1
|
Thanasi IA, Bouloc N, McMahon C, Wang N, Szijj PA, Butcher T, Rochet LNC, Love EA, Merritt A, Baker JR, Chudasama V. Formation of mono- and dual-labelled antibody fragment conjugates via reversible site-selective disulfide modification and proximity induced lysine reactivity. Chem Sci 2025; 16:2763-2776. [PMID: 39811008 PMCID: PMC11726237 DOI: 10.1039/d4sc06500j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Many protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein's surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications. Thus, research in this area for the controlled loading of an entity via reaction with lysine residues is of high importance. In this article, we present an approach to achieve this by exploiting the quantitative and reversible site-selective modification of disulfides using pyridazinediones, which facilitates near-quantitative proximity-induced reactions with lysines to enable controlled loading of an entity. The strategy was appraised on several clinically relevant antibody fragments and enabled the formation of mono-labelled lysine-modified antibody fragment conjugates via the formation of stable amide bonds and the use of click chemistry for modular modification. Furthermore, through the use of multiple cycles of this novel strategy, an orthogonally bis-labelled lysine-modified antibody fragment conjugate was also furnished.
Collapse
Affiliation(s)
- Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Nathalie Bouloc
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - Clíona McMahon
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ning Wang
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Peter A Szijj
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Tobias Butcher
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Léa N C Rochet
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - Andy Merritt
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
2
|
Tao J, Gu Y, Zhou W, Wang Y. Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J Med Chem 2025; 281:116995. [PMID: 39481229 DOI: 10.1016/j.ejmech.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Antibody-drug conjugates (ADCs) enable the precise delivery of cytotoxic agents by conjugating small-molecule drugs with monoclonal antibodies (mAbs). Over recent decades, ADCs have demonstrated substantial clinical efficacy. However, conventional ADCs often encounter various clinical challenges, including suboptimal efficacy, significant adverse effects, and the development of drug resistance, limiting their broader clinical application. Encouragingly, a next-generation approach-dual-payload ADCs-has emerged as a pioneering strategy to address these challenges. Dual-payload ADCs are characterized by the incorporation of two distinct therapeutic payloads on the same antibody, enhancing treatment efficacy by promoting synergistic effects and reducing the risk of drug resistance. However, the synthesis of dual-payload ADCs is complex due to the presence of multiple functional groups on antibodies. In this review, we comprehensively summarize the construction strategies for dual-payload ADCs, ranging from the design of ADC components to orthogonal chemistry. The subsequent sections explore current challenges and propose prospective strategies, highlighting recent advancements in dual-payload ADC research, thereby laying the foundation for the development of next-generation ADCs.
Collapse
Affiliation(s)
- Junjie Tao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
3
|
Dixit T, Vaidya A, Ravindran S. Therapeutic potential of antibody-drug conjugates possessing bifunctional anti-inflammatory action in the pathogenies of rheumatoid arthritis. Arthritis Res Ther 2024; 26:216. [PMID: 39695738 DOI: 10.1186/s13075-024-03452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
In an age where there is a remarkable upsurge in developing precision medicines, antibody-drug conjugates (ADCs) have emerged as a progressive therapeutic strategy. ADCs typically consist of monoclonal antibodies (mAb) conjugated to the cytotoxic payloads by utilizing a linker, combining the benefits of definitive target specificity of mAbs and potent killing impact of payload to achieve precise and efficient elimination of target cells. In addition to their well-established role in oncology, ADCs are currently demonstrating encouraging potential in addressing the unmet requirements in the treatment of autoimmune conditions such as rheumatoid arthritis (RA). Prevalent long-term autoimmune disease RA costs billions of dollars annually but still, there is a lack of precision-targeted therapeutics with minimal side effects. This review provides an overview of the RA pathogenesis, pre-existing therapies, and their limitations, the introduction of ADCs in RA treatment, the mechanism of ADCs, and a summary of ADCs in preclinical and clinical trials. Based on the literature we also propose a strategy in ADC synthesis, which may increase the efficiency in targeting multifactorial diseases like RA. We propose to utilize DMARDs (Disease-modifying anti-rheumatic drugs), the first-line treatment for RA, as a payload for ADC synthesis. DMARDs are the only class of medication that limits the disease progression, but their efficacy is limited due to off-target toxicities. Hence, utilizing them as payload will help to deliver them directly at the targeted site, reducing their off-target toxicity, which in turn will increase their efficiency in targeting disease. Also, as mAbs are not sufficient to achieve remission, they are given in combinations with DMARDs. Hence, synthesizing ADCs may reduce the multiple and higher dosages given to patients, which in turn may enhance patient compliance.
Collapse
Affiliation(s)
- Tanu Dixit
- Symbiosis School of Biological Sciences (SSBS), Faculty of Medical & Health Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences (SSBS), Faculty of Medical & Health Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences (SSBS), Faculty of Medical & Health Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India.
| |
Collapse
|
4
|
Abbas SJ, Yesmin S, Vittala SK, Sepay N, Xia F, Ali SI, Chang WC, Hung YC, Ma WL. Target Bioconjugation of Protein Through Chemical, Molecular Dynamics, and Artificial Intelligence Approaches. Metabolites 2024; 14:668. [PMID: 39728449 DOI: 10.3390/metabo14120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge. In this review, we delve into site-selective protein modification using synthetic probes, highlighting both chemical and computational methodologies for chemo- and regioselective modifications of naturally occurring amino acids, as well as proximity-driven protein-selective chemical modifications. We also underline recent traceless affinity labeling strategies that involve exchange/cleavage reactions and catalyst tethering modifications. The rapid development of computational infrastructure and methods has made the bioconjugation of proteins more accessible, enabling precise predictions of structural changes due to protein modifications. Hence, we discuss bioconjugational computational approaches, including molecular dynamics and artificial intelligence, underscoring their potential applications in enhancing our understanding of cellular biology and addressing current challenges in the field.
Collapse
Affiliation(s)
- Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sabina Yesmin
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Sandeepa K Vittala
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Wei-Chun Chang
- Ph.D. Program for Health Science and Industry, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yao-Ching Hung
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
5
|
Zhao Y, Zhang T, Zhu Y, Yin J, Omer R, Hemu X, Li W, Bi X. Recent Toolboxes for Chemoselective Dual Modifications of Proteins. Chemistry 2024; 30:e202402272. [PMID: 39037007 DOI: 10.1002/chem.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple modifications of proteins are increasingly garnering attention, as it has been found that single modification of proteins is inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for dual functionalization of proteins. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.
Collapse
Affiliation(s)
- Yiping Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tianmeng Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Yujie Zhu
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, Zhejiang, China
| | - Rida Omer
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinya Hemu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Stepanov AV, Xie J, Zhu Q, Shen Z, Su W, Kuai L, Soll R, Rader C, Shaver G, Douthit L, Zhang D, Kalinin R, Fu X, Zhao Y, Qin T, Baran PS, Gabibov AG, Bushnell D, Neri D, Kornberg RD, Lerner RA. Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells. Nat Biomed Eng 2024; 8:529-543. [PMID: 37798444 DOI: 10.1038/s41551-023-01102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2023] [Indexed: 10/07/2023]
Abstract
On-target off-tumour toxicity limits the anticancer applicability of chimaeric antigen receptor (CAR) T cells. Here we show that the tumour-targeting specificity and activity of T cells with a CAR consisting of an antibody with a lysine residue that catalytically forms a reversible covalent bond with a 1,3-diketone hapten can be regulated by the concentration of a small-molecule adapter. This adapter selectively binds to the hapten and to a chosen tumour antigen via a small-molecule binder identified via a DNA-encoded library. The adapter therefore controls the formation of a covalent bond between the catalytic antibody and the hapten, as well as the tethering of the CAR T cells to the tumour cells, and hence the cytotoxicity and specificity of the cytotoxic T cells, as we show in vitro and in mice with prostate cancer xenografts. Such small-molecule switches of T-cell cytotoxicity and specificity via an antigen-independent 'universal' CAR may enhance the control and safety profile of CAR-based cellular immunotherapies.
