1
|
Mou MJ, Hasan SMN, Mozumder A, Akter M, Reshad RAI, Mia R, Salauddin M, Rahman MS, Alam MM, Akter S, Saha S, Islam T, Hossain MG. Distinct amino acid substitutions in the EEV glycoprotein and DNA-dependent RNA polymerase of lumpy skin disease virus identified in wetland areas of Bangladesh. Res Vet Sci 2024; 183:105508. [PMID: 39708580 DOI: 10.1016/j.rvsc.2024.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The recent outbreak of lumpy skin disease virus (LSDV) in the wetland areas of Bangladesh presents a significant concern for both animal health and regional biosecurity. Epidemiological investigations into nine major outbreaks in the wetland areas revealed distinctive clinical symptoms in affected cattle, including elevated body temperature, excessive salivation, and the presence of skin nodules. Histopathological examination unveiled larger nodules compared to previous outbreaks, along with signs of secondary infection. Molecular analysis confirmed the presence of LSDV in all samples, with subsequent sequencing revealing genetic similarities with virus isolates of Bangladesh, India, China, Russia, Serbia and Greece. Most importantly amino acid variations in the viral EEV glycoprotein and DNA-dependent RNA polymerase were revealed that also altered the structures of the respective proteins significantly suggesting potential implications for viral pathogenesis. Additionally, successful isolation of LSDV in Vero cells demonstrated cytopathic effects, supporting the potential for vaccine development. In conclusion, this study provides comprehensive insights into the epidemiology, genomic characters with altered predicted structures of two major viral proteins and pathogenesis of LSDV outbreaks in Bangladesh. These findings emphasize the critical need for ongoing monitoring and adaptive control strategies, including the development of effective vaccines, to mitigate the impact of LSDV in affected regions and safeguard regional livestock health.
Collapse
Affiliation(s)
- Moslema Jahan Mou
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - S M Nazmul Hasan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Anandha Mozumder
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marjana Akter
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Riyan Al Islam Reshad
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Roni Mia
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Salauddin
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9202, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Mahmudul Alam
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur 1706, Bangladesh
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
2
|
Xu Y, Wu Y, Zhang Y, Gao K, Wu X, Yang Y, Li D, Yang B, Zhang Z, Dong C. Essential and multifunctional mpox virus E5 helicase-primase in double and single hexamer. SCIENCE ADVANCES 2024; 10:eadl1150. [PMID: 39167653 PMCID: PMC11338233 DOI: 10.1126/sciadv.adl1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
An outbreak of mpox virus in May 2022 has spread over 110 nonpandemic regions in the world, posing a great threat to global health. Mpox virus E5, a helicase-primase, plays an essential role in DNA replication, but the molecular mechanisms are elusive. Here, we report seven structures of mpox virus E5 in a double hexamer (DH) and six in single hexamer in different conformations, indicating a rotation mechanism for helicase and a coupling action for primase. The DH is formed through the interface of zinc-binding domains, and the central channel density indicates potential double-stranded DNA (dsDNA), which helps to identify dsDNA binding residues Arg249, Lys286, Lys315, and Lys317. Our work is important not only for understanding poxviral DNA replication but also for the development of novel therapeutics for serious poxviral infections including smallpox virus and mpox virus.
Collapse
Affiliation(s)
- Yunxia Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaqi Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kaiting Gao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoying Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaxue Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Danyang Li
- The Cryo-EM Center, Core facility of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Biao Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhengyu Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Changjiang Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Shen Y, Li Y, Yan R. Structural basis for the inhibition mechanism of the DNA polymerase holoenzyme from mpox virus. Structure 2024; 32:654-661.e3. [PMID: 38579705 DOI: 10.1016/j.str.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
There are three key components at the core of the mpox virus (MPXV) DNA polymerase holoenzyme: DNA polymerase F8, processivity factors A22, and the Uracil-DNA glycosylase E4. The holoenzyme is recognized as a vital antiviral target because MPXV replicates in the cytoplasm of host cells. Nucleotide analogs such as cidofovir and cytarabine (Ara-C) have shown potential in curbing MPXV replication and they also display promise against other poxviruses. However, the mechanism behind their inhibitory effects remains unclear. Here, we present the cryo-EM structure of the DNA polymerase holoenzyme F8/A22/E4 bound with its competitive inhibitor Ara-C-derived cytarabine triphosphate (Ara-CTP) at an overall resolution of 3.0 Å and reveal its inhibition mechanism. Ara-CTP functions as a direct chain terminator in proximity to the deoxycytidine triphosphate (dCTP)-binding site. The extra hydrogen bond formed with Asn665 makes it more potent in binding than dCTP. Asn665 is conserved among eukaryotic B-family polymerases.
Collapse
Affiliation(s)
- Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China.
| |
Collapse
|
5
|
Xu Y, Wu Y, Wu X, Zhang Y, Yang Y, Li D, Yang B, Gao K, Zhang Z, Dong C. Structural basis of human mpox viral DNA replication inhibition by brincidofovir and cidofovir. Int J Biol Macromol 2024; 270:132231. [PMID: 38735603 DOI: 10.1016/j.ijbiomac.2024.132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Mpox virus has wildly spread over 108 non-endemic regions in the world since May 2022. DNA replication of mpox is performed by DNA polymerase machinery F8-A22-E4, which is known as a great drug target. Brincidofovir and cidofovir are reported to have broad-spectrum antiviral activity against poxviruses, including mpox virus in animal models. However, the molecular mechanism is not understood. Here we report cryogenic electron microscopy structures of mpox viral F8-A22-E4 in complex with a DNA duplex, or dCTP and the DNA duplex, or cidofovir diphosphate and the DNA duplex at resolution of 3.22, 2.98 and 2.79 Å, respectively. Our structural work and DNA replication inhibition assays reveal that cidofovir diphosphate is located at the dCTP binding position with a different conformation to compete with dCTP to incorporate into the DNA and inhibit DNA synthesis. Conformation of both F8-A22-E4 and DNA is changed from the pre-dNTP binding state to DNA synthesizing state after dCTP or cidofovir diphosphate is bound, suggesting a coupling mechanism. This work provides the structural basis of DNA synthesis inhibition by brincidofovir and cidofovir, providing a rational strategy for new therapeutical development for mpox virus and other pox viruses.
