1
|
Zheng N, Liu H, Zeng Y. Dynamical Behavior of Pure Spin Current in Organic Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207506. [PMID: 36995070 PMCID: PMC10238225 DOI: 10.1002/advs.202207506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Growing concentration on the novel information processing technology and low-cost, flexible materials make the spintronics and organic materials appealing for the future interdisciplinary investigations. Organic spintronics, in this context, has arisen and witnessed great advances during the past two decades owing to the continuous innovative exploitation of the charge-contained spin polarized current. Albeit with such inspiring facts, charge-absent spin angular momentum flow, namely pure spin currents (PSCs) are less probed in organic functional solids. In this review, the past exploring journey of PSC phenomenon in organic materials are retrospected, including non-magnetic semiconductors and molecular magnets. Starting with the basic concepts and the generation mechanism for PSC, the representative experimental observations of PSC in the organic-based networks are subsequently demonstrated and summarized, by accompanying explicit discussion over the propagating mechanism of net spin itself in the organic media. Finally, future perspectives on PSC in organic materials are illustrated mainly from the material point of view, including single molecule magnets, complexes for the organic ligands framework as well as the lanthanide metal complexes, organic radicals, and the emerging 2D organic magnets.
Collapse
Affiliation(s)
- Naihang Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
- Guangdong Provincial Key Laboratory of SemiconductorOptoelectronic Materials and Intelligent Photonic SystemsSchool of ScienceHarbin Institute of Technology in Shenzhen518055ShenzhenP. R. China
| | - Haoliang Liu
- Guangdong Provincial Key Laboratory of SemiconductorOptoelectronic Materials and Intelligent Photonic SystemsSchool of ScienceHarbin Institute of Technology in Shenzhen518055ShenzhenP. R. China
| | - Yu‐Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
2
|
Alotibi S, Hickey BJ, Teobaldi G, Ali M, Barker J, Poli E, O'Regan DD, Ramasse Q, Burnell G, Patchett J, Ciccarelli C, Alyami M, Moorsom T, Cespedes O. Enhanced Spin-Orbit Coupling in Heavy Metals via Molecular Coupling. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5228-5234. [PMID: 33470108 DOI: 10.1021/acsami.0c19403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
5d metals are used in electronics because of their high spin-orbit coupling (SOC) leading to efficient spin-electric conversion. When C60 is grown on a metal, the electronic structure is altered due to hybridization and charge transfer. In this work, we measure the spin Hall magnetoresistance for Pt/C60 and Ta/C60, finding that they are up to a factor of 6 higher than those for pristine metals, indicating a 20-60% increase in the spin Hall angle. At low fields of 1-30 mT, the presence of C60 increased the anisotropic magnetoresistance by up to 700%. Our measurements are supported by noncollinear density functional theory calculations, which predict a significant SOC enhancement by C60 that penetrates through the Pt layer, concomitant with trends in the magnetic moment of transport electrons acquired via SOC and symmetry breaking. The charge transfer and hybridization between the metal and C60 can be controlled by gating, so our results indicate the possibility of dynamically modifying the SOC of thin metals using molecular layers. This could be exploited in spin-transfer torque memories and pure spin current circuits.
Collapse
Affiliation(s)
- Satam Alotibi
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Bryan J Hickey
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Gilberto Teobaldi
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0QX, U.K
- Beijing Computational Science Research Center, Beijing 100193, China
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Mannan Ali
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Joseph Barker
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Emiliano Poli
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0QX, U.K
| | - David D O'Regan
- School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and the SFI Advanced Materials and Bio-Engineering Research Centre (AMBER), Dublin 2, Ireland
| | - Quentin Ramasse
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- SuperSTEM, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Daresbury WA4 4AD, U.K
| | - Gavin Burnell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - James Patchett
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Chiara Ciccarelli
- SuperSTEM, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Daresbury WA4 4AD, U.K
| | - Mohammed Alyami
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Timothy Moorsom
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
3
|
Moorsom T, Rogers M, Scivetti I, Bandaru S, Teobaldi G, Valvidares M, Flokstra M, Lee S, Stewart R, Prokscha T, Gargiani P, Alosaimi N, Stefanou G, Ali M, Al Ma’Mari F, Burnell G, Hickey BJ, Cespedes O. Reversible spin storage in metal oxide-fullerene heterojunctions. SCIENCE ADVANCES 2020; 6:eaax1085. [PMID: 32219155 PMCID: PMC7083605 DOI: 10.1126/sciadv.aax1085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
We show that hybrid MnOx/C60 heterojunctions can be used to design a storage device for spin-polarized charge: a spin capacitor. Hybridization at the carbon-metal oxide interface leads to spin-polarized charge trapping after an applied voltage or photocurrent. Strong electronic structure changes, including a 1-eV energy shift and spin polarization in the C60 lowest unoccupied molecular orbital, are then revealed by x-ray absorption spectroscopy, in agreement with density functional theory simulations. Muon spin spectroscopy measurements give further independent evidence of local spin ordering and magnetic moments optically/electronically stored at the heterojunctions. These spin-polarized states dissipate when shorting the electrodes. The spin storage decay time is controlled by magnetic ordering at the interface, leading to coherence times of seconds to hours even at room temperature.