Collapse
Affiliation(s)
- Alexey V Stepanov
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Wenji Su
- WuXi AppTec Co., Ltd, Shanghai, China
| | | | | | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Geramie Shaver
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Lacey Douthit
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ding Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Roman Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Xiang Fu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Yingying Zhao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Tian Qin
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - David Bushnell
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Roger D Kornberg
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Wang YC, Bai SC, Ye WL, Jiang J, Li G. Recent Progress in Site-Selective Modification of Peptides and Proteins Using Macrocycles. Bioconjug Chem 2024; 35:277-285. [PMID: 38417023 DOI: 10.1021/acs.bioconjchem.3c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Peptides and proteins undergo crucial modifications to alter their physicochemical properties to expand their applications in diverse fields. Various techniques, such as unnatural amino acid incorporation, enzyme catalysis, and chemoselective methods, have been employed for site-selective peptide and protein modification. While traditional methods remain valuable, advancement in host-guest chemistry introduces innovative and promising approaches for the selective modification of peptides and proteins. Macrocycles exhibit robust binding affinities, particularly with natural amino acids, which facilitates their use in selectively binding to specific sequences. This distinctive property endows macrocycles with the potential for modification of target peptides and proteins. This review provides a comprehensive overview of strategies utilizing macrocycles for the selective modification of peptides and proteins. These strategies unlock new possibilities for constructing antibody-drug conjugates and stabilizing volatile medications.
Collapse
Affiliation(s)
- Ye-Cheng Wang
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Si-Cong Bai
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei-Lin Ye
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jing Jiang
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Gao Li
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Co-operation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
8
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
9
|
Hingorani DV. An overview of site-specific methods for achieving antibody drug conjugates with homogenous drug to antibody ratio. Expert Opin Biol Ther 2024; 24:31-36. [PMID: 38247196 DOI: 10.1080/14712598.2024.2305266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Antibody drug conjugates (ADCs) have emerged as a potent tool in cancer treatment, where cytotoxic drugs are linked to antibodies targeting specific antigens. While conventional ADC synthesis methods have seen success as commercials therapeutics, there is a growing interest in next-generation ADCs, looking at homogeneity of the drug-to-antibody ratio. AREAS COVERED The article provides a high-level overview for achieving said homogeneity by site-directed conjugations via encompassing engineered amino acids, enzyme-mediated strategies, peptide sequences, affinity peptides, and beyond. As the field rapidly evolves with multiple ADCs in clinical trials and the advent of biosimilars, the article explores the benefits and challenges in both conventional and non-platform ADC technologies. EXPERT OPINION The choice of site selection approach must be based on multiple criteria as discussed in this report. Two ADCs made from conjugation to engineered cysteines have been approved by regulatory agencies which have contributed to the excitement in this space. For the others, though successful as proof-of-concept, the true test of merit will be determined as these technologies advance into the clinic. The promise of improving the therapeutics index and decreasing toxicities will continue to drive progress in this area.
Collapse
|
10
|
Heyns IM, Ganugula R, Varma T, Allamreddy S, Kumar N, Garg P, Kumar MNVR, Arora M. Rationally Designed Naringenin-Conjugated Polyester Nanoparticles Enable Folate Receptor-Mediated Peroral Delivery of Insulin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45651-45657. [PMID: 37728532 DOI: 10.1021/acsami.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Receptor-mediated transcytosis of nanoparticles is paramount for the effective delivery of various drugs. Here, we report the design and synthesis of highly functional nanoparticles with specific targeting toward the folate receptor (FR) for the peroral delivery of insulin. In doing so, we demonstrate naringenin (NAR), a citrous flavonoid, as a targeting ligand to FR, with a similar affinity as folic acid. The NAR-decorated nanoparticles indicated a 4-fold increase in FR colocalization compared to unfunctionalized nanoparticles. The NAR-conjugated precision polyester allows for high insulin loading and entrapment efficiencies. As a result, insulin-laden NAR-functional nanoparticles offered a 3-fold higher bioavailability in comparison to unfunctionalized nanoparticles. This work generated a promising contribution to folate-receptor-mediated peroral delivery of insulin, utilizing polymeric nanoparticles decorated with a natural ligand, NAR.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
| | - Tanmaykumar Varma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - Swetha Allamreddy
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
11
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
12
|
Aigbogun OP, Phenix CP, Krol ES, Price EW. The Chemistry of Creating Chemically Programmed Antibodies (cPAbs): Site-Specific Bioconjugation of Small Molecules. Mol Pharm 2023; 20:853-874. [PMID: 36696533 DOI: 10.1021/acs.molpharmaceut.2c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small-molecule drugs have been employed for years as therapeutics in the pharmaceutical industry. However, small-molecule drugs typically have short in vivo half-lives which is one of the largest impediments to the success of many potentially valuable pharmacologically active small molecules. The undesirable pharmacokinetics and pharmacology associated with some small molecules have led to the development of a new class of bioconjugates known as chemically programmed antibodies (cPAbs). cPAbs are bioconjugates in which antibodies are used to augment small molecules with effector functions and prolonged pharmacokinetic profiles, where the pharmacophore of the small molecule is harnessed for target binding and therefore biological targeting. Many different small molecules can be conjugated to large proteins such as full monoclonal antibodies (IgG), fragment crystallizable regions (Fc), or fragment antigen binding regions (Fab). In order to successfully and site-specifically conjugate small molecules to any class of antibodies (IgG, Fc, or Fab), the molecules must be derivatized with a functional group for ease of conjugation without altering the pharmacology of the small molecules. In this Review, we summarize the different synthetic or biological methods that have been employed to produce cPAbs. These unique chemistries have potential to be applied to other fields of antibody modification such as antibody drug conjugates, radioimmunoconjugates, and fluorophore-tagged antibodies.
Collapse
Affiliation(s)
- Omozojie P Aigbogun
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Christopher P Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N-5E5 Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| |
Collapse
|
13
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Steele AD, Kiefer AF, Hwang D, Yang D, Teijaro CN, Adhikari A, Rader C, Shen B. Application of a Biocatalytic Strategy for the Preparation of Tiancimycin-Based Antibody-Drug Conjugates Revealing Key Insights into Structure-Activity Relationships. J Med Chem 2023; 66:1562-1573. [PMID: 36599039 PMCID: PMC11660660 DOI: 10.1021/acs.jmedchem.2c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer chemotherapeutics that utilize a monoclonal antibody (mAb)-based delivery system, a cytotoxic payload, and a chemical linker. ADC payloads must be strategically functionalized to allow linker attachment without perturbing the potency required for ADC efficacy. We previously developed a biocatalytic system for the precise functionalization of tiancimycin (TNM)-based payloads. The TNMs are anthraquinone-fused enediynes (AFEs) and have yet to be translated into the clinic. Herein, we report the translation of biocatalytically functionalized TNMs into ADCs in combination with the dual-variable domain (DVD)-mAb platform. The DVD enables both site-specific conjugation and a plug-and-play modularity for antigen-targeting specificity. We evaluated three linker chemistries in terms of TNM-based ADC potency and antigen selectivity, demonstrating a trade-off between potency and selectivity. This represents the first application of AFE-based payloads to DVDs for ADC development, a workflow that is generalizable to further advance AFE-based ADCs for multiple cancer types.
