1
|
Fu B, Bai W, Li Y, Jiang W. Synthesis and aromaticity of metallacyclopropene complexes. Chem Commun (Camb) 2024; 60:12816-12829. [PMID: 39377149 DOI: 10.1039/d4cc04401k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Metallacycloprop-1-ene and metallacycloprop-2-ene complexes are the smallest unsaturated metallacycles, and have attracted continuing attention for their importance in organometallic synthesis and catalysis. This feature article summarizes the syntheses of monocyclic and fused metallacycloprop-2-enes, and monocyclic, spiro, and fused metallacycloprop-1-enes, all with crystallographically characterized structures. The aromatic properties of mononuclear metallacyclopropene complexes are also described.
Collapse
Affiliation(s)
- Bingjie Fu
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Wei Bai
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yang Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China
| | - Wenfeng Jiang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
2
|
Xing JF, Tan YZ, Zhu J. Probing σ-Aromaticity-Driven Ring Contraction of Metallabenzocyclobutadiene to Metallabenzocyclopropene. Inorg Chem 2024; 63:13903-13910. [PMID: 39014892 DOI: 10.1021/acs.inorgchem.4c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Ring contraction of metallacyclobutadiene to metallacyclopropene is rare because of the increasing strain from a four-membered ring to a three-membered one. Here we demonstrate a new series of reactions of metallabenzocyclobutadiene to metallabenzocyclopropene via density functional theory calculations. The results suggest that these reactions are thermodynamically favorable ranging from -17.4 to -29.4 kcal mol-1, and a low reaction barrier (10.3 kcal mol-1) is achieved when the metal center is Ru and the ligands are one cyanide and one chloride. Further analysis suggests that a strengthened binding energy helps stabilize the transition state in the protonation process. The aromaticity during the reaction was investigated using the electron density of delocalized bonds (EDDB), isomerization stabilization energy, and isodesmic reactions. The EDDB shows that the π-conjugation is disrupted in the intermediate, and then σ-aromaticity is generated and dominant in the products. Our findings could be helpful for experimentalists in developing novel ring contraction reactions driven by aromaticity.
Collapse
Affiliation(s)
- Jiang-Feng Xing
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
3
|
Xu B, Mao W, Lu Z, Cai Y, Chen D, Xia H. Syntheses and reactivities of strained fused-ring metallaaromatics containing planar eleven-carbon chains. Nat Commun 2024; 15:4378. [PMID: 38782900 PMCID: PMC11116401 DOI: 10.1038/s41467-024-48835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Carbolong complexes are one of the primary types of metallaaromatics, and they include metallapentalynes and metallapentalenes. A series of 7C-10C and 12C-carbolong complexes with planar ligand skeletons respectively containing 7-10 and 12 carbon atoms in their backbones, have been previously reported. Herein, two classes of strained substances, metallabenzyne-fused metallapentalenes and metallabenzene-fused metallapentalynes, were prepared, both representing 11C-carbolong complexes with a planar carbon-chain ligand. Furthermore, the former type is also the carbolong derivatives containing a metallabenzyne skeleton, another primary metallaaromatic framework. Metallabenzyne-fused metallapentalenes show versatile reactivities, and the most interesting one is the metal carbyne bond shift from a 6-membered to a more strained 5-membered ring, affording the above-mentioned metallabenzene-fused metallapentalyne. This work makes carbolong chemistry more complete, and provides a method to achieve metallabenzynes, which is anticipated to concurrently advance the development of these two types of metallaaromatics.
Collapse
Affiliation(s)
- Binbin Xu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wei Mao
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Yuanting Cai
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
- Southern University of Science and Technology Guangming Advanced Research Institute, Shenzhen, China.
| |
Collapse
|
4
|
Zhu Q, Chen S, Chen D, Lin L, Xiao K, Zhao L, Solà M, Zhu J. The application of aromaticity and antiaromaticity to reaction mechanisms. FUNDAMENTAL RESEARCH 2023; 3:926-938. [PMID: 38933008 PMCID: PMC11197727 DOI: 10.1016/j.fmre.2023.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2024] Open
Abstract
Aromaticity, in general, can promote a given reaction by stabilizing a transition state or a product via a mobility of π electrons in a cyclic structure. Similarly, such a promotion could be also achieved by destabilizing an antiaromatic reactant. However, both aromaticity and transition states cannot be directly measured in experiment. Thus, computational chemistry has been becoming a key tool to understand the aromaticity-driven reaction mechanisms. In this review, we will analyze the relationship between aromaticity and reaction mechanism to highlight the importance of density functional theory calculations and present it according to an approach via either aromatizing a transition state/product or destabilizing a reactant by antiaromaticity. Specifically, we will start with a particularly challenging example of dinitrogen activation followed by other small-molecule activation, C-F bond activation, rearrangement, as well as metathesis reactions. In addition, antiaromaticity-promoted dihydrogen activation, CO2 capture, and oxygen reduction reactions will be also briefly discussed. Finally, caution must be cast as the magnitude of the aromaticity in the transition states is not particularly high in most cases. Thus, a proof of an adequate electron delocalization rather than a complete ring current is recommended to support the relatively weak aromaticity in these transition states.