Collapse
Affiliation(s)
- Yunxia Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaqi Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoying Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaxue Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Danyang Li
- The Cryo-EM Center, Core Facility of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Biao Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kaiting Gao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhengyu Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Changjiang Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Burmeister WP, Boutin L, Balestra AC, Gröger H, Ballandras-Colas A, Hutin S, Kraft C, Grimm C, Böttcher B, Fischer U, Tarbouriech N, Iseni F. Structure and flexibility of the DNA polymerase holoenzyme of vaccinia virus. PLoS Pathog 2024; 20:e1011652. [PMID: 38768256 PMCID: PMC11142717 DOI: 10.1371/journal.ppat.1011652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/31/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The year 2022 was marked by the mpox outbreak caused by the human monkeypox virus (MPXV), which is approximately 98% identical to the vaccinia virus (VACV) at the sequence level with regard to the proteins involved in DNA replication. We present the production in the baculovirus-insect cell system of the VACV DNA polymerase holoenzyme, which consists of the E9 polymerase in combination with its co-factor, the A20-D4 heterodimer. This led to the 3.8 Å cryo-electron microscopy (cryo-EM) structure of the DNA-free form of the holoenzyme. The model of the holoenzyme was constructed from high-resolution structures of the components of the complex and the A20 structure predicted by AlphaFold 2. The structures do not change in the context of the holoenzyme compared to the previously determined crystal and NMR structures, but the E9 thumb domain became disordered. The E9-A20-D4 structure shows the same compact arrangement with D4 folded back on E9 as observed for the recently solved MPXV holoenzyme structures in the presence and the absence of bound DNA. A conserved interface between E9 and D4 is formed by a cluster of hydrophobic residues. Small-angle X-ray scattering data show that other, more open conformations of E9-A20-D4 without the E9-D4 contact exist in solution using the flexibility of two hinge regions in A20. Biolayer interferometry (BLI) showed that the E9-D4 interaction is indeed weak and transient in the absence of DNA although it is very important, as it has not been possible to obtain viable viruses carrying mutations of key residues within the E9-D4 interface.
Collapse
Affiliation(s)
- Wim P. Burmeister
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Laetitia Boutin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Aurelia C. Balestra
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Henri Gröger
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Allison Ballandras-Colas
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Stephanie Hutin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | | | | | | | - Utz Fischer
- Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Frédéric Iseni
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
7
|
Li Y, Zhu J, Guo Y, Yan R. Structural insight into the assembly and working mechanism of helicase-primase D5 from Mpox virus. Nat Struct Mol Biol 2024; 31:68-81. [PMID: 38177671 DOI: 10.1038/s41594-023-01142-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/27/2023] [Indexed: 01/06/2024]
Abstract
The Mpox pandemic, caused by the Mpox virus (or monkeypox virus, MPXV), has gained global attention. The D5 protein, a putative helicase-primase found in MPXV, plays a vital role in viral replication and genome uncoating. Here we determined multiple cryo-EM structures of full-length hexameric D5 in diverse states. These states were captured during ATP hydrolysis while moving along the single-stranded DNA (ssDNA) track. Through comprehensive structural analysis combined with the helicase activity system, we revealed that when the primase domain is truncated or the interaction between the primase and helicase domains is disrupted, the double-stranded DNA (dsDNA) unwinds into ssDNA, suggesting a critical regulatory role of the primase domain. Two transition states bound with ssDNA substrate during unwinding reveals that two ATP molecules were consumed to drive DNA moving forward two nucleotides. Collectively, our findings shed light on the molecular mechanism that links ATP hydrolysis to the DNA unwinding in poxviruses.
Collapse
Affiliation(s)
- Yaning Li
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Zhu
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Yingying Guo
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Renhong Yan
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
8
|
Hutin S, Tully MD, Brennich M. Small-Angle X-Ray Scattering for Macromolecular Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:163-172. [PMID: 38507206 DOI: 10.1007/978-3-031-52193-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Small angle X-ray scattering (SAXS) is a versatile technique that can provide unique insights in the solution structure of macromolecules and their complexes, covering the size range from small peptides to complete viral assemblies. Technological and conceptual advances in the last two decades have tremendously improved the accessibility of the technique and transformed it into an indispensable tool for structural biology. In this chapter we introduce and discuss several approaches to collecting SAXS data on macromolecular complexes, including several approaches to online chromatography. We include practical advice on experimental design and point out common pitfalls of the technique.
Collapse
Affiliation(s)
- Stephanie Hutin
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, Grenoble, France
| | - Mark D Tully
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, Grenoble, France
| | - Martha Brennich
- European Molecular Biology Laboratory, Grenoble, Grenoble, France.
| |
Collapse
|
9
|
Wang X, Ma L, Li N, Gao N. Structural insights into the assembly and mechanism of mpox virus DNA polymerase complex F8-A22-E4-H5. Mol Cell 2023; 83:4398-4412.e4. [PMID: 37995690 DOI: 10.1016/j.molcel.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 11/25/2023]
Abstract
The DNA replication of mpox virus is performed by the viral polymerase F8 and also requires other viral factors, including processivity factor A22, uracil DNA glycosylase E4, and phosphoprotein H5. However, the molecular roles of these viral factors remain unclear. Here, we characterize the structures of F8-A22-E4 and F8-A22-E4-H5 complexes in the presence of different primer-template DNA substrates. E4 is located upstream of F8 on the template single-stranded DNA (ssDNA) and is catalytically active, highlighting a functional coupling between DNA base-excision repair and DNA synthesis. Moreover, H5, in the form of tetramer, binds to the double-stranded DNA (dsDNA) region downstream of F8 in a similar position as PCNA (proliferating cell nuclear antigen) does in eukaryotic polymerase complexes. Omission of H5 or disruption of its DNA interaction showed a reduced synthesis of full-length DNA products. These structures provide snapshots for the working cycle of the polymerase and generate insights into the mechanisms of these essential factors in viral DNA replication.