Collapse
Affiliation(s)
- T. Moorsom
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - M. Rogers
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - I. Scivetti
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, England
| | - S. Bandaru
- Beijing Computational Science Research Centre, 100193 Beijing, China
| | - G. Teobaldi
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, England
- Beijing Computational Science Research Centre, 100193 Beijing, China
| | - M. Valvidares
- ALBA Synchrotron Light Source, E-08290 Barcelona, Spain
| | - M. Flokstra
- School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS, UK
| | - S. Lee
- School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS, UK
| | - R. Stewart
- School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS, UK
| | - T. Prokscha
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - P. Gargiani
- ALBA Synchrotron Light Source, E-08290 Barcelona, Spain
| | - N. Alosaimi
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - G. Stefanou
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - M. Ali
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - F. Al Ma’Mari
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Department of Physics, Sultan Qaboos University, P.O. Box 36, 123 Muscat, Oman
| | - G. Burnell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - B. J. Hickey
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - O. Cespedes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Groesbeck M, Liu H, Kavand M, Lafalce E, Wang J, Pan X, Tennahewa TH, Popli H, Malissa H, Boehme C, Vardeny ZV. Separation of Spin and Charge Transport in Pristine π-Conjugated Polymers. PHYSICAL REVIEW LETTERS 2020; 124:067702. [PMID: 32109121 DOI: 10.1103/physrevlett.124.067702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/04/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
We have experimentally tested whether spin-transport and charge-transport in pristine π-conjugated polymer films at room temperature occur via the same electronic processes. We have obtained the spin diffusion coefficient of several π-conjugated polymer films from the spin diffusion length measured by the technique of inverse spin Hall effect and the spin relaxation time measured by pulsed electrically detected magnetic resonance spectroscopy. The charge diffusion coefficient was obtained from the time-of-flight mobility measurements on the same films. We found that the spin diffusion coefficient is larger than the charge diffusion coefficient by about 1-2 orders of magnitude and conclude that spin and charge transports in disordered polymer films occur through different electronic processes.
Collapse
Affiliation(s)
- Matthew Groesbeck
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Haoliang Liu
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Marzieh Kavand
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Evan Lafalce
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jingying Wang
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Xin Pan
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | | | - Henna Popli
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hans Malissa
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Christoph Boehme
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Z Valy Vardeny
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Zhu L, Ralph DC, Buhrman RA. Effective Spin-Mixing Conductance of Heavy-Metal-Ferromagnet Interfaces. PHYSICAL REVIEW LETTERS 2019; 123:057203. [PMID: 31491309 DOI: 10.1103/physrevlett.123.057203] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 06/10/2023]
Abstract
The effective spin-mixing conductance (G_{eff}^{↑↓}) of a heavy-metal-ferromagnet (HM-FM) interface characterizes the efficiency of the interfacial spin transport. Accurately determining G_{eff}^{↑↓} is critical to the quantitative understanding of measurements of direct and inverse spin Hall effects. G_{eff}^{↑↓} is typically ascertained from the inverse dependence of magnetic damping on the FM thickness under the assumption that spin pumping is the dominant mechanism affecting this dependence. We report that this assumption fails badly in many in-plane magnetized prototypical HM-FM systems in the nanometer-scale thickness regime. Instead, the majority of the damping is from two-magnon scattering at the FM interface, while spin-memory-loss scattering at the interface can also be significant. If these two effects are neglected, the results will be an unphysical "giant" apparent G_{eff}^{↑↓} and hence considerable underestimation of both the spin Hall ratio and the spin Hall conductivity in inverse or direct spin Hall experiments.