Collapse
Affiliation(s)
- Qin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shuwen Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dandan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kui Xiao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Miquel Solà
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
5
|
Fu B, Bai W, Zhao Y, Li Y, Jiang W. Fused metallacyclopropenes from alkynylphenols. Chem Commun (Camb) 2023; 59:11085-11088. [PMID: 37641935 DOI: 10.1039/d3cc03084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Metallacycloprop-1-enes can be constructed from coordinated alkynes. In this work, we report a convenient synthesis of fused osmacyclopropene complexes 1 and 3 from OsCl2(PPh3)3 and alkynylphenols. Paramagnetic alkyne-coordinated phenolate complexes 2 were obtained as the key intermediates for the formation of osmacyclopropenes, demonstrating selective CC activation under different conditions.
Collapse
Affiliation(s)
- Bingjie Fu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China.
| | - Wei Bai
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China.
| | - Yue Zhao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China.
| | - Yang Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Wenfeng Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China.
| |
Collapse
|
6
|
Li Q, Fei J, Ruan K, Hua Y, Chen D, Luo M, Xia H. Reshaping aromatic frameworks: expansion of aromatic system drives metallabenzenoids to metallapentalenes. Chem Sci 2023; 14:5672-5680. [PMID: 37265719 PMCID: PMC10231429 DOI: 10.1039/d3sc01491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/22/2023] [Indexed: 06/03/2023] Open
Abstract
Reshaping an aromatic framework to generate other skeletons is a challenging issue due to the stabilization energy of aromaticity. Such reconfigurations of aromatics commonly generate non-aromatic products and hardly ever reshape to a different aromatic framework. Herein, we present the transformation of metallaindenols to metallapentalenes and metallaindenes in divergent pathways, converting one aromatic framework to another with an extension of the conjugation framework. The mechanistic study of this transformation shows that phosphorus ligands play different roles in the divergent processes. Further theoretical studies indicate that the expansion of the aromatic system is the driving force promoting this skeletal rearrangement. Our findings offer a new concept and strategy to reshape and construct aromatic compounds.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yuhui Hua
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Ming Luo
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
7
|
Tang C, Jiang XL, Chen S, Hong W, Li J, Xia H. Stereoelectronic Modulation of a Single-Molecule Junction through a Tunable Metal-Carbon dπ-pπ Hyperconjugation. J Am Chem Soc 2023; 145:10404-10410. [PMID: 37121913 DOI: 10.1021/jacs.3c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Conjugated molecules play a critical role in the construction of single-molecule devices. However, most conventional conjugated molecules, such as hydrocarbons, involve only a pπ-pπ conjugation of light elements. While the metal d-orbitals can introduce abundant electronic effects to achieve novel electronic properties, it is very scarce for the charge transport study of dπ-pπ conjugated pathways with a metal involved. Here, we employed the single-molecule break junction technique to investigate the charge transport through dπ-pπ conjugated backbones with metal-carbon multiple bonds integrated into the alternative conjugated pathways. The involved dπ-pπ conjugation not only supports high conductivity comparable to that of conjugated hydrocarbons but also significantly enhances the tunable diversity in electronic properties through the metal-induced secondary interaction. Specifically, the introduction of the metal brings an unconventionally stereoelectronic effect triggered by metal-carbon dπ-pπ hyperconjugation, which can be tuned by protonation taking place on the metal-carbon multiple bonds, collectively modulating the single-molecule rectification feature and transmission mechanism. This work demonstrates the promise of utilizing the diverse electronic effect of metals to design molecular devices.
Collapse
Affiliation(s)
- Chun Tang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xue-Lian Jiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiyan Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Li Q, Hua Y, Tang C, Chen D, Luo M, Xia H. Isolation, Reactivity, and Tunable Properties of a Strained Antiaromatic Osmacycle. J Am Chem Soc 2023; 145:7580-7591. [PMID: 36952602 DOI: 10.1021/jacs.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Strain and antiaromaticity in compounds are recognized as two substantial destabilizing features, and consequently, realization of dual destabilizing features in a single molecule is challenging and far more difficult in a single ring. Moreover, transformation of an antiaromatic framework to different antiaromatic or aromatic species is a significant subject in antiaromatic chemistry and has attracted increasing interest. In this work, we isolated a highly strained antiaromatic metallacycle in which a cyclic metal vinylidene unit is embedded. Computational studies revealed its ring strain energies and antiaromatic character and showed that the metal incorporation and the phosphonium substituents play a crucial role in its stabilization. The mechanism of its formation has been illustrated by density functional theory (DFT) calculations and the isolation of a key intermediate. We further discovered diverse reactivities and structural reshuffling of this unusual strained antiaromatic complex according to its two destabilizing characters. We obtained two isomers of metallaindenes fused with oxiranes from the direct oxidation of the metal vinylidene or by nucleophilic addition to an isolated metallacyclocumulene formed by the reaction of metal vinylidene with hydroxide ion, achieving a reconfiguration of the antiaromatic framework. Transformations of the antiaromatic metallacycle by electrophiles to various aromatic metallaindynes have been achieved, and that a condensed Fukui function was employed to confirm the regioselectivity of the electrophilic additions, and the acid/base-induced aromaticity switch along with tunable photophysical properties were investigated. These interesting transformations not only enrich the chemistry of metal vinylidenes and antiaromatics and could also perform potentially as switchable optical materials.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuhui Hua
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Ming Luo
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
9
|
Fei Yang X, Zhang MX, Bin Fu D, Wang Y, Yin J, Hua Liu S. Pentacyclic and Hexacyclic Osmaarynes and Their Derivatives. Chemistry 2022; 28:e202202334. [PMID: 36198664 DOI: 10.1002/chem.202202334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/07/2022]
Abstract
Although osmabenzyne, osmanaphthalyne, osmaphenanthryne, and osmaanthracyne have been previously reported, the synthesis of polycyclic osmaarynes is still a challenge. Herein, we report the successful synthesis of the first pentacyclic osmaarynes (pyreno[b]osmabenzynes 1 a and 2 a) and hexacyclic osmaaryne (peryleno[b]osmabenzyne 3 a). Nucleophilic reaction of osmaarynes was used to obtain the corresponding pyreno[b]osmium complexes (1 and 2) and peryleno[b] osmium complex (3), which exhibited near-infrared luminescence and aggregation-induced emission (AIE) properties. Complexes 2 and 3 are resistant to photodegradation, and complex 2 has better photothermal conversion properties than 3.
