological defect chains and transient topological defect asters. The results contribute to further understanding of emergent patterns of collective motion and non-equilibrium self-organisation in active matter.
Collapse
Affiliation(s)
- Salik A Sultan
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Mehrana R Nejad
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK
| | | |
Collapse
|
19
|
Guillamat P, Blanch-Mercader C, Pernollet G, Kruse K, Roux A. Integer topological defects organize stresses driving tissue morphogenesis. NATURE MATERIALS 2022; 21:588-597. [PMID: 35145258 PMCID: PMC7612693 DOI: 10.1038/s41563-022-01194-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Tissues acquire function and shape via differentiation and morphogenesis. Both processes are driven by coordinating cellular forces and shapes at the tissue scale, but general principles governing this interplay remain to be discovered. Here we report that self-organization of myoblasts around integer topological defects, namely spirals and asters, suffices to establish complex multicellular architectures. In particular, these arrangements can trigger localized cell differentiation or, alternatively, when differentiation is inhibited, they can drive the growth of swirling protrusions. Both localized differentiation and growth of cellular vortices require specific stress patterns. By analysing the experimental velocity and orientational fields through active gel theory, we show that integer topological defects can generate force gradients that concentrate compressive stresses. We reveal these gradients by assessing spatial changes in nuclear volume and deformations of elastic pillars. We propose integer topological defects as mechanical organizing centres controlling differentiation and morphogenesis.
Collapse
Affiliation(s)
- Pau Guillamat
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Carles Blanch-Mercader
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | | | - Karsten Kruse
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland.
- NCCR for Chemical Biology, University of Geneva, Geneva, Switzerland.
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
- NCCR for Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
20
|
Zhang R, Mozaffari A, de Pablo JJ. Logic operations with active topological defects. SCIENCE ADVANCES 2022; 8:eabg9060. [PMID: 35196084 PMCID: PMC8865799 DOI: 10.1126/sciadv.abg9060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/30/2021] [Indexed: 05/31/2023]
Abstract
Logic operations performed by semiconductor-based transistors are the basis of modern computing. There is considerable interest in creating autonomous materials systems endowed with the capability to make decisions. In this work, we introduce the concept of using topological defects in active matter to perform logic operations. When an extensile active stress in a nematic liquid crystal is turned on, +1/2 defects can self-propel, in analogy to electron transport under a voltage gradient. By relying on hydrodynamic simulations of active nematics, we demonstrate that patterns of activity, when combined with surfaces imparting certain orientations, can be used to control the formation and transport of +1/2 defects. We further show that asymmetric high- and low-activity patterns can be used to create effective defect gates, tunnels, and amplifiers. The proposed active systems offer the potential to perform computations and transmit information in active soft materials, including actin-, tubulin-, and cell-based systems.
Collapse
Affiliation(s)
- Rui Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Ali Mozaffari
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- OpenEye Scientific Software, Inc., 9 Bisbee Court Suite D, Santa Fe, New Mexico 87508, USA
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
21
|
Nano/Micromotors in Active Matter. MICROMACHINES 2022; 13:mi13020307. [PMID: 35208431 PMCID: PMC8878230 DOI: 10.3390/mi13020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving rise to rich dynamics and patterns. Alongside the spontaneous dynamics, external stimuli such as geometric confinements, light, magnetic field, and chemical potential are also harnessed to control the movements of NMMs, yielding new application paradigms of active matter. Here, we review the recent advances, both experimental and theoretical, in exploring biological NMMs. The unique dynamical features of collective NMMs are focused on, along with some possible applications of these intriguing systems.
Collapse
|
22
|
Rønning J, Marchetti CM, Bowick MJ, Angheluta L. Flow around topological defects in active nematic films. Proc Math Phys Eng Sci 2022; 478:20210879. [PMID: 35153617 PMCID: PMC8791053 DOI: 10.1098/rspa.2021.0879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 11/14/2022] Open
Abstract
We study the active flow around isolated defects and the self-propulsion velocity of +1/2 defects in an active nematic film with both viscous dissipation (with viscosity η) and frictional damping Γ with a substrate. The interplay between these two dissipation mechanisms is controlled by the hydrodynamic dissipation length ℓd=η/Γ that screens the flows. For an isolated defect, in the absence of screening from other defects, the size of the shear vorticity around the defect is controlled by the system size R. In the presence of friction that leads to a finite value of ℓd, the vorticity field decays to zero on the lengthscales larger than ℓd. We show that the self-propulsion velocity of +1/2 defects grows with R in small systems where R<ℓd, while in the infinite system limit or when R≫ℓd, it approaches a constant value determined by ℓd.