Collapse
Affiliation(s)
- Andrew D. Steele
- Department of Chemistry, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Alexander F. Kiefer
- Department of Chemistry, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Dobeen Hwang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
- Natural Products Discovery Center, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Christiana N. Teijaro
- Department of Chemistry, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Ajeeth Adhikari
- Department of Chemistry, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
- Natural Products Discovery Center, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
MacPherson DS, Hwang D, Sarrett SM, Keinänen O, Rodriguez C, Rader C, Zeglis BM. Leveraging a Dual Variable Domain Immunoglobulin to Create a Site-Specifically Modified Radioimmunoconjugate. Mol Pharm 2023; 20:775-782. [PMID: 36377696 PMCID: PMC10263003 DOI: 10.1021/acs.molpharmaceut.2c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Site-specifically modified radioimmunoconjugates exhibit superior in vitro and in vivo behavior compared to analogues synthesized via traditional stochastic methods. However, the development of approaches to site-specific bioconjugation that combine high levels of selectivity, simple reaction conditions, and clinical translatability remains a challenge. Herein, we describe a novel solution to this problem: the use of dual-variable domain immunoglobulins (DVD-IgG). More specifically, we report the synthesis, in vitro evaluation, and in vivo validation of a 177Lu-labeled radioimmunoconjugate based on HER2DVD, a DVD-IgG containing the HER2-targeting variable domains of trastuzumab and the catalytic variable domains of IgG h38C2. To this end, we first modified HER2DVD with a phenyloxadiazolyl methlysulfone-modified variant of the chelator CHX-A″-DTPA (PODS-CHX-A''-DTPA) and verified the site-specificity of the conjugation for the reactive lysines within the catalytic domains via chemical assay, MALDI-ToF mass spectrometry, and SDS-PAGE. The chelator-bearing immunoconjugate was subsequently labeled with [177Lu]Lu3+ to produce the completed radioimmunoconjugate, [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD, in >80% radiochemical conversion and a specific activity of 29.5 ± 7.1 GBq/μmol. [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD did not form aggregates upon prolonged incubation in human serum, displayed 87% stability to demetalation over a 7 days of incubation in serum, and exhibited an immunoreactive fraction of 0.95 with HER2-coated beads. Finally, we compared the pharmacokinetic profile of [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD to that of a 177Lu-labeled variant of trastuzumab in mice bearing subcutaneous HER2-expressing BT-474 human breast cancer xenografts. The in vivo performance of [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD matched that of 177Lu-labeled trastuzumab, with the former producing a tumoral activity concentration of 34.1 ± 12.1 %ID/g at 168 h and tumor-to-blood, tumor-to-liver, and tumor-to-kidney activity concentration ratios of 10.5, 9.6, and 21.8, respectively, at the same time point. Importantly, the DVD-IgG did not exhibit a substantially longer serum half-life than the traditional IgG despite its significantly larger size (202 kDa for the former vs 148 kDa for the latter). Taken together, these data suggest that DVD-IgGs represent a viable platform for the future development of highly effective site-specifically labeled radioimmunoconjugates for diagnostic imaging, theranostic imaging, and radioimmunotherapy.
Collapse
Affiliation(s)
- Douglas S. MacPherson
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Dobeen Hwang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Samantha M. Sarrett
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Outi Keinänen
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, 520 East 70th Street, New York, New York 10065, United States
| |
Collapse
|
16
|
Zeng Y, Shi W, Dong Q, Li W, Zhang J, Ren X, Tang C, Liu B, Song Y, Wu Y, Diao X, Zhou H, Huang H, Tang F, Huang W. A Traceless Site‐Specific Conjugation on Native Antibodies Enables Efficient One‐Step Payload Assembly. Angew Chem Int Ed Engl 2022; 61:e202204132. [DOI: 10.1002/anie.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Zeng
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wei Shi
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Qian Dong
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wanzhen Li
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| | - Jianxin Zhang
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Caihong Tang
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Bo Liu
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yuanli Song
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yali Wu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Hu Zhou
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - He Huang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Feng Tang
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Wei Huang
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| |
Collapse
|
17
|
Zeng Y, Shi W, Dong Q, Li W, Zhang J, Ren X, Tang C, Liu B, Song Y, Wu Y, Diao X, Zhou H, Huang H, Tang F, Huang W. A Traceless Site‐Specific Conjugation on Native Antibodies Enables Efficient One‐Step Payload Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Zeng
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wei Shi
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Qian Dong
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wanzhen Li
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Jianxin Zhang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Xuelian Ren
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Caihong Tang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Bo Liu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Yuanli Song
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Yali Wu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center 555 Zuchongzhi Rd CHINA
| | - Xingxing Diao
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center 555 Zuchongzhi Rd CHINA
| | - Hu Zhou
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - He Huang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Feng Tang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wei Huang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Medicinal Chemistry Zuchongzhi Road 555 201203 Shanghai CHINA
| |
Collapse
|
18
|
Hwang D, Nilchan N, Park H, Roy RN, Roush WR, Rader C. Sculpting a Uniquely Reactive Cysteine Residue for Site-Specific Antibody Conjugation. Bioconjug Chem 2022; 33:1192-1200. [PMID: 35584359 PMCID: PMC10153793 DOI: 10.1021/acs.bioconjchem.2c00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic antibody 38C2 and its humanized version h38C2 harbor a uniquely reactive lysine at the bottom of a 11 Å deep pocket that permits site-specific conjugation of β-diketone-, β-lactam-, and heteroaryl methylsulfonyl-functionalized small and large molecules. Various dual variable domain formats pair a tumor-targeting antibody with h38C2 to enable precise, fast, and stable assembly of antibody-drug conjugates (ADCs). Here, we expand the scope of this ADC assembly strategy by mutating h38C2's reactive lysine to a cysteine. X-ray crystallography of this point mutant, h38C2_K99C, confirmed a deeply buried unpaired cysteine. Probing h38C2_K99C with maleimide, monobromomaleimide, and dibromomaleimide derivatives of a fluorophore revealed highly disparate conjugation efficiencies and stabilities. Dibromomaleimide emerged as a suitable electrophile for the precise, fast, efficient, and stable assembly of ADCs with the h38C2_K99C module. Mass spectrometry indicated the presence of a thio-monobromomaleimide linkage which was further supported by in silico docking studies. Using a dibromomaleimide derivative of the highly potent tubulin polymerization inhibitor monomethyl auristatin F, h38C2_K99C-based ADCs were found to be as potent as h38C2-based ADCs and afford a new assembly route for ADCs with single and dual payloads.
Collapse
Affiliation(s)
- Dobeen Hwang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Napon Nilchan
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - HaJeung Park
- X-Ray Crystallography Core, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Raktim N Roy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
19
|
Renner P, Crone M, Kornas M, Pioli KT, Pioli PD. Intracellular flow cytometry staining of antibody-secreting cells using phycoerythrin-conjugated antibodies: pitfalls and solutions. Antib Ther 2022; 5:151-163. [PMID: 35928457 PMCID: PMC9344851 DOI: 10.1093/abt/tbac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Antibody-secreting cells are terminally differentiated B cells that play a critical role in humoral immunity through immunoglobulin secretion along with possessing the potential to be long-lived. It is now appreciated that ASCs regulate multiple aspects of biology through the secretion of various cytokines. In this regard, ICFC is a key tool used to assess the presence of intracellular proteins such as cytokines and transcription factors. Methods Paraformaldehyde plus saponin or the eBioscience Foxp3/Transcription Factor Staining Buffer Set were used to evaluate the non-specific intracellular retention of phycoerythrin-containing antibody conjugates by ASCs. Results We showed that the use of phycoerythrin-containing antibody conjugates led to a false interpretation of ASC intracellular protein expression compared with other cell types. This was mainly due to the inappropriate retention of these antibodies specifically within ASCs. Furthermore, we demonstrated how to reduce this retention which allowed for a more accurate comparison of intracellular protein expression between ASCs and other cell types such as B lymphocytes. Using this methodology, our data revealed that spleen ASCs expressed toll-like receptor 7 as well as the pro-form of the inflammatory cytokine interleukin-1β. Conclusion Increasing the number of centrifugation steps performed on ASCs post-fixation leads to inappropriate retention of phycoerythrin-containing antibody conjugates during ICFC.