Collapse
Affiliation(s)
- Xiao Fei Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Ming-Xing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
- Hubei Key Laboratory of Purification and Application of, Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, 430205, Wuhan, P. R. China
| | - De Bin Fu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Yang Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| |
Collapse
|
10
|
Bai W, Tsang LY, Wang Y, Li Y, Sung HHY, Williams ID, Jia G. Synthesis and characterization of bi(metallacycloprop-1-ene) complexes. Chem Sci 2022; 14:96-102. [PMID: 36605739 PMCID: PMC9769101 DOI: 10.1039/d2sc05378k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
In all previously reported metallacycloprop-1-ene or η2-vinyl complexes, the metal center bears only one vinyl moiety. We have now successfully synthesized and structurally characterized the first complexes bearing two η2-vinyl moieties or spiro bi(metallacycloprop-1-ene) complexes from reactions of alkynes with rhenium phosphine complexes. Computational studies indicate that the metallacycloprop-1-ene rings are aromatic and the complexes represent a rare σ-type spirometalla-aromatic system.
Collapse
Affiliation(s)
- Wei Bai
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China,State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of TechnologyLiaoning 116024P. R. China
| | - Long Yiu Tsang
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China
| | - Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of TechnologyLiaoning 116024P. R. China,School of Chemical Engineering, Dalian University of TechnologyPanjinLiaoning 124221P. R. China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of TechnologyLiaoning 116024P. R. China,School of Chemical Engineering, Dalian University of TechnologyPanjinLiaoning 124221P. R. China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China
| |
Collapse
|
11
|
Huang F, Yan Z, Zheng X, Cai Y, Zhang H, Xia H. One‐Pot Synthesis of High‐Strained Metal Vinylidene and Metal Carbyne. Chemistry 2022; 28:e202201229. [DOI: 10.1002/chem.202201229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Fanping Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Zhewei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xuejuan Zheng
- Shenzhen Grubbs Institute Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Yapeng Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
12
|
Chen S, Peng L, Liu Y, Gao X, Zhang Y, Tang C, Zhai Z, Yang L, Wu W, He X, Liu LL, He F, Xia H. Conjugated polymers based on metalla-aromatic building blocks. Proc Natl Acad Sci U S A 2022; 119:e2203701119. [PMID: 35858304 PMCID: PMC9303910 DOI: 10.1073/pnas.2203701119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Conjugated polymers usually require strategies to expand the range of wavelengths absorbed and increase solubility. Developing effective strategies to enhance both properties remains challenging. Herein, we report syntheses of conjugated polymers based on a family of metalla-aromatic building blocks via a polymerization method involving consecutive carbyne shuttling processes. The involvement of metal d orbitals in aromatic systems efficiently reduces band gaps and enriches the electron transition pathways of the chromogenic repeat unit. These enable metalla-aromatic conjugated polymers to exhibit broad and strong ultraviolet-visible (UV-Vis) absorption bands. Bulky ligands on the metal suppress π-π stacking of polymer chains and thus increase solubility. These conjugated polymers show robust stability toward light, heat, water, and air. Kinetic studies using NMR experiments and UV-Vis spectroscopy, coupled with the isolation of well-defined model oligomers, revealed the polymerization mechanism.
Collapse
Affiliation(s)
- Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Lixia Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ying Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chun Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zhenghao Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weitai Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| |
Collapse
|
13
|
Tang J, Wang Y, Bai W, Zhou Y, Yu W, Li Y. α-Rhenabenzofuran with nonaromatic T 0 and aromatic S 1 states. Dalton Trans 2022; 51:9495-9500. [PMID: 35686950 DOI: 10.1039/d2dt01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first α-rhenabenzofuran complexes 2-5 are obtained from one-pot reactions of ReCl3(PMePh2)3 with o-ethynyl phenols. With a delocalized structure, these paramagnetic compounds are nonaromatic at the ground state, which is a triplet. But they exhibit an aromatic singlet excited state, revealed by DFT studies.