Collapse
Affiliation(s)
- Jonas Rønning
- Njord Centre, Department of Physics, University of Oslo, PO Box 1048, Oslo 0316, Norway
| | - Cristina M Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mark J Bowick
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Luiza Angheluta
- Njord Centre, Department of Physics, University of Oslo, PO Box 1048, Oslo 0316, Norway
| |
Collapse
|
23
|
Samui A, Yeomans JM, Thampi SP. Flow transitions and length scales of a channel-confined active nematic. SOFT MATTER 2021; 17:10640-10648. [PMID: 34788355 DOI: 10.1039/d1sm01434j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We perform lattice Boltzmann simulations of an active nematic fluid confined in a two-dimensional channel to study the range of flow states that are stabilised by the confinement: unidirectional flow, oscillatory flow, the dancing state, localised active turbulence and fully-developed active turbulence. We analyse the flows in Fourier space, and measure a range of different length scales which describe the flows. We argue that the different states occur as a result of flow instabilities inherent to the system. As a consequence the characteristic length scale for oscillatory flow, the dancing state and localised active turbulence is set by the channel width. Fully-developed active turbulence occurs only when the channel width is larger than the intrinsic, active length scale of the bulk fluid. The results clarify why the activity number is a control parameter for the flow transitions.
Collapse
Affiliation(s)
- Abhik Samui
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK.
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
24
|
Gouiller C, Ybert C, Cottin-Bizonne C, Raynal F, Bourgoin M, Volk R. Two-dimensional numerical model of Marangoni surfers: From single swimmer to crystallization. Phys Rev E 2021; 104:064608. [PMID: 35030840 DOI: 10.1103/physreve.104.064608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/23/2021] [Indexed: 11/07/2022]
Abstract
We numerically study the dynamics of an ensemble of Marangoni surfers in a two-dimensional and unconfined space. The swimmers are modeled as Gaussian sources of surfactant generating surface tension gradients and are shown to follow the Marangoni flow filtered at their spatial scale in the lubrication regime, an unstable situation leading to spontaneous motion as soon as the Marangoni effect is intense enough. As the system is fully unconstrained, it is possible to study the various dynamical regimes from single swimmer, two-body interaction, to the many-particles case characterized by an efficient particle dispersion. We show that, although the present model is very simple, it reproduces the experimentally observed transition between a regime of dispersion by random agitation when the number of swimmers is moderate to the regime of crystallization with imperfect hexagonal lattice at high density.
Collapse
Affiliation(s)
- Clément Gouiller
- Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Christophe Ybert
- Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Cécile Cottin-Bizonne
- Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Florence Raynal
- Laboratoire de Mécanique des Fluides et d'Acoustique, Université de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, F-69134 Écully, France
| | - Mickaël Bourgoin
- Laboratoire de Physique, Université de Lyon, École Normale Supérieure de Lyon, CNRS, F-69342 Lyon, France
| | - Romain Volk
- Laboratoire de Physique, Université de Lyon, École Normale Supérieure de Lyon, CNRS, F-69342 Lyon, France
| |
Collapse
|
25
|
Pearce DJG, Nambisan J, Ellis PW, Fernandez-Nieves A, Giomi L. Orientational Correlations in Active and Passive Nematic Defects. PHYSICAL REVIEW LETTERS 2021; 127:197801. [PMID: 34797140 DOI: 10.1103/physrevlett.127.197801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
We investigate the emergence of orientational order among +1/2 disclinations in active nematic liquid crystals. Using a combination of theoretical and experimental methods, we show that +1/2 disclinations have short-range antiferromagnetic alignment, as a consequence of the elastic torques originating from their polar structure. The presence of intermediate -1/2 disclinations, however, turns this interaction from antialigning to aligning at scales that are smaller than the typical distance between like-sign defects. No long-range orientational order is observed. Strikingly, these effects are insensitive to material properties and qualitatively similar to what is found for defects in passive nematic liquid crystals.
Collapse
Affiliation(s)
- D J G Pearce
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Departments of Biochemistry and Theoretical Physics, Université de Genéve, 1205 Genéve, Switzerland
| | - J Nambisan
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - P W Ellis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - A Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - L Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
26
|
Physics of liquid crystals in cell biology. Trends Cell Biol 2021; 32:140-150. [PMID: 34756501 DOI: 10.1016/j.tcb.2021.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
The past decade has witnessed a rapid growth in understanding of the pivotal roles of mechanical stresses and physical forces in cell biology. As a result, an integrated view of cell biology is evolving, where genetic and molecular features are scrutinised hand in hand with physical and mechanical characteristics of cells. Physics of liquid crystals has emerged as a burgeoning new frontier in cell biology over the past few years, fuelled by an increasing identification of orientational order and topological defects in cell biology, spanning scales from subcellular filaments to individual cells and multicellular tissues. Here, we provide an account of the most recent findings and developments, together with future promises and challenges in this rapidly evolving interdisciplinary research direction.
Collapse
|
27
|
Calderer MC, Golovaty D, Yao L, Zhao L. Shear flow of active matter in thin channels. Phys Rev E 2021; 104:034607. [PMID: 34654198 DOI: 10.1103/physreve.104.034607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/06/2021] [Indexed: 11/07/2022]
Abstract
We study the shear flow of active filaments confined in a thin channel for extensile and contractile fibers. We apply the Ericksen-Leslie equations of liquid crystal flow with an activity source term. The dimensionless form of this system includes the Ericksen, activity, and Reynolds numbers, together with the aspect ratio of the channel, as the main driving parameters. We perform a normal mode stability analysis of the base shear flow. For both types of fibers, we arrive at a comprehensive description of the stability properties and their dependence on the parameters of the system. The transition to unstable frequencies in extensile fibers occurs at a positive threshold value of the activity parameter, whereas for contractile ones a complex behavior is found at low absolute value of the activity number. The latter might be an indication of the biologically relevant plasticity and phase transition issues. In contrast with extensile fibers, flows of contractile ones are also found to be highly sensitive to the Reynolds number. The work on extensile fibers is guided by experiments on active filaments in confined channels and aims at quantifying their findings in the prechaotic regime.