Collapse
Affiliation(s)
- Xiaohan Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Liangwen Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Xu Y, Wu Y, Zhang Y, Fan R, Yang Y, Li D, Zhu S, Yang B, Zhang Z, Dong C. Cryo-EM structures of human monkeypox viral replication complexes with and without DNA duplex. Cell Res 2023; 33:479-482. [PMID: 36973539 PMCID: PMC10235115 DOI: 10.1038/s41422-023-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- Yunxia Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yaqi Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuanyuan Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ruixin Fan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yaxue Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Danyang Li
- The Cryo-EM Center, Core facility of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Shimin Zhu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Biao Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhengyu Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Changjiang Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Vardhan S, Sahoo SK. Computational studies on searching potential phytochemicals against DNA polymerase activity of the monkeypox virus. J Tradit Complement Med 2023; 13:S2225-4110(23)00055-X. [PMID: 37360910 PMCID: PMC10165885 DOI: 10.1016/j.jtcme.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objectives The outbreak of monkeypox virus (MPXV) is an emerging epidemic of medical concern with 65353 confirmed cases of infection and a fatality of 115 worldwide. Since May 2022, MPXV has been rapidly disseminating across the globe through various modes of transmission, including direct contact, respiratory droplets, and consensual sex. Because of the limited medical countermeasures available to treat MPXV, the present study aimed to identify potential phytochemicals (limonoids, triterpenoids, and polyphenols) as antagonists to target the DNA polymerase protein of MPXV with the ultimate goal to inhibit the viral DNA replication mechanism and immune-mediated responses. Methods The protein-DNA and protein-ligand molecular docking were performed with the help of computational programs AutoDock Vina, iGEMDOCK and HDOCK server. The BIOVIA Discovery studio and ChimeraX were used to evaluate the protein-ligand interactions. The GROMACS 2021 was used for the molecular dynamics simulations. The ADME and toxicity properties were computed by using online servers SwissADME and pKCSM. Results Molecular docking of 609 phytochemicals and molecular dynamics simulations of lead phytochemicals glycyrrhizinic acid and apigenin-7-O-glucuronide generated useful data that supported the ability of phytochemicals to obstruct the DNA polymerase activity of the monkeypox virus. Conclusions The computational results supported that appropriate phytochemicals can be used to formulate an adjuvant therapy for the monkeypox virus.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| |
Collapse
|
12
|
Mutz P, Resch W, Faure G, Senkevich TG, Koonin EV, Moss B. Exaptation of Inactivated Host Enzymes for Structural Roles in Orthopoxviruses and Novel Folds of Virus Proteins Revealed by Protein Structure Modeling. mBio 2023; 14:e0040823. [PMID: 37017580 PMCID: PMC10128050 DOI: 10.1128/mbio.00408-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Viruses with large, double-stranded DNA genomes captured the majority of their genes from their hosts at different stages of evolution. The origins of many virus genes are readily detected through significant sequence similarity with cellular homologs. In particular, this is the case for virus enzymes, such as DNA and RNA polymerases or nucleotide kinases, that retain their catalytic activity after capture by an ancestral virus. However, a large fraction of virus genes have no readily detectable cellular homologs, meaning that their origins remain enigmatic. We explored the potential origins of such proteins that are encoded in the genomes of orthopoxviruses, a thoroughly studied virus genus that includes major human pathogens. To this end, we used AlphaFold2 to predict the structures of all 214 proteins that are encoded by orthopoxviruses. Among the proteins of unknown provenance, structure prediction yielded clear indications of origin for 14 of them and validated several inferences that were previously made via sequence analysis. A notable emerging trend is the exaptation of enzymes from cellular organisms for nonenzymatic, structural roles in virus reproduction that is accompanied by the disruption of catalytic sites and by an overall drastic divergence that precludes homology detection at the sequence level. Among the 16 orthopoxvirus proteins that were found to be inactivated enzyme derivatives are the poxvirus replication processivity factor A20, which is an inactivated NAD-dependent DNA ligase; the major core protein A3, which is an inactivated deubiquitinase; F11, which is an inactivated prolyl hydroxylase; and more similar cases. For nearly one-third of the orthopoxvirus virion proteins, no significantly similar structures were identified, suggesting exaptation with subsequent major structural rearrangement that yielded unique protein folds. IMPORTANCE Protein structures are more strongly conserved in evolution than are amino acid sequences. Comparative structural analysis is particularly important for inferring the origins of viral proteins that typically evolve at high rates. We used a powerful protein structure modeling method, namely, AlphaFold2, to model the structures of all orthopoxvirus proteins and compared them to all available protein structures. Multiple cases of recruitment of host enzymes for structural roles in viruses, accompanied by the disruption of catalytic sites, were discovered. However, many viral proteins appear to have evolved unique structural folds.