Collapse
Affiliation(s)
- Junping Tang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| | - Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, P.R. China
| | - Wenyan Yu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| |
Collapse
|
14
|
Yeung CF, Shek HL, Yiu SM, Tse MK, Wong CY. Controlled Activation of Dipicolinyl-Substituted Propargylic Alcohol by Ru(II) and Os(II) for Unprecedented Indolizine-Fused Metallafuran Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chi-Fung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Hau-Lam Shek
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| |
Collapse
|
15
|
Wang J, Li J, Zhou Y, Yu C, Hua Y, Yu Y, Li R, Lin X, Chen R, Wu H, Xia H, Wang HL. Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells. J Am Chem Soc 2021; 143:7759-7768. [PMID: 33904710 DOI: 10.1021/jacs.1c02118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-work-function (WF) metals (including silver (Ag), aluminum (Al), and copper (Cu)) used as external cathodes in inverted perovskite solar cells (PSCs) encounter oxidation caused by air exposure and halogen-diffusion-induced corrosion, which threaten the long-term stability of the device. The cathode interlayer (CIL) has shown promise in reducing the metal WF and thus boosting the device power conversion efficiency (PCE). However, it remains a challenge for current CIL materials to enable high-WF metals (e.g., Au) to be used as cathodes to achieve PSCs with a superior PCE and long-term stability. Here, we use a series of synthesized (carbolong-derived) organometallic complexes as CILs to tune the electrode WF in inverted PSCs. Density functional theory calculations and surface characterizations show that the organometallic complexes that contain anions and cations are prone to form anion-cation dipoles on the metal surface, hence drastically reducing the metal's WF. Photovoltaic devices based on a Ag cathode, which was modified with these organometallic complexes, received a boosted PCE up to 21.29% and a remarkable fill factor that reached 83.52%, which are attributed to the dipole-enhanced carrier transport. The environmental stability of PSCs was further improved after employing Au as a cathode with these organometallic complexes, and the modified devices exhibited no efficiency loss after 4080 h storage measurements.
Collapse
Affiliation(s)
- Jiantao Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China.,Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Jinhua Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Yecheng Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Zhongshan West Road 135, Guangzhou 510275, China
| | - Chengzhuo Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Yuhui Hua
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Yinye Yu
- School of Materials Science and Engineering, Sun Yat-sen University, Zhongshan West Road 135, Guangzhou 510275, China
| | - Ruxue Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Xiaosong Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Haiping Xia
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| |
Collapse
|
16
|
Wang H, Ruan Y, Lin YM, Xia H. Direct amidation of metallaaromatics: access to N-functionalized osmapentalynes via a 1,5-bromoamidated intermediate. Chem Sci 2021; 12:6315-6322. [PMID: 34084429 PMCID: PMC8115065 DOI: 10.1039/d1sc01571k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The direct C–H amidation or imidation of metallaaromatics with N-bromoamides or imides has been achieved under mild conditions and leads to the formation of a family of N-functionalized metallapentalyne derivatives. A unique 1,5-bromoamidated species has been identified, and can be viewed as a σH-adduct intermediate in a nucleophilic aromatic substitution. The 1,5-addition of both electrophilic and nucleophilic moieties into the metallaaromatic framework demonstrates a novel pathway in contrast to the typical radical process of arene C–H amidation involving N-haloamide reagents. The direct C–H amidation of metallapentalyne has been achieved under mild conditions in which key 1,5-bromoamidated intermediates was determined.![]()
Collapse
Affiliation(s)
- Hongjian Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yonghong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China .,Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
17
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Abstract
Due to the linear property around an acetylenic carbon, the introduction of such an atom to a small cycle would result in high ring strain. Currently, the smallest isolated rings are five-membered, including metallacycloalkynes and metallapentalynes. Both types contain at least one unusual small bond angle around the acetylenic carbon, thus exhibiting abnormal reactivities. This feature article gives a comprehensive overview on these two kind complexes. The synthesis and reactivities are extensively described, the source of stability is presented, and the future prospect is discussed. The article aims to provide a better development for the chemical diversity of five-membered metallacycloalkynes and metallapentalynes.
Collapse
|
19
|
Su Q, Ding J, Du Z, Lai Y, Li H, Ouyang MA, Song L, Lin R. Recent Advances in the Reactions of Cyclic Carbynes. Molecules 2020; 25:E5050. [PMID: 33143337 PMCID: PMC7663793 DOI: 10.3390/molecules25215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
The acyclic organic alkynes and carbyne bonds exhibit linear shapes. Metallabenzynes and metallapentalynes are six- or five-membered metallacycles containing carbynes, whose carbine-carbon bond angles are less than 180°. Such distortion results in considerable ring strain, resulting in the unprecedented reactivity compared with acyclic carbynes. Meanwhile, the aromaticity of these metallacycles would stabilize the ring system. The fascinating combination of ring strain and aromaticity would lead to interesting reactivities. This mini review summarized recent findings on the reactivity of the metal-carbon triple bonds and the aromatic ring system. In the case of metallabenzynes, aromaticity would prevail over ring strain. The reactions are similar to those of organic aromatics, especially in electrophilic reactions. Meanwhile, fragmentation of metallacarbynes might be observed via migratory insertion if the aromaticity of metallacarbynes is strongly affected. In the case of metallapentalynes, the extremely small bond angle would result in high reactivity of the carbyne moiety, which would undergo typical reactions for organic alkynes, including interaction with coinage metal complexes, electrophilic reactions, nucleophilic reactions and cycloaddition reactions, whereas the strong aromaticity ensured the integrity of the bicyclic framework of metallapentalynes throughout all reported reaction conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.S.); (J.D.); (Z.D.); (Y.L.); (H.L.); (M.-A.O.)
| | - Ran Lin
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.S.); (J.D.); (Z.D.); (Y.L.); (H.L.); (M.-A.O.)
| |
Collapse
|
20
|
Abstract
Since the prediction of the existence of metallabenzenes in 1979, metallaaromatic chemistry has developed rapidly, due to its importance in both experimental and theoretical fields. Now six major types of metallaromatic compounds, metallabenzenes, metallabenzynes, heterometallaaromatics, dianion metalloles, metallapentalenes and metallapentalynes (also termed carbolongs), and spiro metalloles, have been reported and extensively studied. Their parent organic analogues may be aromatic, non-aromatic, or even anti-aromatic. These unique systems not only enrich the large family of aromatics, but they also broaden our understanding and extend the concept of aromaticity. This review provides a comprehensive overview of metallaaromatic chemistry. We have focused on not only the six major classes of metallaaromatics, including the main-group-metal-based metallaaromatics, but also other types, such as metallacyclobutadienes and metallacyclopropenes. The structures, synthetic methods, and reactivities are described, their applications are covered, and the challenges and future prospects of the area are discussed. The criteria commonly used to judge the aromaticity of metallaaromatics are presented.