Collapse
Affiliation(s)
- M Carme Calderer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55442, USA
| | - Dmitry Golovaty
- Department of Mathematics, University of Akron, Akron, Ohio 44325, USA
| | - Lingxing Yao
- Department of Mathematics, University of Akron, Akron, Ohio 44325, USA
| | - Longhua Zhao
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
28
|
Zantop AW, Stark H. Multi-particle collision dynamics with a non-ideal equation of state. II. Collective dynamics of elongated squirmer rods. J Chem Phys 2021; 155:134904. [PMID: 34624984 DOI: 10.1063/5.0064558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simulations of flow fields around microscopic objects typically require methods that both solve the Navier-Stokes equations and also include thermal fluctuations. One such method popular in the field of soft-matter physics is the particle-based simulation method of multi-particle collision dynamics (MPCD). However, in contrast to the typically incompressible real fluid, the fluid of the traditional MPCD methods obeys the ideal-gas equation of state. This can be problematic because most fluid properties strongly depend on the fluid density. In a recent article, we proposed an extended MPCD algorithm and derived its non-ideal equation of state and an expression for the viscosity. In the present work, we demonstrate its accuracy and efficiency for the simulations of the flow fields of single squirmers and of the collective dynamics of squirmer rods. We use two exemplary squirmer-rod systems for which we compare the outcome of the extended MPCD method to the well-established MPCD version with an Andersen thermostat. First, we explicitly demonstrate the reduced compressibility of the MPCD fluid in a cluster of squirmer rods. Second, for shorter rods, we show the interesting result that in simulations with the extended MPCD method, dynamic swarms are more pronounced and have a higher polar order. Finally, we present a thorough study of the state diagram of squirmer rods moving in the center plane of a Hele-Shaw geometry. From a small to large aspect ratio and density, we observe a disordered state, dynamic swarms, a single swarm, and a jammed cluster, which we characterize accordingly.
Collapse
Affiliation(s)
- Arne W Zantop
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Holger Stark
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
29
|
Lemma LM, Norton MM, Tayar AM, DeCamp SJ, Aghvami SA, Fraden S, Hagan MF, Dogic Z. Multiscale Microtubule Dynamics in Active Nematics. PHYSICAL REVIEW LETTERS 2021; 127:148001. [PMID: 34652175 DOI: 10.1103/physrevlett.127.148001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
In microtubule-based active nematics, motor-driven extensile motion of microtubule bundles powers chaotic large-scale dynamics. We quantify the interfilament sliding motion both in isolated bundles and in a dense active nematic. The extension speed of an isolated microtubule pair is comparable to the molecular motor stepping speed. In contrast, the net extension in dense 2D active nematics is significantly slower; the interfilament sliding speeds are widely distributed about the average and the filaments exhibit both contractile and extensile relative motion. These measurements highlight the challenge of connecting the extension rate of isolated bundles to the multimotor and multifilament interactions present in a dense 2D active nematic. They also provide quantitative data that is essential for building multiscale models.
Collapse
Affiliation(s)
- Linnea M Lemma
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael M Norton
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Alexandra M Tayar
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Stephen J DeCamp
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - S Ali Aghvami
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
30
|
Submersed micropatterned structures control active nematic flow, topology, and concentration. Proc Natl Acad Sci U S A 2021; 118:2106038118. [PMID: 34535551 DOI: 10.1073/pnas.2106038118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 01/10/2023] Open
Abstract
Coupling between flows and material properties imbues rheological matter with its wide-ranging applicability, hence the excitement for harnessing the rheology of active fluids for which internal structure and continuous energy injection lead to spontaneous flows and complex, out-of-equilibrium dynamics. We propose and demonstrate a convenient, highly tunable method for controlling flow, topology, and composition within active films. Our approach establishes rheological coupling via the indirect presence of fully submersed micropatterned structures within a thin, underlying oil layer. Simulations reveal that micropatterned structures produce effective virtual boundaries within the superjacent active nematic film due to differences in viscous dissipation as a function of depth. This accessible method of applying position-dependent, effective dissipation to the active films presents a nonintrusive pathway for engineering active microfluidic systems.
Collapse
|
31
|
Pearce DJG, Kruse K. Properties of twisted topological defects in 2D nematic liquid crystals. SOFT MATTER 2021; 17:7408-7417. [PMID: 34318862 PMCID: PMC8356798 DOI: 10.1039/d1sm00825k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/08/2021] [Indexed: 05/11/2023]
Abstract
Topological defects are one of the most conspicuous features of liquid crystals. In two dimensional nematics, they have been shown to behave effectively as particles with both charge and orientation, which dictate their interactions. Here, we study "twisted" defects that have a radially dependent orientation. We find that twist can be partially relaxed through the creation and annihilation of defect pairs. By solving the equations for defect motion and calculating the forces on defects, we identify four distinct elements that govern the relative relaxational motion of interacting topological defects, namely attraction, repulsion, co-rotation and co-translation. The interaction of these effects can lead to intricate defect trajectories, which can be controlled by setting relevant timescales.