Collapse
Affiliation(s)
- Patrick Renner
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - Michael Crone
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - Matthew Kornas
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - KimAnh T Pioli
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
- Department of Biochemistry , Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Peter D Pioli
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
- Department of Biochemistry , Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
20
|
Eras A, Castillo D, Suárez M, Vispo NS, Albericio F, Rodriguez H. Chemical Conjugation in Drug Delivery Systems. Front Chem 2022; 10:889083. [PMID: 35720996 PMCID: PMC9204480 DOI: 10.3389/fchem.2022.889083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is one of the diseases with the highest mortality rate. Treatments to mitigate cancer are usually so intense and invasive that they weaken the patient to cure as dangerous as the own disease. From some time ago until today, to reduce resistance generated by the constant administration of the drug and improve its pharmacokinetics, scientists have been developing drug delivery system (DDS) technology. DDS platforms aim to maximize the drugs’ effectiveness by directing them to reach the affected area by the disease and, therefore, reduce the potential side effects. Erythrocytes, antibodies, and nanoparticles have been used as carriers. Eleven antibody–drug conjugates (ADCs) involving covalent linkage has been commercialized as a promising cancer treatment in the last years. This review describes the general features and applications of DDS focused on the covalent conjugation system that binds the antibody carrier to the cytotoxic drug.
Collapse
Affiliation(s)
- Alexis Eras
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Danna Castillo
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, La Habana, Cuba
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Fernando Albericio
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- CIBER-BBN, Networking Centre of Bioengineering, Biomaterials, and Nanomedicine and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Hortensia Rodriguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| |
Collapse
|
21
|
Procopio-Melino R, Kotch FW, Prashad AS, Gomes JM, Wang W, Arve B, Dawdy A, Chen L, Sperry J, Hosselet C, He T, Kriz R, Lin L, Marquette K, Tchistiakova L, Somers W, Rouse JC, Zhong X. Cysteine metabolic engineering and selective disulfide reduction produce superior antibody-drug-conjugates. Sci Rep 2022; 12:7262. [PMID: 35508689 PMCID: PMC9068625 DOI: 10.1038/s41598-022-11344-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Next-generation site-specific cysteine-based antibody–drug-conjugates (ADCs) broaden therapeutic index by precise drug-antibody attachments. However, manufacturing such ADCs for clinical validation requires complex full reduction and reoxidation processes, impacting product quality. To overcome this technical challenge, we developed a novel antibody manufacturing process through cysteine (Cys) metabolic engineering in Chinese hamster ovary cells implementing a unique cysteine-capping technology. This development enabled a direct conjugation of drugs after chemoselective-reduction with mild reductant tris(3-sulfonatophenyl)phosphine. This innovative platform produces clinical ADC products with superior quality through a simplified manufacturing process. This technology also has the potential to integrate Cys-based site-specific conjugation with other site-specific conjugation methodologies to develop multi-drug ADCs and exploit multi-mechanisms of action for effective cancer treatments.
Collapse
Affiliation(s)
- Renée Procopio-Melino
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA
| | - Frank W Kotch
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.
| | - Amar S Prashad
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.,Pearl River Laboratories Inc, 401 North Middletown Road, Pearl River, NY, 10965, USA
| | - Jose M Gomes
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA.
| | - Wenge Wang
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA
| | - Bo Arve
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Andrew Dawdy
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.
| | - Lawrence Chen
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA
| | - Justin Sperry
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Christine Hosselet
- Vaccine Research, Pfizer Worldwide R&D, 401 North Middletown Road, Pearl River, NY, 10965, USA
| | - Tao He
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA.,JOINN Biologics US Inc., 2600 Hilltop Dr., Richmond, CA, 94806, USA
| | - Ronald Kriz
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Laura Lin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Kimberly Marquette
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Lioudmila Tchistiakova
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Will Somers
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Jason C Rouse
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA
| | - Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
22
|
Kung KKY, Xu CF, O WY, Yu Q, Chung SF, Tam SY, Leung YC, Wong MK. Functionalized quinolizinium-based fluorescent reagents for modification of cysteine-containing peptides and proteins. RSC Adv 2022; 12:6248-6254. [PMID: 35424586 PMCID: PMC8981741 DOI: 10.1039/d1ra08329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
A series of quinolizinium-based fluorescent reagents were prepared by visible light-mediated gold-catalyzed cis-difunctionalization between quinolinium diazonium salts and electron-deficient alkyne-linked phenylethynyl trimethylsilanes. The electron-deficient alkynyl group of the quinolizinium-based fluorescent reagents underwent nucleophilic addition reaction with the sulfhydryl group on cysteine-containing peptides and proteins. The quinolizinium-based fluorescent reagents were found to function as highly selective reagents for the modification of cysteine-containing peptides and proteins with good to excellent conversions (up to 99%). Moreover, the modified BCArg mutants bearing cationic quinolizinium compounds 1b, 1d, 1e and 1h exhibit comparable activity in enzymatic and cytotoxicity assays to the unmodified one.
Collapse
Affiliation(s)
- Karen Ka-Yan Kung
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Cai-Fung Xu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Wa-Yi O
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Suet-Ying Tam
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
23
|
Selective and predicable amine conjugation sites by kinetic characterization under excess reagents. Sci Rep 2021; 11:21222. [PMID: 34707190 PMCID: PMC8551328 DOI: 10.1038/s41598-021-00743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
The site selectivity for lysine conjugation on a native protein is difficult to control and characterize. Here, we applied mass spectrometry to examine the conjugation kinetics of Trastuzumab-IgG (Her-IgG) and α-lactalbumin under excess linker concentration ([L]0) based on the modified Michaelis–Menten equation, in which the initial rate constant per amine (kNH2 = Vmax/NH2/KM) was determined by the maximum reaction rate (Vmax/NH2) under saturated accessible sites and initial amine–linker affinity (1/KM). Reductive amination (RA) displayed 3–4 times greater Vmax/NH2 and a different panel of conjugation sites than that observed for N-hydroxysuccinimide ester (NHS) chemistry using the same length of polyethylene glycol (PEG) linkers. Moreover, faster conversion power rendered RA site selectivity among accessible amine groups and a greater tunable range of linker/protein ratio for aldehyde-linkers compared to those of the same length of NHS-linkers. Single conjugation with high yield or poly-conjugations with site homogeneity was demonstrated by controlling [L]0 or gradual addition to minimize the [L]0/KM ratio. Formaldehyde, the shortest aldehyde-linker with the greatest 1/KM, exhibited the highest selectivity and was shown to be a suitable probe to predict conjugation profile of aldehyde-linkers. Four linkers on the few probe-predicted hot spots were elucidated by kinetically controlled RA with conserved drug efficacy when conjugated with the payload. This study provides insights into controlling factors for homogenous and predictable amine bioconjugation.
Collapse
|
24
|
Kang MS, Kong TWS, Khoo JYX, Loh TP. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody-drug conjugates. Chem Sci 2021; 12:13613-13647. [PMID: 34760149 PMCID: PMC8549674 DOI: 10.1039/d1sc02973h] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Many fields in chemical biology and synthetic biology require effective bioconjugation methods to achieve their desired functions and activities. Among such biomolecule conjugates, antibody-drug conjugates (ADCs) need a linker that provides a stable linkage between cytotoxic drugs and antibodies, whilst conjugating in a biologically benign, fast and selective fashion. This review focuses on how the development of novel organic synthesis can solve the problems of traditional linker technology. The review shall introduce and analyse the current developments in the modification of native amino acids on peptides or proteins and their applicability to ADC linker. Thereafter, the review shall discuss in detail each endogenous amino acid's intrinsic reactivity and selectivity aspects, and address the research effort to construct an ADC using each conjugation method.