Collapse
Affiliation(s)
- Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
21
|
Chen S, Liu L, Gao X, Hua Y, Peng L, Zhang Y, Yang L, Tan Y, He F, Xia H. Addition of alkynes and osmium carbynes towards functionalized d π-p π conjugated systems. Nat Commun 2020; 11:4651. [PMID: 32938934 PMCID: PMC7495419 DOI: 10.1038/s41467-020-18498-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
The metal-carbon triple bonds and carbon-carbon triple bonds are both highly unsaturated bonds. As a result, their reactions tend to afford cycloaddition intermediates or products. Herein, we report a reaction of M≡C and C≡C bonds that affords acyclic addition products. These newly discovered reactions are highly efficient, regio- and stereospecific, with good functional group tolerance, and are robust under air at room temperature. The isotope labeling NMR experiments and theoretical calculations reveal the reaction mechanism. Employing these reactions, functionalized dπ-pπ conjugated systems can be easily constructed and modified. The resulting dπ-pπ conjugated systems were found to be good electron transport layer materials in organic solar cells, with power conversion efficiency up to 16.28% based on the PM6: Y6 non-fullerene system. This work provides a facile, efficient methodology for the preparation of dπ-pπ conjugated systems for use in functional materials.
Collapse
Affiliation(s)
- Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Longzhu Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Lixia Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Ying Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yuanzhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
22
|
Huang F, Zheng X, Lin X, Ding L, Zhuo Q, Wen TB, Zhang H, Xia H. Extension of the Simmons-Smith reaction to metal-carbynes: efficient synthesis of metallacyclopropenes with σ-aromaticity. Chem Sci 2020; 11:10159-10166. [PMID: 34094279 PMCID: PMC8162146 DOI: 10.1039/d0sc03215h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
The Simmons-Smith reaction offers a direct route for conversion of an alkene into a cyclopropane with a zinc carbenoid as the active intermediate. Zinc carbenoids, however, have never delivered a methylene unit to substrates with metal-carbon multiple bonds. Herein, we describe this type of reaction and the construction of three-membered rings has now been applied in organometallic systems by combining classical zinc carbenoid reagents with a range of structurally and electronically diverse metal carbynes. A variety of metallacyclopropene derivatives prepared in this way represent rare examples with σ-aromaticity in an unsaturated three-membered ring. The structures of such products are supported by experimental observations and theoretical calculations.
Collapse
Affiliation(s)
- Fanping Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xuejuan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xinlei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Linting Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Qingde Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ting Bin Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
23
|
Zhu Q, Chen S, Xu F, Zhu J. Reaction Mechanisms on [3 + 2] Cycloaddition of Azides with Metal Carbyne Complexes: Significant Effects of Aromaticity, Substituent, and Metal Center. Inorg Chem 2020; 59:7318-7324. [PMID: 32338878 DOI: 10.1021/acs.inorgchem.0c00754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Density functional theory calculations were used to investigate the reaction mechanisms on [3 + 2] cycloaddition reactions of azides with metal carbyne complexes. Our results reveal that the formation of a 1,4-metallatriazole regioisomer is a kinetically favorable process in comparison with the formation of 1,5-metallatriazole. Aromaticity plays an important role in stabilizing the products in these reactions. Further analyses show that the electron-donating ligand on metal centers or the electron-withdrawing group on the azide could accelerate the [3 + 2] cycloaddition reaction. All of these findings could be useful for experimental chemists to develop "click reactions" in organometallic chemistry.
Collapse
Affiliation(s)
- Qin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuwen Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fangzhou Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Zhu Q, Lin L, Qiu R, Zhu J. Are Hetero-metallapentalenes Aromatic or Not? A DFT Investigation. Chemistry 2020; 26:5381-5387. [PMID: 31975467 DOI: 10.1002/chem.202000148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Indexed: 11/06/2022]
Abstract
Aromaticity is one of the most basic concepts in organic chemistry. The planar Möbius aromatic metallapentalynes and metallapentalenes have attracted considerable attention in the past few years. However, the aromaticity of metallapentalenes containing heteroatoms (such as B, N, and O), termed as hetero-metallapentalenes, is rarely studied. Herein, the stability and aromaticity of a series of hetero-metallapentalenes are theoretically investigated. The results reveal lower aromaticity in metallaborapentalene, comparable aromaticity in metallazapentalene, and nonaromaticity in metalloxapentalene relative to that of metallapentalene. Moreover, the effect of Lewis bases on the aromaticity and stability of metallaborapentalene is discussed. These results provide useful information for experimental chemists to realize more hetero-metallapentalenes.