Collapse
Affiliation(s)
- D J G Pearce
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland. and Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland and Dept. of Mathematics, Massachusetts Institute of Technology, Massachusetts, USA
| | - K Kruse
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland. and Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
32
|
Chen YC, Jolicoeur B, Chueh CC, Wu KT. Flow coupling between active and passive fluids across water-oil interfaces. Sci Rep 2021; 11:13965. [PMID: 34234195 PMCID: PMC8263611 DOI: 10.1038/s41598-021-93310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023] Open
Abstract
Active fluid droplets surrounded by oil can spontaneously develop circulatory flows. However, the dynamics of the surrounding oil and their influence on the active fluid remain poorly understood. To investigate interactions between the active fluid and the passive oil across their interface, kinesin-driven microtubule-based active fluid droplets were immersed in oil and compressed into a cylinder-like shape. The droplet geometry supported intradroplet circulatory flows, but the circulation was suppressed when the thickness of the oil layer surrounding the droplet decreased. Experiments with tracers and network structure analyses and continuum models based on the dynamics of self-elongating rods demonstrated that the flow transition resulted from flow coupling across the interface between active fluid and oil, with a millimeter-scale coupling length. In addition, two novel millifluidic devices were developed that could trigger and suppress intradroplet circulatory flows in real time: one by changing the thickness of the surrounding oil layer and the other by locally deforming the droplet. This work highlights the role of interfacial dynamics in the active fluid droplet system and shows that circulatory flows within droplets can be affected by millimeter-scale flow coupling across the interface between the active fluid and the oil.
Collapse
Affiliation(s)
- Yen-Chen Chen
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Brock Jolicoeur
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Chih-Che Chueh
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kun-Ta Wu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
33
|
Nasirimarekani V, Strübing T, Vilfan A, Guido I. Tuning the Properties of Active Microtubule Networks by Depletion Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7919-7927. [PMID: 34132558 PMCID: PMC8264947 DOI: 10.1021/acs.langmuir.1c00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/05/2021] [Indexed: 05/12/2023]
Abstract
Suspensions of microtubules and nonadsorbing particles form thick and long bundles due to depletion forces. Such interactions act at the nanometer scale and define the structural and dynamical properties of the resulting networks. In this study, we analyze the depletion forces exerted by two types of nonadsorbing particles, namely, the polymer, poly(ethylene glycol) (PEG), and the block copolymer, Pluronic. We characterize their effects both in passive and active networks by adding motor proteins to the suspensions. By exploiting its bundling effect via entropic forces, we observed that PEG generates a network with thick structures showing a nematic order and larger mesh size. On the other hand, Pluronic builds up a much denser gel-like network without a recognizable mesh structure. This difference is also reflected in the network activity. PEG networks show moderate contraction in lateral directions while Pluronic networks exhibit faster and isotropic contraction. Interestingly, by mixing the two nonadsorbing polymers in different ratios, we observed that the system showed a behavior that exhibited properties of both agents, leading to a robust and fast responsive structure compared to the single-depletant networks. In conclusion, we show how passive osmotic compression modifies the distribution of biopolymers. Its combination with active motors results in a new active material with potential for nanotechnological applications.
Collapse
Affiliation(s)
- Vahid Nasirimarekani
- University
of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Tobias Strübing
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Andrej Vilfan
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Isabella Guido
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| |
Collapse
|
34
|
Mitchell KA, Tan AJ, Arteaga J, Hirst LS. Fractal generation in a two-dimensional active-nematic fluid. CHAOS (WOODBURY, N.Y.) 2021; 31:073125. [PMID: 34340333 DOI: 10.1063/5.0050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Active fluids, composed of individual self-propelled agents, can generate complex large-scale coherent flows. A particularly important laboratory realization of such an active fluid is a system composed of microtubules, aligned in a quasi-two-dimensional (2D) nematic phase and driven by adenosine-triphosphate-fueled kinesin motor proteins. This system exhibits robust chaotic advection and gives rise to a pronounced fractal structure in the nematic contours. We characterize such experimentally derived fractals using the power spectrum and discover that the power spectrum decays as k-β for large wavenumbers k. The parameter β is measured for several experimental realizations. Though β is effectively constant in time, it does vary with experimental parameters, indicating differences in the scale-free behavior of the microtubule-based active nematic. Though the fractal patterns generated in this active system are reminiscent of passively advected dye in 2D chaotic flows, the underlying mechanism for fractal generation is more subtle. We provide a simple, physically inspired mathematical model of fractal generation in this system that relies on the material being locally compressible, though the total area of the material is conserved globally. The model also requires that large-scale density variations are injected into the material periodically. The model reproduces the power-spectrum decay k-β seen in experiments. Linearizing the model of fractal generation about the equilibrium density, we derive an analytic relationship between β and a single dimensionless quantity r, which characterizes the compressibility.