Collapse
Affiliation(s)
- Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Wolfgang Resch
- Center for Information Technology, National Institutes of Health, Bethesda, Maryland, USA
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tatiana G. Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Instutes of Health, Bethesda, Maryland, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Instutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Li Y, Shen Y, Hu Z, Yan R. Structural basis for the assembly of the DNA polymerase holoenzyme from a monkeypox virus variant. SCIENCE ADVANCES 2023; 9:eadg2331. [PMID: 37075110 PMCID: PMC10115419 DOI: 10.1126/sciadv.adg2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ongoing global pandemic caused by a variant of the monkeypox (or mpox) virus (MPXV) has prompted widespread concern. The MPXV DNA polymerase holoenzyme, consisting of F8, A22, and E4, is vital for replicating the viral genome and represents a crucial target for the development of antiviral drugs. However, the assembly and working mechanism for the DNA polymerase holoenzyme of MPXV remains elusive. Here, we present the cryo-electron microscopy (cryo-EM) structure of the DNA polymerase holoenzyme at an overall resolution of 3.5 Å. Unexpectedly, the holoenzyme is assembled as a dimer of heterotrimers, of which the extra interface between the thumb domain of F8 and A22 shows a clash between A22 and substrate DNA, suggesting an autoinhibition state. Addition of exogenous double-stranded DNA shifts the hexamer into trimer exposing DNA binding sites, potentially representing a more active state. Our findings provide crucial steps toward developing targeted antiviral therapies for MPXV and related viruses.
Collapse
Affiliation(s)
- Yaning Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Ziwei Hu
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
- Corresponding author.
| |
Collapse
|
14
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Kumari S, Chakraborty S, Ahmad M, Kumar V, Tailor PB, Biswal BK. Identification of probable inhibitors for the DNA polymerase of the Monkeypox virus through the virtual screening approach. Int J Biol Macromol 2023; 229:515-528. [PMID: 36584781 PMCID: PMC9794403 DOI: 10.1016/j.ijbiomac.2022.12.252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Given the paucity of antiviral treatments for monkeypox disease, caused by the Monkeypox virus (MPXV), there is a pressing need for the development/identification of new drugs to treat the infection. MPXV possesses a linear dsDNA genome that is replicated by a DNA replication complex of which DNA polymerase (DPol) forms an important component. Owing to the importance of DPol in the viral life cycle, identifying/designing small molecules abolishing its function could yield new antivirals. In this study, we first used the AlphaFold artificial intelligence program to model the 3D structure of the MPXV DPol; like the fold of DPol from other organisms, the MPXV DPol structure has the characteristic exonuclease, thumb, palm, and fingers sub-domains arrangement. Subsequently, we have identified several inhibitors through virtual screening of ZINC and antiviral libraries. Molecules with phenyl scaffold along with alanine-based and tetrazole-based molecules showed the best docking score of -8 to -10 kcal/mol. These molecules bind in the palm and fingers sub-domains interface region, which partially overlaps with the DNA binding path. The delineation of DPol/inhibitor interactions showed that majorly active site residues ASP549, ASP753, TYR550, ASN551, SER552, and ASN665 interact with the inhibitors. These compounds exhibit good Absorption, Distribution, Metabolism and Excretion properties.
Collapse
Affiliation(s)
- Swati Kumari
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sayan Chakraborty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohammed Ahmad
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Varun Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Bichitra K Biswal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
16
|
Peng Q, Xie Y, Kuai L, Wang H, Qi J, Gao GF, Shi Y. Structure of monkeypox virus DNA polymerase holoenzyme. Science 2023; 379:100-105. [PMID: 36520947 DOI: 10.1126/science.ade6360] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The World Health Organization declared mpox (or monkeypox) a public health emergency of international concern in July 2022, and prophylactic and therapeutic measures are in urgent need. The monkeypox virus (MPXV) has its own DNA polymerase F8, together with the processive cofactors A22 and E4, constituting the polymerase holoenzyme for genome replication. Here, we determined the holoenzyme structure in complex with DNA using cryo-electron microscopy at the global resolution of ~2.8 angstroms. The holoenzyme possesses an architecture that suggests a "forward sliding clamp" processivity mechanism for viral DNA replication. MPXV polymerase has a DNA binding mode similar to that of other B-family DNA polymerases from different species. These findings reveal the mechanism of the MPXV genome replication and may guide the development of anti-poxvirus drugs.
Collapse
Affiliation(s)
- Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yufeng Xie
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lu Kuai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Future Technology, Peking University, Beijing 100871, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing 100101, China.,Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing 100101, China.,Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| |
Collapse
|
17
|
Byareddy SN, Sharma K, Sachdev S, Reddy AS, Acharya A, Klaustermeier KM, Lorson CL, Singh K. Potential therapeutic targets for Mpox: the evidence to date. Expert Opin Ther Targets 2023; 27:419-431. [PMID: 37368464 PMCID: PMC10722886 DOI: 10.1080/14728222.2023.2230361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The global Mpox (MPX) disease outbreak caused by the Mpox virus (MPXV) in 2022 alarmed the World Health Organization (WHO) and health regulation agencies of individual countries leading to the declaration of MPX as a Public Health Emergency. Owing to the genetic similarities between smallpox-causing poxvirus and MPXV, vaccine JYNNEOS, and anti-smallpox drugs Brincidofovir and Tecovirimat were granted emergency use authorization by the United States Food and Drug Administration. The WHO also included cidofovir, NIOCH-14, and other vaccines as treatment options. AREAS COVERED This article covers the historical development of EUA-granted antivirals, resistance to these antivirals, and the projected impact of signature mutations on the potency of antivirals against currently circulating MPXV. Since a high prevalence of MPXV infections in individuals coinfected with HIV and MPXV, the treatment results among these individuals have been included. EXPERT OPINION All EUA-granted drugs have been approved for smallpox treatment. These antivirals show good potency against Mpox. However, conserved resistance mutation positions in MPXV and related poxviruses, and the signature mutations in the 2022 MPXV can potentially compromise the efficacy of the EUA-granted treatments. Therefore, MPXV-specific medications are required not only for the current but also for possible future outbreaks.