Collapse
Affiliation(s)
- Qin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Lu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Rulin Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
25
|
Ruan W, Yang T, Shi C, Bai W, Sung HHY, Williams ID, Lin Z, Jia G. Substituent Effect on the Reactions of OsCl2(PPh3)3 with o-Ethynylphenyl Carbonyl Compounds. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenqing Ruan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chuan Shi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Bai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
26
|
Lu Z, Zhu Q, Cai Y, Chen Z, Zhuo K, Zhu J, Zhang H, Xia H. Access to tetracyclic aromatics with bridgehead metals via metalla-click reactions. SCIENCE ADVANCES 2020; 6:eaay2535. [PMID: 32010769 PMCID: PMC6968935 DOI: 10.1126/sciadv.aay2535] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/15/2019] [Indexed: 05/16/2023]
Abstract
The never-ending pursuits for exploring aromatic molecular architectures result in the large libraries of aromatics with fascinating structures, which have greatly broadened the scope of aromaticity. Despite extensive efforts that have been paid to develop aromatic frameworks, the construction of polycyclic aromatics that share a bridgehead atom with more than three rings has never been accomplished. Here, an unprecedented family of aromatics, in which a metal center shared by 4 five-membered aromatic rings, has been achieved by using the metalla-click reactions with excellent yields and remarkable regioselectivity. The distinctive tetracyclic aromatics exhibit a broad absorption in the ultraviolet-visible near-infrared region and excellent thermal stability in air, enabling their potential applications in photoelectric materials and biomedicine. This study now makes it possible to incorporate four aromatic rings with one common sharing metal center by a straightforward strategy that would promote further development of previously unknown polycyclic complex motifs in aromatic chemistry.
Collapse
Affiliation(s)
- Zhengyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanting Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaiyue Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
27
|
Zhuo Q, Zhang H, Ding L, Lin J, Zhou X, Hua Y, Zhu J, Xia H. Rhodapentalenes: Pincer Complexes with Internal Aromaticity. iScience 2019; 19:1214-1224. [PMID: 31551198 PMCID: PMC6831826 DOI: 10.1016/j.isci.2019.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 11/15/2022] Open
Abstract
Pincer complexes are a remarkably versatile family benefited from their stability, diversity, and tunability. Many of them contain aromatic organic rings at the periphery, and aromaticity plays an important role in their stability and properties, whereas their metallacyclic cores are not aromatic. Herein, we report rhodapentalenes, which can be viewed as pincer complexes in which the metallacyclic cores exhibit considerable aromatic character. Rhodapentalenes show good thermal stability, although the rhodium-carbon bonds in such compounds are fragile. Experimental and computational studies suggest that the stabilization of rigid CCC pincer architectures together with an intrinsic aromaticity is vital for these metallacyclic rhodium species. Dearomatization-aromatization reactions, corresponding to metal-ligand cooperation of classical aromatic pincer complexes, were observed in this system. These findings suggest a new concept for pincer chemistry, the internal aromaticity involving metal d-orbitals, which would be useful for exploiting the nature of construction motif and inspire further applications.
Collapse
Affiliation(s)
- Qingde Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Linting Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
28
|
Yeung C, Chung L, Ng S, Shek H, Tse S, Chan S, Tse M, Yiu S, Wong C. Phosphonium‐Ring‐Fused Bicyclic Metallafuran Complexes of Ruthenium and Osmium. Chemistry 2019; 25:9159-9163. [DOI: 10.1002/chem.201901080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Chi‐Fung Yeung
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Lai‐Hon Chung
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Sze‐Wing Ng
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Hau‐Lam Shek
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Sheung‐Ying Tse
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Siu‐Chung Chan
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Man‐Kit Tse
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Shek‐Man Yiu
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Chun‐Yuen Wong
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| |
Collapse
|
29
|
Chu Z, He G, Cheng X, Deng Z, Chen J. Synthesis and Characterization of Cyclopropaosmanaphthalenes Containing a Fused σ-Aromatic Metallacyclopropene Unit. Angew Chem Int Ed Engl 2019; 58:9174-9178. [PMID: 31056849 DOI: 10.1002/anie.201904815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/21/2022]
Abstract
Metalla-aromatics are important complexes that show unique properties owing to their highly conjugated systems, which show Hückel or Möbius aromaticity. Recently, several metalla-aromatics showing spiro-aromaticity or σ-aromaticity have been reported. Herein, we report the isolation of the first cyclopropametallanaphthalenes, in which the metallacyclopropene ring shows σ-aromaticity and weak hyperconjugative aromaticity. The reaction of OsCl2 (PPh3 )3 with o-ethynylphenyl alkynes in the presence of PPh3 followed by protonation with HCl yielded the first cyclopropametallanaphthalenes. The reaction mechanism and the aromaticity were also investigated by density functional theory studies.