Collapse
Affiliation(s)
- Kevin A Mitchell
- Physics Department, University of California, Merced, Merced, California 95344, USA
| | - Amanda J Tan
- Physics Department, University of California, Merced, Merced, California 95344, USA
| | - Jorge Arteaga
- Physics Department, University of California, Merced, Merced, California 95344, USA
| | - Linda S Hirst
- Physics Department, University of California, Merced, Merced, California 95344, USA
| |
Collapse
|
35
|
Mozaffari A, Zhang R, Atzin N, de Pablo JJ. Defect Spirograph: Dynamical Behavior of Defects in Spatially Patterned Active Nematics. PHYSICAL REVIEW LETTERS 2021; 126:227801. [PMID: 34152186 DOI: 10.1103/physrevlett.126.227801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/06/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Topological defects in active liquid crystals can be confined by introducing gradients of activity. Here, we examine the dynamical behavior of two defects confined by a sharp gradient of activity that separates an active circular region and a surrounding passive nematic material. Continuum simulations are used to explain how the interplay among energy injection into the system, hydrodynamic interactions, and frictional forces governs the dynamics of topologically required self-propelling +1/2 defects. Our findings are rationalized in terms of a phase diagram for the dynamical response of defects in terms of activity and frictional damping strength. Different regions of the underlying phase diagram correspond to distinct dynamical modes, namely immobile defects, steady rotation of defects, bouncing defects, bouncing-cruising defects, dancing defects, and multiple defects with irregular dynamics. These dynamic states raise the prospect of generating synchronized defect arrays for microfluidic applications.
Collapse
Affiliation(s)
- Ali Mozaffari
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Noe Atzin
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
36
|
Lavrentovich OD. Design of nematic liquid crystals to control microscale dynamics. LIQUID CRYSTALS REVIEWS 2021; 8:59-129. [PMID: 34956738 PMCID: PMC8698256 DOI: 10.1080/21680396.2021.1919576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 05/25/2023]
Abstract
The dynamics of small particles, both living such as swimming bacteria and inanimate, such as colloidal spheres, has fascinated scientists for centuries. If one could learn how to control and streamline their chaotic motion, that would open technological opportunities in the transformation of stored or environmental energy into systematic motion, with applications in micro-robotics, transport of matter, guided morphogenesis. This review presents an approach to command microscale dynamics by replacing an isotropic medium with a liquid crystal. Orientational order and associated properties, such as elasticity, surface anchoring, and bulk anisotropy, enable new dynamic effects, ranging from the appearance and propagation of particle-like solitary waves to self-locomotion of an active droplet. By using photoalignment, the liquid crystal can be patterned into predesigned structures. In the presence of the electric field, these patterns enable the transport of solid and fluid particles through nonlinear electrokinetics rooted in anisotropy of conductivity and permittivity. Director patterns command the dynamics of swimming bacteria, guiding their trajectories, polarity of swimming, and distribution in space. This guidance is of a higher level of complexity than a simple following of the director by rod-like microorganisms. Namely, the director gradients mediate hydrodynamic interactions of bacteria to produce an active force and collective polar modes of swimming. The patterned director could also be engraved in a liquid crystal elastomer. When an elastomer coating is activated by heat or light, these patterns produce a deterministic surface topography. The director gradients define an activation force that shapes the elastomer in a manner similar to the active stresses triggering flows in active nematics. The patterned elastomer substrates could be used to define the orientation of cells in living tissues. The liquid-crystal guidance holds a major promise in achieving the goal of commanding microscale active flows.
Collapse
Affiliation(s)
- Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
37
|
Tang X, Selinger JV. Alignment of a topological defect by an activity gradient. Phys Rev E 2021; 103:022703. [PMID: 33736015 DOI: 10.1103/physreve.103.022703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023]
Abstract
As a method for controlling active materials, researchers have suggested designing patterns of activity on a substrate, which should guide the motion of topological defects. To investigate this concept, we model the behavior of a single defect of topological charge +1/2, moving in an activity gradient. This modeling uses three methods: (1) approximate analytic solution of hydrodynamic equations, (2) macroscopic, symmetry-based theory of the defect as an effective oriented particle, and (3) numerical simulation. All three methods show that an activity gradient aligns the defect orientation, and hence should be useful to control defect motion.
Collapse
Affiliation(s)
- Xingzhou Tang
- Department of Physics, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
| | - Jonathan V Selinger
- Department of Physics, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
38
|
Nejad MR, Doostmohammadi A, Yeomans JM. Memory effects, arches and polar defect ordering at the cross-over from wet to dry active nematics. SOFT MATTER 2021; 17:2500-2511. [PMID: 33503081 DOI: 10.1039/d0sm01794a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We use analytic arguments and numerical solutions of the continuum, active nematohydrodynamic equations to study how friction alters the behaviour of active nematics. Concentrating on the case where there is nematic ordering in the passive limit, we show that, as the friction is increased, memory effects become more prominent and +1/2 topological defects leave increasingly persistent trails in the director field as they pass. The trails are preferential sites for defect formation and they tend to impose polar order on any new +1/2 defects. In the absence of noise and for high friction, it becomes very difficult to create defects, but trails formed by any defects present at the beginning of the simulations persist and organise into parallel arch-like patterns in the director field. We show aligned arches of equal width are approximate steady state solutions of the equations of motion which co-exist with the nematic state. We compare our results to other models in the literature, in particular dry systems with no hydrodynamics, where trails, arches and polar defect ordering have also been observed.
