1
|
Sardana K, Muddebihal A, Scollard DM, Khurana A. Implications of drug resistance in leprosy: disease course, reactions and the use of novel drugs. Int J Dermatol 2024. [PMID: 39258760 DOI: 10.1111/ijd.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Leprosy remains a significant neglected tropical disease despite the goal of elimination having been achieved in various endemic nations over the past two decades. Reactional episodes complicate the disease course, resulting in deformities and disability. The main aim of treatment is to kill Mycobacterium leprae and decrease the bacterial load, which could help prevent further bacilli transmission. A major concern in breaking the chain of transmission and possibly for recurrent reactions is the role of drug-resistant bacilli. Though some data is available on the background prevalence of drug resistance in leprosy, there is a paucity of studies that look for resistance specifically in leprosy reactions. Administration of long-term steroids or immunosuppressants for chronic and recurrent responses in the presence of drug resistance has the twin effect of perpetuating the multiplication of resistant bacilli and encouraging the dissemination of leprosy. The increasing trend of prescribing second-line drugs for leprosy or type 2 reactions without prior assessment of drug resistance can potentially precipitate a severe public health problem as this can promote the development of resistance to second-line drugs as well. A comprehensive multicenter study, including drug resistance surveillance testing in cases of reactions, is necessary, along with the current measures to stop the spread of leprosy. Here, we have detailed the history of drug resistance in leprosy, given pointers on when to suspect drug resistance, described the role of resistance in reactions, methods of resistance testing, and the management of resistant cases with second-line therapy.
Collapse
Affiliation(s)
- Kabir Sardana
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Aishwarya Muddebihal
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | | | - Ananta Khurana
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
2
|
Chen H, Jiang Y, Shi Y, Zhang W, Jiang H, Wang Z, Zeng R, Wang H. Fever of unknown origin, blood and cerebrospinal fluid involvement: a leprosy case report. Front Immunol 2024; 15:1450490. [PMID: 39257575 PMCID: PMC11384573 DOI: 10.3389/fimmu.2024.1450490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Leprosy is a chronic infectious disease that mainly affects the skin and peripheral nerves, it can also invade deeper tissues and organs, including mucous membranes, lymph nodes, testes, eyes, and internal organs. Severe cases can result in deformities and disabilities. We encountered the case of a 39-year-old male with unexplained fever, headache and rash. The patient's lesions were taken for histopathological examination and slit skin smear analysis. Further, the patient was detected of Mycobacterium leprae (M.leprae) nucleic acid sequences in the cerebrospinal fluid (CSF) and plasma, and M.leprae gene targets in the skin lesion tissue and blood. The patient was eventually diagnosed with multibacillary leprosy and type II leprosy reaction. These results suggest the possibility of bacteremia in patients with leprosy to some extent, and observation implies the potential invasion of CSF by M.leprae or its genetic material.
Collapse
Affiliation(s)
- Huan Chen
- Dermatology and leprosy department, Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, China
| | - Yumeng Jiang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Ying Shi
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Wenyue Zhang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Haiqin Jiang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Zhenzhen Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Rui Zeng
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Hongsheng Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Sharma M, Dwivedi P, Joshi V, Singh P. Novel mutations found in Mycobacterium leprae DNA repair gene nth from central India. J Infect Chemother 2024; 30:531-535. [PMID: 38141720 DOI: 10.1016/j.jiac.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION The importance of DNA repair enzymes in maintaining genomic integrity is highlighted by the hypothesis that DNA damage by reactive oxygen/nitrogen species produced inside the host cell is essential for the mutagenesis process. Endonuclease III (Nth), formamidopyrimide (Fpg) and endonuclease VIII (Nei) DNA glycosylases are essential components of the bacterial base excision repair process. Mycobacterium leprae lost both fpg/nei genes during the reductive evolution event and only has the nth (ML2301) gene. This study aims to characterize the mutations in the nth gene of M. leprae strains and explore its correlation with drug-resistance. METHOD A total of 91 M. leprae positive DNA samples extracted from skin biopsy samples of newly diagnosed leprosy patients from NSCB Hospital Jabalpur were assessed for the nth gene as well as drug resistance-associated loci of the rpoB, gyrA and folP1 genes through PCR followed by Sanger sequencing. RESULTS Of these 91 patients, a total of two insertion frameshift mutations, two synonymous and seven nonsynonymous mutations were found in nth in seven samples. Sixteen samples were found to be resistant to ofloxacin and one was found to be dapsone resistant as per the known DRDR mutations. No mutations were found in the rpoB region. Interestingly, none of the nth mutations were identified in the drug-resistant associated samples. CONCLUSION The in-silico structural analysis of the non-synonymous mutations in the Nth predicted five of them were to be deleterious. Our results suggest that the mutations in the nth gene may be potential markers for phylogenetic and epidemiological studies.