Collapse
Affiliation(s)
- Zhenwei Chu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Guomei He
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoli Cheng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhirong Deng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
30
|
Chu Z, He G, Cheng X, Deng Z, Chen J. Synthesis and Characterization of Cyclopropaosmanaphthalenes Containing a Fused σ‐Aromatic Metallacyclopropene Unit. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenwei Chu
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Guomei He
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Xiaoli Cheng
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Zhirong Deng
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Jiangxi Chen
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
31
|
Lin J, Ding L, Zhuo Q, Zhang H, Xia H. Formal [2 + 2 + 2] Cycloaddition Reaction of a Metal–Carbyne Complex with Nitriles: Synthesis of a Metallapyrazine Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Linting Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingde Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Zhou X, Pang X, Nie L, Zhu C, Zhuo K, Zhuo Q, Chen Z, Liu G, Zhang H, Lin Z, Xia H. Successive modification of polydentate complexes gives access to planar carbon- and nitrogen-based ligands. Nat Commun 2019; 10:1488. [PMID: 30940808 PMCID: PMC6445293 DOI: 10.1038/s41467-019-09367-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/08/2019] [Indexed: 11/15/2022] Open
Abstract
Polydentate complexes containing combinations of nitrogen and carbon (N and C) ligating atoms are among the most fundamental and ubiquitous molecules in coordination chemistry, yet the formation of such complexes with planar high-coordinate N/C sites remains challenging. Herein, we demonstrate an efficient route to access related complexes with tetradentate CCCN and pentadentate CCCCN and NCCCN cores by successive modification of the coordinating atoms in complexes with a CCCC core. Combined experimental and computational studies reveal that the rich reactivity of metal-carbon bonds and the inherent aromaticity of the metallacyclic skeletons play key roles in these transformations. This strategy addresses the paucity of synthetic approaches to mixed N/C planar pentadentate chelating species and provides valuable insights into the synthesis of carbon-based high-coordinate complexes. Furthermore, the resulting complexes are the examples of organometallic species with combined photoacoustic, photothermal, and sonodynamic properties, which makes them promising for application in related areas.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Kaiyue Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Qingde Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HK, Hong Kong
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
33
|
Zhang H, Zhao H, Zhuo K, Hua Y, Chen J, He X, Weng W, Xia H. “Carbolong” polymers with near infrared triggered, spatially resolved and rapid self-healing properties. Polym Chem 2019. [DOI: 10.1039/c8py01482e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated Möbius metalla-aromatic “carbolong” is incorporated into polymers to achieve spatially resolved, repeated and fast healing through a photothermal effect.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Haibo Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Kaiyue Zhuo
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yuhui Hua
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- China
| | - Xumin He
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Wengui Weng
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Haiping Xia
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
34
|
Deng Z, Zhu C, Hua Y, He G, Guo Y, Lu R, Cao X, Chen J, Xia H. Synthesis and characterization of metallapentalenoxazetes by the [2+2] cycloaddition of metallapentalynes with nitrosoarenes. Chem Commun (Camb) 2019; 55:6237-6240. [DOI: 10.1039/c9cc02594d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cycloaddition of metallapentalynes with nitrosoarenes produces metallapentalenoxazetes, in which two unstable frameworks are stabilized with a metal fragment.
Collapse
Affiliation(s)
- Zhihong Deng
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Congqing Zhu
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yuhui Hua
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Guomei He
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Ying Guo
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Ruqiang Lu
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
- Department of Chemistry
| |
Collapse
|
35
|
Zheng S, Chu Z, Lee K, Lin Q, Li Y, He G, Chen J, Jia G. Synthesis, Characterization and Electronic Structure of Dirhenadehyro[12]annulene Complexes. Chempluschem 2018; 84:85-91. [DOI: 10.1002/cplu.201800537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/07/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Shaohui Zheng
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Zhenwei Chu
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Ka‐Ho Lee
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong P. R. China
| | - Qin Lin
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Yucen Li
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Guomei He
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Guochen Jia
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong P. R. China
| |
Collapse
|
36
|
Li J, Kang H, Zhuo K, Zhuo Q, Zhang H, Lin YM, Xia H. Alternation of Metal-Bridged Metallacycle Skeletons: From Ruthenapentalyne to Ruthenapentalene and Ruthenaindene Derivative. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jinhua Li
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Huijun Kang
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Kaiyue Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Qingde Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Hong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Yu-Mei Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Haiping Xia
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
37
|
Hua Y, Lan Q, Fei J, Tang C, Lin J, Zha H, Chen S, Lu Y, Chen J, He X, Xia H. Metallapentalenofuran: Shifting Metallafuran Rings Promoted by Substituent Effects. Chemistry 2018; 24:14531-14538. [DOI: 10.1002/chem.201802928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Qing Lan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Hexukun Zha
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yinghua Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jiangxi Chen
- Department of Materials Science and Engineering; College of Materials; Xiamen University; Xiamen 361005 China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
38
|
Lu Z, Lin Q, Cai Y, Chen S, Chen J, Wu W, He X, Xia H. Cylindrical NIR-Responsive Metallopolymer Containing Möbius Metalla-aromatics. ACS Macro Lett 2018; 7:1034-1038. [PMID: 35650957 DOI: 10.1021/acsmacrolett.8b00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metalla-aromatic complexes are very stable and excellent light-absorbing compounds, owing to their highly conjugated frameworks. The metallopolymers containing metalla-aromatic substructures consist of a new type of functional polymer, because they exhibit characteristics of both metalla-aromatic and polymeric units. Herein, we reported a corn-like cylindrical metallopolymer, prepared from the controlled polymerization of N-isopropylacrylamide (NIPAM) by a polyrotaxane-based macroinitiator, followed by postpolymerization modification with a photothermal metalla-aromatic complex. The corn-like shape of this metallopolymer was confirmed by transmission electron microscopy (TEM). Combining the photothermal effect of the metalla-aromatic unit and the thermosensitive property of PNIPAM, the corn-like metallopolymer exhibits a NIR-responsive behavior and represents a new smart material.