Collapse
Affiliation(s)
- Siddappa N Byareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Shrikesh Sachdev
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Athreya S. Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Department of Pharmaceutical Chemistry, DPSRU, New Delhi-110017
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Kannan SR, Sachdev S, Reddy AS, Kandasamy SL, Byrareddy SN, Lorson CL, Singh K. Mutations in the monkeypox virus replication complex: Potential contributing factors to the 2022 outbreak. J Autoimmun 2022; 133:102928. [PMID: 36252459 PMCID: PMC9562781 DOI: 10.1016/j.jaut.2022.102928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Attributes contributing to the current monkeypox virus (MPXV) outbreak remain unknown. It has been established that mutations in viral proteins may alter phenotype and pathogenicity. To assess if mutations in the MPXV DNA replication complex (RC) contribute to the outbreak, we conducted a temporal analysis of available MPXV sequences to identify mutations, generated a DNA replication complex (RC) using structures of related viral and eukaryotic proteins, and structure prediction method AlphaFold. Ten mutations within the RC were identified and mapped onto the RC to infer role of mutations. Two mutations in F8L (RC catalytic subunit), and two in G9R (a processivity factor) were ∼100% prevalent in the 2022 sequences. F8L mutation L108F emerged in 2022, whereas W411L emerged in 2018, and persisted in 2022. L108 is topologically located to enhance DNA binding affinity of F8L. Therefore, mutation L108F can change the fidelity, sensitivity to nucleoside inhibitors, and processivity of F8L. Surface exposed W411L likely affects the binding of regulatory factor(s). G9R mutations S30L and D88 N in G9R emerged in 2022, and may impact the interaction of G9R with E4R (uracil DNA glycosylase). The remaining six mutations that appeared in 2001, reverted to the first (1965 Rotterdam) isolate. Two nucleoside inhibitors brincidofovir and cidofovir have been approved for MPXV treatment. Cidofovir resistance in vaccinia virus is achieved by A314T and A684V mutations. Both A314 and A684 are conserved in MPXV. Therefore, resistance to these drugs in MPXV may arise through similar mechanisms.
Collapse
Affiliation(s)
- Saathvik R Kannan
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Shrikesh Sachdev
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Athreya S Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Christian L Lorson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
19
|
Abstract
Genetic recombination is used as a tool for modifying the composition of poxvirus genomes in both discovery and applied research. This review documents the history behind the development of these tools as well as what has been learned about the processes that catalyze virus recombination and the links between it and DNA replication and repair. The study of poxvirus recombination extends back to the 1930s with the discovery that one virus can reactivate another by a process later shown to generate recombinants. In the years that followed it was shown that recombinants can be produced in virus-by-virus crosses within a genus (e.g., variola-by-rabbitpox) and efforts were made to produce recombination-based genetic maps with modest success. The marker rescue mapping method proved more useful and led to methods for making genetically engineered viruses. Many further insights into the mechanism of recombination have been provided by transfection studies which have shown that this is a high-frequency process associated with hybrid DNA formation and inextricably linked to replication. The links reflect the fact that poxvirus DNA polymerases, specifically the vaccinia virus E9 enzyme, can catalyze strand transfer in in vivo and in vitro reactions dependent on the 3'-to-5' proofreading exonuclease and enhanced by the I3 replicative single-strand DNA binding protein. These reactions have shaped the composition of virus genomes and are modulated by constraints imposed on virus-virus interactions by viral replication in cytoplasmic factories. As recombination reactions are used for replication fork assembly and repair in many biological systems, further study of these reactions may provide new insights into still poorly understood features of poxvirus DNA replication.
Collapse
Affiliation(s)
- David Hugh Evans
- Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, The University of Alberta, Edmonton, AB T6G 2J7, Canada
| |
Collapse
|
20
|
Boutin L, Mosca E, Iseni F. Efficient Method for Generating Point Mutations in the Vaccinia Virus Genome Using CRISPR/Cas9. Viruses 2022; 14:v14071559. [PMID: 35891539 PMCID: PMC9321979 DOI: 10.3390/v14071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
The vaccinia virus (VACV) was previously used as a vaccine for smallpox eradication. Nowadays, recombinant VACVs are developed as vaccine platforms for infectious disease prevention and cancer treatment. The conventional method for genome editing of the VACV is based on homologous recombination, which is poorly efficient. Recently, the use of CRISPR/Cas9 technology was shown to greatly improve the speed and efficiency of the production of recombinant VACV expressing a heterologous gene. However, the ability to rapidly recover viruses bearing single nucleotide substitutions is still challenging. Notwithstanding, ongoing studies on the VACV and its interaction with the host cell could benefit from viral gene targeted mutagenesis. Here, we present a modified version of the CRISPR/Cas9 system for the rapid selection of mutant VACV carrying point mutations. For this purpose, we introduced a silent mutation into the donor gene (which will replace the wildtype gene) that serves a double function: it is located in the PAM (NGG) sequence, which is essential for Cas9 cleavage, and it alters a restriction site. This silent mutation, once introduced into the VACV genome, allows for rapid selection and screening of mutant viruses carrying a mutation of interest in the targeted gene. As a proof of concept, we produced several recombinant VACVs, with mutations in the E9L gene, upon which, phenotypic analysis was performed.