Collapse
Affiliation(s)
- Lijun Zhu
- Cornell University, Ithaca, New York 14850, USA
| | - Daniel C Ralph
- Cornell University, Ithaca, New York 14850, USA
- Kavli Institute at Cornell, Ithaca, New York 14853, USA
| | | |
Collapse
|
6
|
De Santiago HA, Gupta SK, Mao Y. On high purity fullerenol obtained by combined dialysis and freeze-drying method with its morphostructural transition and photoluminescence. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Grave DA, Yatom N, Ellis DS, Toroker MC, Rothschild A. The "Rust" Challenge: On the Correlations between Electronic Structure, Excited State Dynamics, and Photoelectrochemical Performance of Hematite Photoanodes for Solar Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706577. [PMID: 29504160 DOI: 10.1002/adma.201706577] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/31/2017] [Indexed: 06/08/2023]
Abstract
In recent years, hematite's potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes provides new insights on the correlations between electronic structure, transport properties, excited state dynamics, and charge transfer phenomena, and expands our knowledge on solar cell materials into correlated electron systems. This research news article presents a snapshot of selected theoretical and experimental developments linking the electronic structure to the photoelectrochemical performance, with particular focus on optoelectronic properties and charge carrier dynamics.
Collapse
Affiliation(s)
- Daniel A Grave
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Natav Yatom
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - David S Ellis
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maytal Caspary Toroker
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Avner Rothschild
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
8
|
Lavrentiev V, Chvostova D, Stupakov A, Lavrentieva I, Vacik J, Motylenko M, Barchuk M, Rafaja D, Dejneka A. Quantum plasmon and Rashba-like spin splitting in self-assembled Co x C 60 composites with enhanced Co content (x > 15). NANOTECHNOLOGY 2018; 29:135701. [PMID: 29368694 DOI: 10.1088/1361-6528/aaaa7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled Co x C60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of Co x C60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C60-related OA lines detected at the photon energies E p > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E p > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E p > 2.5 eV reflect splitting of the C60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.
Collapse
Affiliation(s)
- Vasily Lavrentiev
- Nuclear Physics Institute of the Czech Academy of Sciences, Rez-130, Husinec 25068, Czechia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wheeler MC, Ma'Mari FA, Rogers M, Gonçalves FJ, Moorsom T, Brataas A, Stamps R, Ali M, Burnell G, Hickey BJ, Cespedes O. Optical conversion of pure spin currents in hybrid molecular devices. Nat Commun 2017; 8:926. [PMID: 29030558 PMCID: PMC5640639 DOI: 10.1038/s41467-017-01034-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 08/14/2017] [Indexed: 11/20/2022] Open
Abstract
Carbon-based molecules offer unparalleled potential for THz and optical devices controlled by pure spin currents: a low-dissipation flow of electronic spins with no net charge displacement. However, the research so far has been focused on the electrical conversion of the spin imbalance, where molecular materials are used to mimic their crystalline counterparts. Here, we use spin currents to access the molecular dynamics and optical properties of a fullerene layer. The spin mixing conductance across Py/C60 interfaces is increased by 10% (5 × 1018 m-2) under optical irradiation. Measurements show up to a 30% higher light absorbance and a factor of 2 larger photoemission during spin pumping. We also observe a 0.15 THz slowdown and a narrowing of the vibrational peaks. The effects are attributed to changes in the non-radiative damping and energy transfer. This opens new research paths in hybrid magneto-molecular optoelectronics, and the optical detection of spin physics in these materials.Carbon-based molecules could prove useful in terahertz and optical devices controlled by pure spin currents. Here, conversely, the authors use spin currents to probe molecular dynamics and enhance the optical response of a fullerene layer, enabling hybrid magneto-molecular optoelectronic devices.
Collapse
Affiliation(s)
- May C Wheeler
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Fatma Al Ma'Mari
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- Department of Physics, Sultan Qaboos University, PO Box 36, Muscat, 123, Oman
| | - Matthew Rogers
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Timothy Moorsom
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Arne Brataas
- Department of Physics, Norwegian University of Science and Technology, Trondheim, NO, 7491, Norway
| | - Robert Stamps
- School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mannan Ali
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Gavin Burnell
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - B J Hickey
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|