Collapse
Affiliation(s)
- Min Sun Kang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Theresa Wai See Kong
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Joycelyn Yi Xin Khoo
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Teck-Peng Loh
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
25
|
Haque M, Forte N, Baker JR. Site-selective lysine conjugation methods and applications towards antibody-drug conjugates. Chem Commun (Camb) 2021; 57:10689-10702. [PMID: 34570125 PMCID: PMC8516052 DOI: 10.1039/d1cc03976h] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Site-selective protein modification is of significant interest in chemical biology research, with lysine residues representing a particularly challenging target. Whilst lysines are popular for bioconjugation, due to their nucleophilicity, solvent accessibility and the stability of the resultant conjugates, their high abundance means site-selectivity is very difficult to achieve. Antibody-drug conjugates (ADCs) present a powerful therapeutic application of protein modification, and have often relied extensively upon lysine bioconjugation for their synthesis. Here we discuss advances in methodologies for achieving site-selective lysine modification, particularly within the context of antibody conjugate construction, including the cysteine-to-lysine transfer (CLT) protocol which we have recently reported.
Collapse
Affiliation(s)
- Muhammed Haque
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Nafsika Forte
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - James R Baker
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
26
|
Abstract
Antibodies, particularly of the immunoglobulin G (IgG) isotype, are a group of biomolecules that are extensively used as affinity reagents for many applications in research, disease diagnostics, and therapy. Most of these applications require antibodies to be modified with specific functional moieties, including fluorophores, drugs, and proteins. Thus, a variety of methodologies have been developed for the covalent labeling of antibodies. The most common methods stably attach functional molecules to lysine or cysteine residues, which unavoidably results in heterogeneous products that cannot be further purified. In an effort to prepare homogeneous antibody conjugates, bioorthogonal handles have been site-specifically introduced via enzymatic treatment, genetic code expansion, or genetically encoded tagging, followed by functionalization using bioorthogonal conjugation reactions. The resulting homogeneous products have proven superior to their heterogeneous counterparts for both in vitro and in vivo usage. Nevertheless, additional chemical treatment or protein engineering of antibodies is required for incorporation of the bioorthogonal handles, processes that often affect antibody folding, stability, and/or production yield and cost. Accordingly, concurrent with advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in site-specifically labeling native (nonengineered) antibodies without chemical or enzymatic treatments. In this review, we highlight recent strategies for producing site-specific native antibody conjugates and provide a comprehensive summary of the merits and disadvantages of these strategies.
Collapse
Affiliation(s)
- Kuan-Lin Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chenfei Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Catherine Lee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chao Zuo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Dai Z, Zhang XN, Cheng Q, Fei F, Hou T, Li J, Abdolvahabi A, Watanabe J, Pei H, Smbatyan G, Xie J, Lenz HJ, Louie SG, Zhang Y. Site-specific antibody-drug conjugates with variable drug-to-antibody-ratios for AML therapy. J Control Release 2021; 336:433-442. [PMID: 34197861 PMCID: PMC8373670 DOI: 10.1016/j.jconrel.2021.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
Random conjugations of chemotherapeutics to monoclonal antibodies result in heterogeneous antibody-drug conjugates (ADCs) with suboptimal pharmacological properties. We recently developed a new technology for facile generation of homogeneous ADCs by harnessing human CD38 catalytic domain and its dinucleotide-derived covalent inhibitor, termed ADP-ribosyl cyclase-enabled ADCs (ARC-ADCs). Herein we advance this technology by designing and synthesizing ARC-ADCs with customizable drug-to-antibody ratios (DARs). Through varying numbers and locations of CD38 fused to an antibody targeting human C-type lectin-like molecule-1 (hCLL-1), ARC-ADCs featuring DARs of 2 and 4 were rapidly generated via a single step with cytotoxic monomethyl auristatin F (MMAF) as payloads. In contrast to anti-hCLL-1 ARC-ADC carrying 2 drug molecules, anti-hCLL-1 ARC-ADC with a DAR of 4 shows highly potent activity in killing hCLL-1-positive acute myeloid leukemia (AML) cells both in vitro and in vivo. This work provides novel ADC candidates for combating AML and supports ARC-ADC as a general and versatile approach for producing site-specific ADCs with defined DARs.
Collapse
Affiliation(s)
- Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Fan Fei
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianling Hou
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawei Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Alireza Abdolvahabi
- Mass Spectrometry Core Facility, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Junji Watanabe
- Translational Research Laboratory, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jianming Xie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
28
|
Lin CW, Zheng T, Grande G, Nanna AR, Rader C, Lerner RA. A new immunochemical strategy for triple-negative breast cancer therapy. Sci Rep 2021; 11:14875. [PMID: 34290315 PMCID: PMC8295383 DOI: 10.1038/s41598-021-94230-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly diverse group of malignant neoplasms which tend to have poor outcomes, and the development of new targets and strategies to treat these cancers is sorely needed. Antibody-drug conjugate (ADC) therapy has been shown to be a promising targeted therapy for treating many cancers, but has only rarely been tried in patients with TNBC. A major reason the efficacy of ADC therapy in the setting of TNBC has not been more fully investigated is the lack of appropriate target molecules. In this work we were able to identify an effective TNBC target for use in immunotherapy. We were guided by our previous observation that in some breast cancer patients the protein tropomyosin receptor kinase B cell surface protein (TrkB) had become immunogenic, suggesting that it was somehow sufficiently chemically different enough (presumably by mutation) to escaped immune tolerance. We postulated that this difference might well offer a means for selective targeting by antibodies. We engineered site-specific ADCs using a dual variable domain (DVD) format which combines anti-TrkB antibody with the h38C2 catalytic antibody. This format enables rapid, one-step, and homogeneous conjugation of β-lactam-derivatized drugs. Following conjugation to β-lactam-derivatized monomethyl auristatin F, the TrkB-targeting DVD-ADCs showed potency against multiple breast cancer cell lines, including TNBC cell lines. In addition, our isolation of antibody that specifically recognized the breast cancer-associated mutant form of TrkB, but not the wild type TrkB, indicates the possibility of further refining the selectivity of anti-TrkB DVD-ADCs, which should enhance their therapeutic index. These results confirmed our supposition that TrkB is a potential target for immunotherapy for TNBC, as well as for other cancers with mutated cell surface proteins.
Collapse
Affiliation(s)
- Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tianqing Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alex R Nanna
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
29
|
Li G, Hu J, Chen H, Chen YX, Li YM. Cucurbit[8]uril facilitated Michael addition for regioselective cysteine modification. Chem Commun (Camb) 2021; 57:6086-6089. [PMID: 34037637 DOI: 10.1039/d1cc01404h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing the interactions between tryptophan, methyl viologen and cucurbit[8]uril, we found that the distance between the targeted peptides/protein and the reactive peptide was shortened, which facilitated the Michael addition reaction between cysteine and dehydroalanine. The highest acceleration was observed on cysteines with suitable pKa and spatial location to tryptophan, suggesting that our system can be used for regioselective cysteine modification.
Collapse
Affiliation(s)
- Gao Li
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Jun Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Huai Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China. and Beijing Institute for Brain Disorders, Beijing 100069, China and Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Nilchan N, Alburger JM, Roush WR, Rader C. An Engineered Arginine Residue of Unusual pH-Sensitive Reactivity Facilitates Site-Selective Antibody Conjugation. Biochemistry 2021; 60:1080-1087. [PMID: 33754696 PMCID: PMC8852817 DOI: 10.1021/acs.biochem.0c00955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monoclonal antibody h38C2 is a humanized catalytic antibody that has been used to generate various immunoconjugate species such as chemically programmed antibodies, antibody-drug conjugates, and antibody-siRNA conjugates. Highly efficient and specific conjugation of h38C2 occurs at its uniquely reactive lysine (Lys) residue buried inside the antibody's catalytic pocket. We recently reported the rational mutation of this Lys residue at position 99 in the heavy chain variable domain to an arginine (Arg) residue. The Lys99Arg mutation can be site-selectively conjugated with molecules containing a hapten-like triazolyl-phenylglyoxal (TPG) unit. Here we show that this conjugation is facilitated by the unusual pH-sensitive reactivity of the Arg99 residue, consistent with an indirectly measured pKa of 5.2. The Arg99/TPG conjugation holds promise to further expand the versatility of the h38C2 conjugation platform, such as for the generation of antibody conjugates with dual payloads.