Collapse
|
21
|
Abstract
Poxviruses, of which vaccinia virus is the prototype, are a large family of double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells. This physical and genetic autonomy from the host cell nucleus necessitates that these viruses encode most, if not all, of the proteins required for replication in the cytoplasm. In this review, we follow the life of the viral genome through space and time to address some of the unique challenges that arise from replicating a 195-kb DNA genome in the cytoplasm. We focus on how the genome is released from the incoming virion and deposited into the cytoplasm; how the endoplasmic reticulum is reorganized to form a replication factory, thereby compartmentalizing and helping to protect the replicating genome from immune sensors; how the cellular milieu is tailored to support high-fidelity replication of the genome; and finally, how newly synthesized genomes are faithfully and specifically encapsidated into new virions. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew D Greseth
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA;
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA; .,Department of Microbiology and Immunology, The Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
22
|
Andrei G, Fiten P, Krečmerová M, Opdenakker G, Topalis D, Snoeck R. Poxviruses Bearing DNA Polymerase Mutations Show Complex Patterns of Cross-Resistance. Biomedicines 2022; 10:biomedicines10030580. [PMID: 35327382 PMCID: PMC8945813 DOI: 10.3390/biomedicines10030580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/06/2023] Open
Abstract
Despite the eradication of smallpox four decades ago, poxviruses continue to be a threat to humans and animals. The arsenal of anti-poxvirus agents is very limited and understanding mechanisms of resistance to agents targeting viral DNA polymerases is fundamental for the development of antiviral therapies. We describe here the phenotypic and genotypic characterization of poxvirus DNA polymerase mutants isolated under selective pressure with different acyclic nucleoside phosphonates, including HPMPC (cidofovir), cHPMPC, HPMPA, cHPMPA, HPMPDAP, HPMPO-DAPy, and PMEO-DAPy, and the pyrophosphate analogue phosphonoacetic acid. Vaccinia virus (VACV) and cowpox virus drug-resistant viral clones emerging under drug pressure were characterized phenotypically (drug-susceptibility profile) and genotypically (DNA polymerase sequencing). Different amino acid changes in the polymerase domain and in the 3′-5′ exonuclease domain were linked to drug resistance. Changes in the 3′-5′ domain emerged earlier than in the polymerase domain when viruses acquired a combination of mutations. Our study highlights the importance of poxvirus DNA polymerase residues 314, 613, 684, 688, and 851, previously linked to drug resistance, and identified several novel mutations in the 3′-5′ exonuclease domain (M313I, F354L, D480Y) and in the DNA polymerase domain (A632T, T831I, E856K, L924F) associated with different drug-susceptibility profiles. Furthermore, a combination of mutations resulted in complex patterns of cross-resistance. Modeling of the VACV DNA polymerase bearing the newly described mutations was performed to understand the effects of these mutations on the structure of the viral enzyme. We demonstrated the emergence of drug-resistant DNA polymerase mutations in complex patterns to be considered in case such mutations should eventually arise in the clinic.
Collapse
Affiliation(s)
- Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1030, 3000 Leuven, Belgium; (D.T.); (R.S.)
- Correspondence: ; Tel.: +32-16-32-19-51
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1044, 3000 Leuven, Belgium; (P.F.); (G.O.)
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 166 10 Prague, Czech Republic;
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1044, 3000 Leuven, Belgium; (P.F.); (G.O.)
| | - Dimitrios Topalis
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1030, 3000 Leuven, Belgium; (D.T.); (R.S.)
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1030, 3000 Leuven, Belgium; (D.T.); (R.S.)
| |
Collapse
|
23
|
Selection of Primer–Template Sequences That Bind with Enhanced Affinity to Vaccinia Virus E9 DNA Polymerase. Viruses 2022; 14:v14020369. [PMID: 35215961 PMCID: PMC8880465 DOI: 10.3390/v14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
A modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment) pr,otocol (referred to as PT SELEX) was used to select primer–template (P/T) sequences that bound to the vaccinia virus polymerase catalytic subunit (E9) with enhanced affinity. A single selected P/T sequence (referred to as E9-R5-12) bound in physiological salt conditions with an apparent equilibrium dissociation constant (KD,app) of 93 ± 7 nM. The dissociation rate constant (koff) and binding half-life (t1/2) for E9-R5-12 were 0.083 ± 0.019 min−1 and 8.6 ± 2.0 min, respectively. The values indicated a several-fold greater binding ability compared to controls, which bound too weakly to be accurately measured under the conditions employed. Loop-back DNA constructs with 3′-recessed termini derived from E9-R5-12 also showed enhanced binding when the hybrid region was 21 nucleotides or more. Although the sequence of E9-R5-12 matched perfectly over a 12-base-pair segment in the coding region of the virus B20 protein, there was no clear indication that this sequence plays any role in vaccinia virus biology, or a clear reason why it promotes stronger binding to E9. In addition to E9, five other polymerases (HIV-1, Moloney murine leukemia virus, and avian myeloblastosis virus reverse transcriptases (RTs), and Taq and Klenow DNA polymerases) have demonstrated strong sequence binding preferences for P/Ts and, in those cases, there was biological or potential evolutionary relevance. For the HIV-1 RT, sequence preferences were used to aid crystallization and study viral inhibitors. The results suggest that several other DNA polymerases may have P/T sequence preferences that could potentially be exploited in various protocols.