Collapse
Affiliation(s)
- Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | | | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
39
|
Zhou Z, Joshi C, Liu R, Norton MM, Lemma L, Dogic Z, Hagan MF, Fraden S, Hong P. Machine learning forecasting of active nematics. SOFT MATTER 2021; 17:738-747. [PMID: 33220675 DOI: 10.1039/d0sm01316a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Active nematics are a class of far-from-equilibrium materials characterized by local orientational order of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the steady-state properties, but do not capture certain detailed dynamics of experimental active nematics. We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory (ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demonstrate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile microtubule bundles, as well as on data from numerical simulations of active nematics.
Collapse
|
40
|
Blanch-Mercader C, Guillamat P, Roux A, Kruse K. Integer topological defects of cell monolayers: Mechanics and flows. Phys Rev E 2021; 103:012405. [PMID: 33601623 DOI: 10.1103/physreve.103.012405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Monolayers of anisotropic cells exhibit long-ranged orientational order and topological defects. During the development of organisms, orientational order often influences morphogenetic events. However, the linkage between the mechanics of cell monolayers and topological defects remains largely unexplored. This holds specifically at the timescales relevant for tissue morphogenesis. Here, we build on the physics of liquid crystals to determine material parameters of cell monolayers. In particular, we use a hydrodynamical description of an active polar fluid to study the steady-state mechanical patterns at integer topological defects. Our description includes three distinct sources of activity: traction forces accounting for cell-substrate interactions as well as anisotropic and isotropic active nematic stresses accounting for cell-cell interactions. We apply our approach to C2C12 cell monolayers in small circular confinements, which form isolated aster or spiral topological defects. By analyzing the velocity and orientational order fields in spirals as well as the forces and cell number density fields in asters, we determine mechanical parameters of C2C12 cell monolayers. Our work shows how topological defects can be used to fully characterize the mechanical properties of biological active matter.
Collapse
Affiliation(s)
- Carles Blanch-Mercader
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Pau Guillamat
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Karsten Kruse
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
- NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
41
|
Zhao L, Yao L, Golovaty D, Ignés-Mullol J, Sagués F, Carme Calderer M. Stability analysis of flow of active extensile fibers in confined domains. CHAOS (WOODBURY, N.Y.) 2020; 30:113105. [PMID: 33261333 DOI: 10.1063/5.0023924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
In this article, we study shear flow of active extensile filaments confined in a narrow channel. They behave as nematic liquid crystals that we assumed are governed by the Ericksen-Leslie equations of balance of linear and angular momentum. The addition of an activity source term in the Leslie stress captures the role of the biofuel prompting the dynamics. The dimensionless form of the governing system includes the Ericksen, activity, and Reynolds numbers together with the aspect ratio of the channel as the main driving parameters affecting the stability of the system. The active system that guides our analysis is composed of microtubules concentrated in bundles, hundreds of microns long, placed in a narrow channel domain, of aspect ratios in the range between 10-2 and 10-3 dimensionless units, which are able to align due to the combination of adenosine triphosphate-supplied energy and confinement effects. Specifically, this work aims at studying the role of confinement on the behavior of active matter. It is experimentally observed that, at an appropriately low activity and channel width, the active flow is laminar, with the linear velocity profile and the angle of alignment analogous to those in passive shear, developing defects and becoming chaotic, at a large activity and a channel aspect ratio. The present work addresses the laminar regime, where defect formation does not play a role. We perform a normal mode stability analysis of the base shear flow. A comprehensive description of the stability properties is obtained in terms of the driving parameters of the system. Our main finding, in addition to the geometry and magnitude of the flow profiles, and also consistent with the experimental observations, is that the transition to instability of the uniformly aligned shear flow occurs at a threshold value of the activity parameter, with the transition also being affected by the channel aspect ratio. The role of the parameters on the vorticity and angular profiles of the perturbing flow is also analyzed and found to agree with the experimentally observed transition to turbulent regimes. A spectral method based on Chebyshev polynomials is used to solve the generalized eigenvalue problems arising in the stability analysis.
Collapse
Affiliation(s)
- Longhua Zhao
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lingxing Yao
- Department of Mathematics, University of Akron, Akron, Ohio 44325, USA
| | - Dmitry Golovaty
- Department of Mathematics, University of Akron, Akron, Ohio 44325, USA
| | - Jordi Ignés-Mullol
- Department of Materials Science and Physical Chemistry, and Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona 08028, Spain and Institute of Nanoscience and Nanotechnology, Barcelona 08028, Spain
| | - Francesc Sagués
- Department of Materials Science and Physical Chemistry, and Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona 08028, Spain and Institute of Nanoscience and Nanotechnology, Barcelona 08028, Spain
| | - M Carme Calderer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
42
|
Norton MM, Grover P, Hagan MF, Fraden S. Optimal Control of Active Nematics. PHYSICAL REVIEW LETTERS 2020; 125:178005. [PMID: 33156653 DOI: 10.1103/physrevlett.125.178005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
In this work we present the first systematic framework to sculpt active nematic systems, using optimal control theory and a hydrodynamic model of active nematics. We demonstrate the use of two different control fields, (i) applied vorticity and (ii) activity strength, to shape the dynamics of an extensile active nematic that is confined to a disk. In the absence of control inputs, the system exhibits two attractors, clockwise and counterclockwise circulating states characterized by two co-rotating topological +1/2 defects. We specifically seek spatiotemporal inputs that switch the system from one attractor to the other; we also examine phase-shifting perturbations. We identify control inputs by optimizing a penalty functional with three contributions: total control effort, spatial gradients in the control, and deviations from the desired trajectory. This work demonstrates that optimal control theory can be used to calculate nontrivial inputs capable of restructuring active nematics in a manner that is economical, smooth, and rapid, and therefore will serve as a guide to experimental efforts to control active matter.