Collapse
Affiliation(s)
- Napon Nilchan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - James M. Alburger
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William R. Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
31
|
Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth Syst Biotechnol 2021; 6:32-49. [PMID: 33665390 PMCID: PMC7897936 DOI: 10.1016/j.synbio.2021.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Protein chemical modifications are important tools for elucidating chemical and biological functions of proteins. Several strategies have been developed to implement these modifications, including enzymatic tailoring reactions, unnatural amino acid incorporation using the expanded genetic codes, and recognition-driven transformations. These technologies have been applied in metalloenzyme studies, specifically in dissecting their mechanisms, improving their enzymatic activities, and creating artificial enzymes with non-natural activities. Herein, we summarize some of the recent efforts in these areas with an emphasis on a few metalloenzyme case studies.
Collapse
Affiliation(s)
| | | | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
32
|
Dugal-Tessier J, Thirumalairajan S, Jain N. Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. J Clin Med 2021; 10:jcm10040838. [PMID: 33670689 PMCID: PMC7922418 DOI: 10.3390/jcm10040838] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
A summary of the key technological advancements in the preparation of antibody-oligonucleotide conjugates (AOCs) and the distinct advantages and disadvantages of AOCs as novel therapeutics are presented. The merits and demerits of the different approaches to conjugating oligonucleotides to antibodies, antibody fragments or other proteins, mainly from the perspective of AOC purification and analytical characterizations, are assessed. The lessons learned from in vitro and in vivo studies, especially the findings related to silencing, trafficking, and cytotoxicity of the conjugates, are also summarized.
Collapse
Affiliation(s)
- Julien Dugal-Tessier
- NJ Bio, 675 US Highway 1, Suite B129, North Brunswick, NJ 08902, USA;
- Correspondence: ; Tel.: +1-732-202-5664
| | | | - Nareshkumar Jain
- NJ Bio, 675 US Highway 1, Suite B129, North Brunswick, NJ 08902, USA;
| |
Collapse
|
33
|
Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, Seki H, Counsell AJ, Ou X, Fowler E, Ashman N, Takada Y, Isidro-Llobet A, Parker JS, Carroll JS, Spring DR. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305-1353. [PMID: 33290462 DOI: 10.1039/d0cs00310g] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. They have garnered widespread interest in drug discovery, particularly in oncology, as discrimination between healthy and malignant tissues or cells can be achieved. Nine ADCs have received approval from the US Food and Drug Administration and more than 80 others are currently undergoing clinical investigations for a range of solid tumours and haematological malignancies. Extensive research over the past decade has highlighted the critical nature of the linkage strategy adopted to attach the payload to the antibody. Whilst early generation ADCs were primarily synthesised as heterogeneous mixtures, these were found to have sub-optimal pharmacokinetics, stability, tolerability and/or efficacy. Efforts have now shifted towards generating homogeneous constructs with precise drug loading and predetermined, controlled sites of attachment. Homogeneous ADCs have repeatedly demonstrated superior overall pharmacological profiles compared to their heterogeneous counterparts. A wide range of methods have been developed in the pursuit of homogeneity, comprising chemical or enzymatic methods or a combination thereof to afford precise modification of specific amino acid or sugar residues. In this review, we discuss advances in chemical and enzymatic methods for site-specific antibody modification that result in the generation of homogeneous ADCs.
Collapse
Affiliation(s)
- Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dong F, Ghayur T. Recent advancements in DVD-Ig based therapeutic development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 34:1-7. [PMID: 33357765 DOI: 10.1016/j.ddtec.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/16/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Feng Dong
- Foundational Immunology, Immunology Discovery, AbbVie Cambridge Research Centre, 200 Sidney Street, Cambridge, MA, 02139, United States.
| | - Tariq Ghayur
- Foundational Immunology, Immunology Discovery, AbbVie Cambridge Research Centre, 200 Sidney Street, Cambridge, MA, 02139, United States.
| |
Collapse
|
35
|
Flood D, Knouse KW, Vantourout JC, Kitamura S, Sanchez BB, Sturgell EJ, Chen JS, Wolan DW, Baran PS, Dawson PE. Synthetic Elaboration of Native DNA by RASS (SENDR). ACS CENTRAL SCIENCE 2020; 6:1789-1799. [PMID: 33145415 PMCID: PMC7596865 DOI: 10.1021/acscentsci.0c00680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 05/11/2023]
Abstract
Controlled site-specific bioconjugation through chemical methods to native DNA remains an unanswered challenge. Herein, we report a simple solution to achieve this conjugation through the tactical combination of two recently developed technologies: one for the manipulation of DNA in organic media and another for the chemoselective labeling of alcohols. Reversible adsorption of solid support (RASS) is employed to immobilize DNA and facilitate its transfer into dry acetonitrile. Subsequent reaction with P(V)-based Ψ reagents takes place in high yield with exquisite selectivity for the exposed 3' or 5' alcohols on DNA. This two-stage process, dubbed SENDR for Synthetic Elaboration of Native DNA by RASS, can be applied to a multitude of DNA conformations and sequences with a variety of functionalized Ψ reagents to generate useful constructs.
Collapse
Affiliation(s)
- Dillon
T. Flood
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kyle W. Knouse
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Julien C. Vantourout
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Seiya Kitamura
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brittany B. Sanchez
- Automated
Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Emily J. Sturgell
- Automated
Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason S. Chen
- Automated
Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dennis W. Wolan
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
36
|
Pan D, Tang Y, Tong J, Xie C, Chen J, Feng C, Hwu P, Huang W, Zhou D. An antibody-drug conjugate targeting a GSTA glycosite-signature epitope of MUC1 expressed by non-small cell lung cancer. Cancer Med 2020; 9:9529-9540. [PMID: 33084221 PMCID: PMC7774737 DOI: 10.1002/cam4.3554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Antibodies targeting aberrantly glycosylated proteins are ineffective in treating cancer. Antibody‐drug conjugates have emerged as effective alternatives, facilitating tumor‐specific drug delivery. Previous studies have assessed the aberrantly glycosylated tandem repeat region of MUC1 glycoprotein as three site‐specific glycosylated neoantigen peptide motifs (PDTR, GSTA, and GVTS) for binding with a monoclonal antibody. This study aimed to develop an antibody‐drug conjugate for cancer treatment based on monoclonal antibodies against the aforementioned three neoantigen peptide motifs. Internalization of monoclonal antibodies was assessed via immunofluorescence staining and colocalization with lysosomal markers in live cells. Antibody positivity in tumor and peritumoral tissue samples was assessed via immunohistochemistry. The efficacy of anti‐MUC1 ADCs was evaluated using various cancer cell lines and a mouse tumor xenograft model. An anti‐MUC1 ADC was synthesized by conjugating GSTA neoantigen‐specific 16A with monomethyl auristatin E (MMAE), which displayed potent antitumoral efficacy with an IC50 ranging 0.2–49.4 nM toward various cancer cells. In vivo, 16A‐MMAE inhibited tumor growth in a dose‐dependent manner in a mouse xenograft model established using the NCI‐H838 NSCLC cell line, at a minimum effective dose of 1 mg/kg. At 3 mg/kg, 16A‐MMAE did not cause significant toxicity in a transgenic mouse expressing human MUC1. The high antitumoral efficacy of 16A‐MMAE suggests that aberrant glycosylated MUC1 neoantigen is a potential target for the development of ADCs for treating various cancers. Personalized therapy may be achieved through such glycosite‐specific ADCs.