Collapse
|
24
|
Simpkin AJ, Rodríguez FS, Mesdaghi S, Kryshtafovych A, Rigden DJ. Evaluation of model refinement in CASP14. Proteins 2021; 89:1852-1869. [PMID: 34288138 PMCID: PMC8616799 DOI: 10.1002/prot.26185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
We report here an assessment of the model refinement category of the 14th round of Critical Assessment of Structure Prediction (CASP14). As before, predictors submitted up to five ranked refinements, along with associated residue-level error estimates, for targets that had a wide range of starting quality. The ability of groups to accurately rank their submissions and to predict coordinate error varied widely. Overall, only four groups out-performed a "naïve predictor" corresponding to the resubmission of the starting model. Among the top groups, there are interesting differences of approach and in the spread of improvements seen: some methods are more conservative, others more adventurous. Some targets were "double-barreled" for which predictors were offered a high-quality AlphaFold 2 (AF2)-derived prediction alongside another of lower quality. The AF2-derived models were largely unimprovable, many of their apparent errors being found to reside at domain and, especially, crystal lattice contacts. Refinement is shown to have a mixed impact overall on structure-based function annotation methods to predict nucleic acid binding, spot catalytic sites, and dock protein structures.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
- Life Science, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, England
| | - Shahram Mesdaghi
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | | | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
25
|
Huang YJ, Zhang N, Bersch B, Fidelis K, Inouye M, Ishida Y, Kryshtafovych A, Kobayashi N, Kuroda Y, Liu G, LiWang A, Swapna GVT, Wu N, Yamazaki T, Montelione GT. Assessment of prediction methods for protein structures determined by NMR in CASP14: Impact of AlphaFold2. Proteins 2021; 89:1959-1976. [PMID: 34559429 PMCID: PMC8616817 DOI: 10.1002/prot.26246] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
NMR studies can provide unique information about protein conformations in solution. In CASP14, three reference structures provided by solution NMR methods were available (T1027, T1029, and T1055), as well as a fourth data set of NMR‐derived contacts for an integral membrane protein (T1088). For the three targets with NMR‐based structures, the best prediction results ranged from very good (GDT_TS = 0.90, for T1055) to poor (GDT_TS = 0.47, for T1029). We explored the basis of these results by comparing all CASP14 prediction models against experimental NMR data. For T1027, NMR data reveal extensive internal dynamics, presenting a unique challenge for protein structure prediction methods. The analysis of T1029 motivated exploration of a novel method of “inverse structure determination,” in which an AlphaFold2 model was used to guide NMR data analysis. NMR data provided to CASP predictor groups for target T1088, a 238‐residue integral membrane porin, was also used to assess several NMR‐assisted prediction methods. Most groups involved in this exercise generated similar beta‐barrel models, with good agreement with the experimental data. However, as was also observed in CASP13, some pure prediction groups that did not use any NMR data generated models for T1088 that better fit the NMR data than the models generated using these experimental data. These results demonstrate the remarkable power of modern methods to predict structures of proteins with accuracies rivaling solution NMR structures, and that it is now possible to reliably use prediction models to guide and complement experimental NMR data analysis.
Collapse
Affiliation(s)
- Yuanpeng Janet Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ning Zhang
- Department of Chemistry and Biochemistry, University of California, Merced, California, USA
| | - Beate Bersch
- Biomolecular NMR Spectroscopy Group, Institut de Biologie Structurale, UMD-5075, CNRS-CEA-UJF, Grenoble, France
| | | | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.,Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Yojiro Ishida
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.,Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | | | - Naohiro Kobayashi
- NMR Science and Development Division, RSC, RIKEN, Yokohama, Kanagawa, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Gaohua Liu
- Nexomics Biosciences, Inc., Rocky Hill, New Jersey, USA
| | - Andy LiWang
- Department of Chemistry and Biochemistry, University of California, Merced, California, USA.,Center for Cellular and Biomolecular Machines and Health Sciences Research Institute, University of California, Merced, California, USA
| | - G V T Swapna
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Nan Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Toshio Yamazaki
- NMR Science and Development Division, RSC, RIKEN, Yokohama, Kanagawa, Japan
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
26
|
Bersch B, Tarbouriech N, Burmeister WP, Iseni F. Solution Structure of the C-terminal Domain of A20, the Missing Brick for the Characterization of the Interface between Vaccinia Virus DNA Polymerase and its Processivity Factor. J Mol Biol 2021; 433:167009. [PMID: 33901538 DOI: 10.1016/j.jmb.2021.167009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022]
Abstract
Poxviruses are enveloped viruses with a linear, double-stranded DNA genome. Viral DNA synthesis is achieved by a functional DNA polymerase holoenzyme composed of three essential proteins. For vaccinia virus (VACV) these are E9, the catalytic subunit, a family B DNA polymerase, and the heterodimeric processivity factor formed by D4 and A20. The A20 protein links D4 to the catalytic subunit. High-resolution structures have been obtained for the VACV D4 protein in complex with an N-terminal fragment of A20 as well as for E9. In addition, biochemical studies provided evidence that a poxvirus-specific insertion (insert 3) in E9 interacts with the C-terminal residues of A20. Here, we provide solution structures of two different VACV A20 C-terminal constructs containing residues 304-426, fused at their C-terminus to either a BAP (Biotin Acceptor Peptide)-tag or a short peptide containing the helix of E9 insert 3. Together with results from titration studies, these structures shed light on the molecular interface between the catalytic subunit and the processivity factor component A20. The interface comprises hydrophobic residues conserved within the Chordopoxvirinae subfamily. Finally, we constructed a HADDOCK model of the VACV A20304-426-E9 complex, which is in excellent accordance with previous experimental data.
Collapse
Affiliation(s)
- Beate Bersch
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France.
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Wim P Burmeister
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP73, F-91223 Brétigny-sur-Orge Cedex, France
| |
Collapse
|
27
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
28
|
Kazlauskas D, Krupovic M, Guglielmini J, Forterre P, Venclovas Č. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res 2020; 48:10142-10156. [PMID: 32976577 PMCID: PMC7544198 DOI: 10.1093/nar/gkaa760] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Julien Guglielmini
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Patrick Forterre
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| |
Collapse
|
29
|
Abstract
Forty years after the last endemic smallpox case, variola virus (VARV) is still considered a major threat to humans due to its possible use as a bioterrorism agent. For many years, the risk of disease reemergence was thought to solely be through deliberate misuse of VARV strains kept in clandestine laboratories. However, recent experiments using synthetic biology have proven the feasibility of recreating a poxvirus de novo, implying that VARV could, in theory, be resurrected. Because of this new perspective, the WHO Advisory Committee on VARV Research released new recommendations concerning research on poxviruses that strongly encourages pursuing the development of new antiviral drugs against orthopoxviruses. In 2018, the U.S. FDA advised in favor of two molecules for smallpox treatment, tecovirimat and brincidofovir. This review highlights the difficulties to develop new drugs targeting an eradicated disease, especially as it requires working under the FDA "animal efficacy rule" with the few, and imperfect, animal models available.