Collapse
Affiliation(s)
- Michael M Norton
- Center for Neural Engineering, Department of Engineering Science and Materials, Pennsylvania State University, University Park, Pennsylvania 16801, USA and Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Piyush Grover
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Michael F Hagan
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Seth Fraden
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
43
|
Rivas DP, Shendruk TN, Henry RR, Reich DH, Leheny RL. Driven topological transitions in active nematic films. SOFT MATTER 2020; 16:9331-9338. [PMID: 32935705 DOI: 10.1039/d0sm00693a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The topological properties of many materials are central to their behavior. In intrinsically out-of-equilibrium active materials, the dynamics of topological defects can be particularly important. In this paper, local manipulation of the order, dynamics, and topological properties of microtubule-based active nematic films is demonstrated in a joint experimental and simulation study. Hydrodynamic stresses created by magnetically actuated rotation of disk-shaped colloids in proximity to the films compete with internal stresses in the active nematic, influencing the local motion of +1/2 charge topological defects that are intrinsic to the nematic order in the spontaneously turbulent active films. Sufficiently large applied stresses drive the formation of +1 charge topological vortices through the merger of two +1/2 defects. The directed motion of the defects is accompanied by ordering of the vorticity and velocity of the active flows within the film that is qualitatively unlike the response of passive viscous films. Many features of the film's response to the stress are captured by lattice Boltzmann simulations, providing insight into the anomalous viscoelastic nature of the active nematic. The topological vortex formation is accompanied by a rheological instability in the film that leads to significant increase in the flow velocities. Comparison of the velocity profile in vicinity of the vortex with fluid-dynamics calculations provides an estimate of the film viscosity.
Collapse
Affiliation(s)
- David P Rivas
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Tyler N Shendruk
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, UKLE11 3TU and School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UKEH9 3FD
| | - Robert R Henry
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
44
|
Hardoüin J, Laurent J, Lopez-Leon T, Ignés-Mullol J, Sagués F. Active microfluidic transport in two-dimensional handlebodies. SOFT MATTER 2020; 16:9230-9241. [PMID: 32926045 DOI: 10.1039/d0sm00610f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unlike traditional nematic liquid crystals, which adopt ordered equilibrium configurations compatible with the topological constraints imposed by the boundaries, active nematics are intrinsically disordered because of their self-sustained internal flows. Controlling the flow patterns of active nematics remains a limiting step towards their use as functional materials. Here we show that confining a tubulin-kinesin active nematic to a network of connected annular microfluidic channels enables controlled directional flows and autonomous transport. In single annular channels, for narrow widths, the typically chaotic streams transform into well-defined circulating flows, whose direction or handedness can be controlled by introducing asymmetric corrugations on the channel walls. The dynamics is altered when two or three annular channels are interconnected. These more complex topologies lead to scenarios of synchronization, anti-correlation, and frustration of the active flows, and to the stabilisation of high topological singularities in both the flow field and the orientational field of the material. Controlling textures and flows in these microfluidic platforms opens unexplored perspectives towards their application in biotechnology and materials science.
Collapse
Affiliation(s)
- Jérôme Hardoüin
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Justine Laurent
- Laboratoire de Physique et Mécanique des Milieux hétérogènes (PMMH), CNRS, ESPCI Paris, PSL Research University, Paris, France and Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
| | - Teresa Lopez-Leon
- Laboratoire de Physique et Mécanique des Milieux hétérogènes (PMMH), CNRS, ESPCI Paris, PSL Research University, Paris, France and Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
|
46
|
Strübing T, Khosravanizadeh A, Vilfan A, Bodenschatz E, Golestanian R, Guido I. Wrinkling Instability in 3D Active Nematics. NANO LETTERS 2020; 20:6281-6288. [PMID: 32786934 PMCID: PMC7496740 DOI: 10.1021/acs.nanolett.0c01546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Indexed: 05/13/2023]
Abstract
In nature, interactions between biopolymers and motor proteins give rise to biologically essential emergent behaviors. Besides cytoskeleton mechanics, active nematics arise from such interactions. Here we present a study on 3D active nematics made of microtubules, kinesin motors, and depleting agent. It shows a rich behavior evolving from a nematically ordered space-filling distribution of microtubule bundles toward a flattened and contracted 2D ribbon that undergoes a wrinkling instability and subsequently transitions into a 3D active turbulent state. The wrinkle wavelength is independent of the ATP concentration and our theoretical model describes its relation with the appearance time. We compare the experimental results with a numerical simulation that confirms the key role of kinesin motors in cross-linking and sliding the microtubules. Our results on the active contraction of the network and the independence of wrinkle wavelength on ATP concentration are important steps forward for the understanding of these 3D systems.