Collapse
Affiliation(s)
- Zhengyu Lu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Qin Lin
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuanting Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shiduan Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Weitai Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
39
|
Abstract
The construction of metal-carbon bonds is one of the most important issues of organometallic chemistry. However, the chelation of polydentate ligands to a metal via several metal-carbon bonds is rare. Metallapentalyne, which can be viewed as a 7-carbon (7C) chain coordinated to a metal via three metal-carbon bonds, was first reported in 2013. Although metallapentalyne contains a metal-carbon triple bond in a five-membered ring (5MR) and the bond angle around the carbyne carbon is only 129.5°, metallapentalyne exhibits excellent stability to air, moisture, and heat. Metallapentalyne possesses the rare planar Möbius aromaticity, which is in sharp contrast to the Hückel antiaromaticity in pentalyne. The metal fragment not only relieves the large ring strain present in pentalyne but also results in the transformation of the antiaromaticity in pentalyne to aromaticity in metallapentalyne. With the extension of the carbon chain from 7 to 12 carbon atoms, a series of novel polycyclic frameworks were constructed via the formation of several metal-carbon bonds. Some interesting phenomena were observed for these complexes. For instance, (1) the carbyne carbon of the 7C framework could react with both nucleophilic and electrophilic reagents, leading to the formation of 16- and 18-electron metallapentalenes; (2) σ aromaticity was first observed in an unsaturated system in the 8C framework; (3) two classical antiaromatic frameworks, cyclobutadiene and pentalene, were simultaneously stabilized in the 9C framework for the first time; (4) three fused 5MRs bridged by a metal are coplanar in the 10C framework; (5) the first [2 + 2 + 2] cycloaddition of a late transition metal carbyne complex with alkynes was realized during the construction of an 11C framework; (6) the largest number of carbon atoms coordinated to a metal atom in the equatorial plane was observed in the 12C framework; and (7) sharing of the transition metal by multiple aromatic units has seldom been observed in the metalla-aromatics. Therefore, the term carbolong chemistry has been used to describe the chemistry of these novel frameworks. More interestingly, carbolong complexes exhibit diverse properties, which could lead to potential future applications. As the discovery and creation of molecular fragments lead to advancements in chemistry, medical science, and materials chemistry, these novel polydentate carbon chain chelates might have important influences in these fields due to their facile synthesis, high stability, and unique properties.
Collapse
Affiliation(s)
- Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
40
|
Zhuo Q, Zhang H, Hua Y, Kang H, Zhou X, Lin X, Chen Z, Lin J, Zhuo K, Xia H. Constraint of a ruthenium-carbon triple bond to a five-membered ring. SCIENCE ADVANCES 2018; 4:eaat0336. [PMID: 29942859 PMCID: PMC6014718 DOI: 10.1126/sciadv.aat0336] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/10/2018] [Indexed: 05/16/2023]
Abstract
The incorporation of a metal-carbon triple bond into a ring system is challenging because of the linear nature of triple bonds. To date, the synthesis of these complexes has been limited to those containing third-row transition metal centers, namely, osmium and rhenium. We report the synthesis and full characterization of the first cyclic metal carbyne complex with a second-row transition metal center, ruthenapentalyne. It shows a bond angle of 130.2(3)° around the sp-hybridized carbyne carbon, which represents the recorded smallest angle of second-row transition metal carbyne complexes, as it deviates nearly 50° from the original angle (180°). Density functional theory calculations suggest that the inherent aromatic nature of these metallacycles with bent Ru≡C-C moieties enhances their stability. Reactivity studies showed striking observations, such as ambiphilic reactivity, a metal-carbon triple bond shift, and a [2 + 2] cycloaddition reaction with alkyne and cascade cyclization reactions with ambident nucleophiles.
Collapse
|
41
|
Zhou X, Li Y, Shao Y, Hua Y, Zhang H, Lin YM, Xia H. Reactions of Cyclic Osmacarbyne with Coinage Metal Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yunlong Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Shao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
42
|
Lin Q, Li S, Lin J, Chen M, Lu Z, Tang C, Chen Z, He X, Chen J, Xia H. Synthesis and Characterization of Photothermal Osmium Carbolong Complexes. Chemistry 2018; 24:8375-8381. [DOI: 10.1002/chem.201800656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Qin Lin
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Shenyan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Meijin Chen
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Zhengyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
43
|
Zhu C, Zhu J, Zhou X, Zhu Q, Yang Y, Wen TB, Xia H. Isolation of an Eleven-Atom Polydentate Carbon-Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Qin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yuhui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Ting Bin Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
44
|
Zhu C, Zhu J, Zhou X, Zhu Q, Yang Y, Wen TB, Xia H. Isolation of an Eleven-Atom Polydentate Carbon-Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne. Angew Chem Int Ed Engl 2018; 57:3154-3157. [DOI: 10.1002/anie.201713391] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Qin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yuhui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Ting Bin Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
45
|
Chen J, Lin Q, Li S, Lu Z, Lin J, Chen Z, Xia H. Synthesis and Characterization of an Osmapentalene Derivative Containing a β-Agostic Os···H–C(sp3) Interaction. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jiangxi Chen
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Qin Lin
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shenyan Li
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhengyu Lu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jianfeng Lin
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhixin Chen
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Haiping Xia
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
46
|
An K, Zhu J. Predicting an unconventional facile route to metallaanthracenes. Dalton Trans 2018; 47:5575-5581. [DOI: 10.1039/c8dt00455b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations reveal an unconventional facile route to metallaanthracenes caused by stabilisation of phosphonium substituents.
Collapse
Affiliation(s)
- Ke An
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|