Collapse
|
30
|
Tramontano E, Tarbet B, Spengler JR, Seley-Radtke K, Meier C, Jordan R, Janeba Z, Gowen B, Gentry B, Esté JA, Bray M, Andrei G, Schang LM. Meeting report: 32nd International Conference on Antiviral Research. Antiviral Res 2019; 169:104550. [PMID: 31302149 PMCID: PMC7105345 DOI: 10.1016/j.antiviral.2019.104550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022]
Abstract
The 32nd International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held in Baltimore, Maryland, USA, on May 12-15, 2019. This report gives an overview of the conference on behalf of the Society. It provides a general review of the meeting and awardees, summarizing the presentations, and their main conclusions from the perspective of researchers active in many different areas of antiviral research and development. As in past years, ICAR promoted and showcased the most recent progress in antiviral research, and continued to foster collaborations and interactions in drug discovery and development. The 33rd ICAR will be held in Seattle, Washington, USA, March 30th-April 3rd, 2020.
Collapse
Affiliation(s)
- Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Bart Tarbet
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research Utah State University, Logan, UT, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Chris Meier
- Department of Chemistry, Organic Chemistry, Faculty of Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | | | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, CZ-16610, Prague 6, Czech Republic
| | - Brian Gowen
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research Utah State University, Logan, UT, USA
| | - Brian Gentry
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - José A. Esté
- AIDS Research Institute - Irsicaixa, Hospital Germans Trias I Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | | | - Graciela Andrei
- KU Leuven, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Luis M. Schang
- Baker Institute Cornell University, 235 Hungerford Hill Road, Ithaca, NY, USA,Corresponding author
| | | |
Collapse
|
31
|
Gupta K, Tölzer C, Sari-Ak D, Fitzgerald DJ, Schaffitzel C, Berger I. MultiBac: Baculovirus-Mediated Multigene DNA Cargo Delivery in Insect and Mammalian Cells. Viruses 2019; 11:E198. [PMID: 30813511 PMCID: PMC6466381 DOI: 10.3390/v11030198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
The baculovirus/insect cell system (BICS) is widely used in academia and industry to produce eukaryotic proteins for many applications, ranging from structure analysis to drug screening and the provision of protein biologics and therapeutics. Multi-protein complexes have emerged as vital catalysts of cellular function. In order to unlock the structure and mechanism of these essential molecular machines and decipher their function, we developed MultiBac, a BICS particularly tailored for heterologous multigene transfer and multi-protein complex production. Baculovirus is unique among common viral vectors in its capacity to accommodate very large quantities of heterologous DNA and to faithfully deliver this cargo to a host cell of choice. We exploited this beneficial feature to outfit insect cells with synthetic DNA circuitry conferring new functionality during heterologous protein expression, and developing customized MultiBac baculovirus variants in the process. By altering its tropism, recombinant baculovirions can be used for the highly efficient delivery of a customized DNA cargo in mammalian cells and tissues. Current advances in synthetic biology greatly facilitate the construction or recombinant baculoviral genomes for gene editing and genome engineering, mediated by a MultiBac baculovirus tailored to this purpose. Here, recent developments and exploits of the MultiBac system are presented and discussed.
Collapse
Affiliation(s)
- Kapil Gupta
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Christine Tölzer
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Duygu Sari-Ak
- European Molecular Biology Laboratory EMBL, 71 Avenue des Martyrs, 38000 Grenoble, France.
| | | | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| |
Collapse
|
32
|
Pradines B, Rogier C. Contribution of the French army health service in support of expertise and research in infectiology in Africa. New Microbes New Infect 2018; 26:S78-S82. [PMID: 30402247 PMCID: PMC6205563 DOI: 10.1016/j.nmni.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022] Open
Abstract
Historically, infectious diseases have caused more casualties than battle. The French military health service therefore developed a range of research on vector-borne diseases such as malaria and arboviruses, antibiotic resistance, infectious agents that can be used as biological weapons and vaccines. The main objective is to control naturally acquired or provoked infectious diseases and limit their impact on armed forces as well as on civilian populations in France or abroad, particularly in Africa and anywhere French armies may be deployed. The expertise of the military health service teams in manipulating agents requiring high level of biosafety precautions and in organizing and providing medical care in unnatural conditions, including the battlefield, associated with complementarity staff experience (physicians, biologists, epidemiologists, researchers, pharmacists, logisticians), has been used in the management of the Ebola outbreak in Guinea.
Collapse
Affiliation(s)
- B. Pradines
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de recherche biomédicale des armées, Institut hospitalo-universitaire (IHU) Méditerranée Infection, Marseille, France
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
- Centre national de référence du paludisme, Institut hospitalo-universitaire (IHU) Méditerranée Infection, Marseille, France
| | - C. Rogier
- Division Expertise et stratégie santé de défense, Direction centrale du service de santé des armées, Paris, France
| |
Collapse
|
33
|
Delaune D, Iseni F, Ferrier-Rembert A, Peyrefitte CN, Ferraris O. The French Armed Forces Virology Unit: A Chronological Record of Ongoing Research on Orthopoxvirus. Viruses 2017; 10:E3. [PMID: 29295488 PMCID: PMC5795416 DOI: 10.3390/v10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses.
Collapse
Affiliation(s)
- Déborah Delaune
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Frédéric Iseni
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Audrey Ferrier-Rembert
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Christophe N Peyrefitte
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Olivier Ferraris
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| |
Collapse
|