Collapse
Affiliation(s)
- Tobias Strübing
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Amir Khosravanizadeh
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Department
of Physics, Institute for Advanced Studies
in Basic Sciences, Zanjan 45137-66731, Iran
| | - Andrej Vilfan
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Eberhard Bodenschatz
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Institute
for Dynamics of Complex Systems, Georg-August-University
Göttingen, 37073 Göttingen, Germany
- Laboratory
of Atomic and Solid-State Physics, Cornell
University, Ithaca, New York 14853, United
States
| | - Ramin Golestanian
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Rudolf
Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Isabella Guido
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| |
Collapse
|
47
|
Vliegenthart GA, Ravichandran A, Ripoll M, Auth T, Gompper G. Filamentous active matter: Band formation, bending, buckling, and defects. SCIENCE ADVANCES 2020; 6:eaaw9975. [PMID: 32832652 PMCID: PMC7439626 DOI: 10.1126/sciadv.aaw9975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/05/2020] [Indexed: 06/01/2023]
Abstract
Motor proteins drive persistent motion and self-organization of cytoskeletal filaments. However, state-of-the-art microscopy techniques and continuum modeling approaches focus on large length and time scales. Here, we perform component-based computer simulations of polar filaments and molecular motors linking microscopic interactions and activity to self-organization and dynamics from the filament level up to the mesoscopic domain level. Dynamic filament cross-linking and sliding and excluded-volume interactions promote formation of bundles at small densities and of active polar nematics at high densities. A buckling-type instability sets the size of polar domains and the density of topological defects. We predict a universal scaling of the active diffusion coefficient and the domain size with activity, and its dependence on parameters like motor concentration and filament persistence length. Our results provide a microscopic understanding of cytoplasmic streaming in cells and help to develop design strategies for novel engineered active materials.
Collapse
|
48
|
Gompper G, Winkler RG, Speck T, Solon A, Nardini C, Peruani F, Löwen H, Golestanian R, Kaupp UB, Alvarez L, Kiørboe T, Lauga E, Poon WCK, DeSimone A, Muiños-Landin S, Fischer A, Söker NA, Cichos F, Kapral R, Gaspard P, Ripoll M, Sagues F, Doostmohammadi A, Yeomans JM, Aranson IS, Bechinger C, Stark H, Hemelrijk CK, Nedelec FJ, Sarkar T, Aryaksama T, Lacroix M, Duclos G, Yashunsky V, Silberzan P, Arroyo M, Kale S. The 2020 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:193001. [PMID: 32058979 DOI: 10.1088/1361-648x/ab6348] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang W, Lv X, Moran JL, Duan S, Zhou C. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. SOFT MATTER 2020; 16:3846-3868. [PMID: 32285071 DOI: 10.1039/d0sm00222d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic active colloids that harvest energy stored in the environment and swim autonomously are a popular model system for active matter. This emerging field of research sits at the intersection of materials chemistry, soft matter physics, and engineering, and thus cross-talk among researchers from different backgrounds becomes critical yet difficult. To facilitate this interdisciplinary communication, and to help soft matter physicists with choosing the best model system for their research, we here present a tutorial review article that describes, in appropriate detail, six experimental systems of active colloids commonly found in the physics literature. For each type, we introduce their background, material synthesis and operating mechanisms and notable studies from the soft matter community, and comment on their respective advantages and limitations. In addition, the main features of each type of active colloid are summarized into two useful tables. As materials chemists and engineers, we intend for this article to serve as a practical guide, so those who are not familiar with the experimental aspects of active colloids can make more informed decisions and maximize their creativity.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Xianglong Lv
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, USA
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
50
|
Hoffmann LA, Schakenraad K, Merks RMH, Giomi L. Chiral stresses in nematic cell monolayers. SOFT MATTER 2020; 16:764-774. [PMID: 31830190 DOI: 10.1039/c9sm01851d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent experiments on monolayers of spindle-like cells plated on adhesive stripe-shaped domains have provided a convincing demonstration that certain types of collective phenomena in epithelia are well described by active nematic hydrodynamics. While recovering some of the hallmark predictions of this framework, however, these experiments have also revealed a number of unexpected features that could be ascribed to the existence of chirality over length scales larger than the typical size of a cell. In this article we elaborate on the microscopic origin of chiral stresses in nematic cell monolayers and investigate how chirality affects the motion of topological defects, as well as the collective motion in stripe-shaped domains. We find that chirality introduces a characteristic asymmetry in the collective cellular flow, from which the ratio between chiral and non-chiral active stresses can be inferred by particle-image-velocimetry measurements. Furthermore, we find that chirality changes the nature of the spontaneous flow transition under confinement and that, for specific anchoring conditions, the latter has the structure of an imperfect pitchfork bifurcation.
Collapse
Affiliation(s)
- Ludwig A Hoffmann
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|