Collapse
Affiliation(s)
- Deng Pan
- Tongji University School of Medicine, Shanghai, China.,Shanghai Pudong New Area Mental Health Center affiliated with Tongji University School of Medicine, Shanghai, China
| | - Yubo Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Tong
- Tongji University School of Medicine, Shanghai, China
| | - Chengmei Xie
- Tongji University School of Medicine, Shanghai, China
| | - Jiaxi Chen
- Tongji University School of Medicine, Shanghai, China
| | - Chunchao Feng
- Tongji University School of Medicine, Shanghai, China
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dapeng Zhou
- Tongji University School of Medicine, Shanghai, China.,Shanghai Pudong New Area Mental Health Center affiliated with Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020; 181:151-167. [PMID: 32243788 DOI: 10.1016/j.cell.2020.02.001] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
Abstract
Off-target effects of systemically administered drugs have been a major hurdle in designing therapies with desired efficacy and acceptable toxicity. Developing targeting strategies to enable site-specific drug delivery holds promise in reducing off-target effects, decreasing unwanted toxicities, and thereby enhancing a drug's therapeutic efficacy. Over the past three decades, a large body of literature has focused on understanding the biological barriers that hinder tissue-specific drug delivery and strategies to overcome them. These efforts have led to several targeting strategies that modulate drug delivery in both the preclinical and clinical settings, including small molecule-, nucleic acid-, peptide-, antibody-, and cell-based strategies. Here, we discuss key advances and emerging concepts for tissue-specific drug delivery approaches and their clinical translation.
Collapse
Affiliation(s)
- Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Nanna AR, Kel'in AV, Theile C, Pierson JM, Voo ZX, Garg A, Nair JK, Maier MA, Fitzgerald K, Rader C. Generation and validation of structurally defined antibody-siRNA conjugates. Nucleic Acids Res 2020; 48:5281-5293. [PMID: 32347936 PMCID: PMC7261152 DOI: 10.1093/nar/gkaa286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Gene silencing by RNA interference (RNAi) has emerged as a powerful treatment strategy across a potentially broad range of diseases. Tailoring siRNAs to silence genes vital for cancer cell growth and function could be an effective treatment, but there are several challenges which must be overcome to enable their use as a therapeutic modality, among which efficient and selective delivery to cancer cells remains paramount. Attempts to use antibodies for siRNA delivery have been reported but these strategies use either nonspecific conjugation resulting in mixtures, or site-specific methods that require multiple steps, introduction of mutations, or use of enzymes. Here, we report a method to generate antibody–siRNA (1:2) conjugates (ARCs) that are structurally defined and easy to assemble. This ARC platform is based on engineered dual variable domain (DVD) antibodies containing a natural uniquely reactive lysine residue for site-specific conjugation to β-lactam linker-functionalized siRNA. The conjugation is efficient, does not compromise the affinity of the parental antibody, and utilizes chemically stabilized siRNA. For proof-of-concept, we generated DVD-ARCs targeting various cell surface antigens on multiple myeloma cells for the selective delivery of siRNA targeting β-catenin (CTNNB1). A set of BCMA-targeting DVD-ARCs at concentrations as low as 10 nM revealed significant CTNNB1 mRNA and protein knockdown.
Collapse
Affiliation(s)
- Alex R Nanna
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.,Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | - Zhi Xiang Voo
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ashish Garg
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | | | | | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
39
|
Adhikari A, Teijaro CN, Yan X, Chang CY, Gui C, Liu YC, Crnovcic I, Yang D, Annaval T, Rader C, Shen B. Characterization of TnmH as an O-Methyltransferase Revealing Insights into Tiancimycin Biosynthesis and Enabling a Biocatalytic Strategy To Prepare Antibody-Tiancimycin Conjugates. J Med Chem 2020; 63:8432-8441. [PMID: 32658465 DOI: 10.1021/acs.jmedchem.0c00799] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The enediynes are among the most cytotoxic molecules known, and their use as anticancer drugs has been successfully demonstrated by targeted delivery. Clinical advancement of the anthraquinone-fused enediynes has been hindered by their low titers and lack of functional groups to enable the preparation of antibody-drug conjugates (ADCs). Here we report biochemical and structural characterization of TnmH from the tiancimycin (TNM) biosynthetic pathway, revealing that (i) TnmH catalyzes regiospecific methylation at the C-7 hydroxyl group, (ii) TnmH exhibits broad substrate promiscuity toward hydroxyanthraquinones and S-alkylated SAM analogues and catalyzes efficient installation of reactive alkyl handles, (iii) the X-ray crystal structure of TnmH provides the molecular basis to account for its broad substrate promiscuity, and (iv) TnmH as a biocatalyst enables the development of novel conjugation strategies to prepare antibody-TNM conjugates. These findings should greatly facilitate the construction and evaluation of antibody-TNM conjugates as next-generation ADCs for targeted chemotherapy.
Collapse
|
40
|
Dai Z, Zhang XN, Nasertorabi F, Cheng Q, Li J, Katz BB, Smbatyan G, Pei H, Louie SG, Lenz HJ, Stevens RC, Zhang Y. Synthesis of site-specific antibody-drug conjugates by ADP-ribosyl cyclases. SCIENCE ADVANCES 2020; 6:eaba6752. [PMID: 32537509 PMCID: PMC7269645 DOI: 10.1126/sciadv.aba6752] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 05/02/2023]
Abstract
Most of the current antibody-drug conjugates (ADCs) in clinic are heterogeneous mixtures. To produce homogeneous ADCs, established procedures often require multiple steps or long reaction times. The introduced mutations or foreign sequences may cause high immunogenicity. Here, we explore a new concept of transforming CD38 enzymatic activity into a facile approach for generating site-specific ADCs. This was achieved through coupling bifunctional antibody-CD38 fusion proteins with designer dinucleotide-based covalent inhibitors with stably attached payloads. The resulting adenosine diphosphate-ribosyl cyclase-enabled ADC (ARC-ADC) with a drug-to-antibody ratio of 2 could be rapidly generated through single-step conjugation. The generated ARC-ADC targeting human epidermal growth factor receptor 2 (HER2) displays excellent stability and potency against HER2-positive breast cancer both in vitro and in vivo. This proof-of-concept study demonstrates a new strategy for production of site-specific ADCs. It may provide a general approach for the development of a novel class of ADCs with potentially enhanced properties.
Collapse
Affiliation(s)
- Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Fariborz Nasertorabi
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawei Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin B. Katz
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Raymond C. Stevens
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
- Corresponding author.
| |
Collapse
|
41
|
Site-Specific Antibody-Drug Conjugates in Triple Variable Domain Fab Format. Biomolecules 2020; 10:biom10050764. [PMID: 32422893 PMCID: PMC7278019 DOI: 10.3390/biom10050764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
The interest in replacing the conventional immunoglobulin G (IgG) format of monoclonal antibodies (mAbs) and antibody–drug conjugates (ADCs) with alternative antibody and antibody-like scaffolds reflects a need to expand their therapeutic utility and potency while retaining their exquisite specificity, affinity, and low intrinsic toxicity. For example, in the therapy of solid malignancies, the limited tumor tissue penetration and distribution of ADCs in IgG format mitigates a uniform distribution of the cytotoxic payload. Here, we report triple variable domain Fab (TVD–Fab) as a new format that affords the site-specific and stable generation of monovalent ADCs without the Fc domain and a drug-to-antibody ratio (DAR) of 2. TVD–Fabs harbor three variable fragment (Fv) domains: one for tumor targeting and two for the fast, efficient, precise, and stable conjugation of two cargos via uniquely reactive lysine residues. The biochemical and in vitro cytotoxicity properties of a HER2-targeting TVD–Fab before and after conjugation to a tubulin inhibitor were validated. In vivo, the TVD–Fab antibody carrier revealed a circulatory half-life of 13.3 ± 2.5 h and deeper tumor tissue distribution compared to our previously reported dual variable domain (DVD)–IgG1 format. Taken together, the TVD–Fab format merits further investigations as an antibody carrier of site-specific ADCs targeting solid malignancies.
Collapse
|
42
|
Abstract
In this issue of Cell Chemical Biology, Hwang et al. (2019) describe a rapid, one-step, one-pot, and enzyme-free assembly strategy under mild conditions for site-specific conjugation of small molecules to antibodies. This is a promising platform for dual-warhead antibody-drug conjugates (ADCs) and other multifaceted antibody conjugates.
Collapse
Affiliation(s)
- Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| |
Collapse
|
43
|
Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates. Anal Biochem 2020; 595:113615. [PMID: 32035039 DOI: 10.1016/j.ab.2020.113615] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
Antibody-drug conjugates (ADCs) are hybrid molecules intended to overcome the drawbacks of conventional small molecule chemotherapy and therapeutic antibodies by merging beneficial characteristics of both molecule classes to develop more efficient and patient-friendly options for cancer treatment. During the last decades a versatile bioconjugation toolbox that comprises numerous chemical and enzymatic technologies have been developed to covalently attach a cytotoxic cargo to a tumor-targeting antibody. Microbial transglutaminase (mTG) that catalyzes isopeptide bond formation between proteinaceous or peptidic glutamines and lysines, provides many favorable properties that are beneficial for the manufacturing of these conjugates. However, to efficiently utilize the enzyme for the constructions of ADCs, different drawbacks had to be overcome that originate from the enzyme's insufficiently understood substrate specificity. Within this review, pioneering methodologies, recent achievements and remaining limitations of mTG-assisted assembly of ADCs will be highlighted.
Collapse
|
44
|
Apel C, Kasper MA, Stieger CE, Hackenberger CPR, Christmann M. Protein Modification of Lysine with 2-(2-Styrylcyclopropyl)ethanal. Org Lett 2019; 21:10043-10047. [DOI: 10.1021/acs.orglett.9b03982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Caroline Apel
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Marc-André Kasper
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian E. Stieger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Mathias Christmann
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
45
|
Hwang D, Tsuji K, Park H, Burke TR, Rader C. Site-Specific Lysine Arylation as an Alternative Bioconjugation Strategy for Chemically Programmed Antibodies and Antibody-Drug Conjugates. Bioconjug Chem 2019; 30:2889-2896. [PMID: 31675216 DOI: 10.1021/acs.bioconjchem.9b00609] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By exploiting a uniquely reactive lysine residue (Lys99) for site-specific attachment of small molecules, the humanized catalytic antibody h38C2 has been used as bioconjugation module in the assembly of chemically programmed antibodies and antibody-drug conjugates. Treatment of h38C2 with β-lactam-functionalized small molecules has been previously shown to result in covalent conjugation by selective formation of a stable amide bond with the ε-amino group of the Lys99 residue. Here we report that heteroaryl methylsulfonyl (MS-PODA)-functionalized small molecules represent an alternative bioconjugation strategy through highly efficient, site-specific, and stable arylation of the Lys99 residue. A set of chemically programmed antibodies and antibody-drug conjugates assembled by Lys99 arylation provided proof-of-concept for the therapeutic utility of this alternative bioconjugation strategy. While being equally effective as β-lactam-functionalized ligands for bioconjugation with catalytic antibody h38C2, the MS-PODA moiety offers distinct synthetic advantages, making it highly attractive.
Collapse
Affiliation(s)
| | - Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Frederick , Maryland 21702 , United States
| | | | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Frederick , Maryland 21702 , United States
| | | |
Collapse
|
46
|
Deweid L, Avrutina O, Kolmar H. Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem 2019; 400:257-274. [PMID: 30291779 DOI: 10.1515/hsz-2018-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Research on bacterial transglutaminase dates back to 1989, when the enzyme has been isolated from Streptomyces mobaraensis. Initially discovered during an extensive screening campaign to reduce costs in food manufacturing, it quickly appeared as a robust and versatile tool for biotechnological and pharmaceutical applications due to its excellent activity and simple handling. While pioneering attempts to make use of its extraordinary cross-linking ability resulted in heterogeneous polymers, currently it is applied to site-specifically ligate diverse biomolecules yielding precisely modified hybrid constructs comprising two or more components. This review covers the extensive and rapidly growing field of microbial transglutaminase-mediated bioconjugation with the focus on pharmaceutical research. In addition, engineering of the enzyme by directed evolution and rational design is highlighted. Moreover, cumbersome drawbacks of this technique mainly caused by the enzyme's substrate indiscrimination are discussed as well as the ways to bypass these limitations.
Collapse
Affiliation(s)
- Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| |
Collapse
|
47
|
One-step site-specific antibody fragment auto-conjugation using SNAP-tag technology. Nat Protoc 2019; 14:3101-3125. [DOI: 10.1038/s41596-019-0214-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
|
48
|
Qi J, Hymel D, Nelson CG, Burke TR, Rader C. Conventional and Chemically Programmed Asymmetric Bispecific Antibodies Targeting Folate Receptor 1. Front Immunol 2019; 10:1994. [PMID: 31497024 PMCID: PMC6712926 DOI: 10.3389/fimmu.2019.01994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
T-cell engaging bispecific antibodies (biAbs) can mediate potent and specific tumor cell eradication in liquid cancers. Substantial effort has been invested in expanding this concept to solid cancers. To explore their utility in the treatment of ovarian cancer, we built a set of asymmetric biAbs in IgG1-like format that bind CD3 on T cells with a conventional scFv arm and folate receptor 1 (FOLR1) on ovarian cancer cells with a conventional or a chemically programmed Fab arm. For avidity engineering, we also built an asymmetric biAb format with a tandem Fab arm. We show that both conventional and chemically programmed CD3 × FOLR1 biAbs exert specific in vitro and in vivo cytotoxicity toward FOLR1-expressing ovarian cancer cells by recruiting and activating T cells. While the conventional T-cell engaging biAb was curative in an aggressive mouse model of human ovarian cancer, the potency of the chemically programmed biAb was significantly boosted by avidity engineering. Both conventional and chemically programmed CD3 × FOLR1 biAbs warrant further investigation for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Christopher G Nelson
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
49
|
Deng JR, Chung SF, Leung ASL, Yip WM, Yang B, Choi MC, Cui JF, Kung KKY, Zhang Z, Lo KW, Leung YC, Wong MK. Chemoselective and photocleavable cysteine modification of peptides and proteins using isoxazoliniums. Commun Chem 2019. [DOI: 10.1038/s42004-019-0193-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
50
|
Tomás RMF, Gibson MI. Optimization and Stability of Cell-Polymer Hybrids Obtained by "Clicking" Synthetic Polymers to Metabolically Labeled Cell Surface Glycans. Biomacromolecules 2019; 20:2726-2736. [PMID: 31141666 PMCID: PMC6831485 DOI: 10.1021/acs.biomac.9b00478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Re-engineering of mammalian cell surfaces with polymers enables the introduction of functionality including imaging agents, drug cargoes or antibodies for cell-based therapies, without resorting to genetic techniques. Glycan metabolic labeling has been reported as a tool for engineering cell surface glycans with synthetic polymers through the installation of biorthogonal handles, such as azides. Quantitative assessment of this approach and the robustness of the engineered coatings has yet to be explored. Here, we graft poly(hydroxyethyl acrylamide) onto azido-labeled cell surface glycans using strain-promoted azide-alkyne "click" cycloaddition and, using a combination of flow cytometry and confocal microscopy, evaluate the various parameters controlling the outcome of this "grafting to" process. In all cases, homogeneous cell coatings were formed with >95% of the treated cells being covalently modified, superior to nonspecific "grafting to" approaches. Controllable grafting densities could be achieved through modulation of polymer chain length and/or concentration, with longer polymers having lower densities. Cell surface bound polymers were retained for at least 72 h, persisting through several mitotic divisions during this period. Furthermore, we postulate that glycan/membrane recycling is slowed by the steric bulk of the polymers, demonstrating robustness and stability even during normal biological processes. This cytocompatible, versatile and simple approach shows potential for re-engineering of cell surfaces with new functionality for future use in cell tracking or cell-based therapies.
Collapse
Affiliation(s)
- Ruben M. F. Tomás
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|