Collapse
Affiliation(s)
- Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Purna Dwivedi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Vandana Joshi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India.
| |
Collapse
|
4
|
Urban C, Blom AA, Avanzi C, Walker-Meikle K, Warren AK, White-Iribhogbe K, Turle R, Marter P, Dawson-Hobbis H, Roffey S, Inskip SA, Schuenemann VJ. Ancient Mycobacterium leprae genome reveals medieval English red squirrels as animal leprosy host. Curr Biol 2024; 34:2221-2230.e8. [PMID: 38703773 DOI: 10.1016/j.cub.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Leprosy, one of the oldest recorded diseases in human history, remains prevalent in Asia, Africa, and South America, with over 200,000 cases every year.1,2 Although ancient DNA (aDNA) approaches on the major causative agent, Mycobacterium leprae, have elucidated the disease's evolutionary history,3,4,5 the role of animal hosts and interspecies transmission in the past remains unexplored. Research has uncovered relationships between medieval strains isolated from archaeological human remains and modern animal hosts such as the red squirrel in England.6,7 However, the time frame, distribution, and direction of transmissions remains unknown. Here, we studied 25 human and 12 squirrel samples from two archaeological sites in Winchester, a medieval English city well known for its leprosarium and connections to the fur trade. We reconstructed four medieval M. leprae genomes, including one from a red squirrel, at a 2.2-fold average coverage. Our analysis revealed a phylogenetic placement of all strains on branch 3 as well as a close relationship between the squirrel strain and one newly reconstructed medieval human strain. In particular, the medieval squirrel strain is more closely related to some medieval human strains from Winchester than to modern red squirrel strains from England, indicating a yet-undetected circulation of M. leprae in non-human hosts in the Middle Ages. Our study represents the first One Health approach for M. leprae in archaeology, which is centered around a medieval animal host strain, and highlights the future capability of such approaches to understand the disease's zoonotic past and current potential.
Collapse
Affiliation(s)
- Christian Urban
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alette A Blom
- Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland; Department of Archaeology, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK; School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, 401 W Pitkin St, Fort Collins, CO 80523, USA
| | - Kathleen Walker-Meikle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland; Science Museum Group, Science Museum, Exhibition Road, South Kensington, London SW7 2DD, UK
| | - Alaine K Warren
- Department of Microbiology, Immunology and Pathology, Colorado State University, 401 W Pitkin St, Fort Collins, CO 80523, USA
| | - Katie White-Iribhogbe
- School of Oriental and African Studies (SOAS), University of London, 10 Thornaugh Street, London WC1H 0XG, UK
| | - Ross Turle
- Hampshire Cultural Trust, Chilcomb House, Chilcomb Lane, Winchester SO23 8RB, UK
| | - Phil Marter
- School of History, Archaeology and Philosophy, University of Winchester, Medecroft Building, Sparkford Road, Winchester SO22 4NH, UK
| | - Heidi Dawson-Hobbis
- School of History, Archaeology and Philosophy, University of Winchester, Medecroft Building, Sparkford Road, Winchester SO22 4NH, UK
| | - Simon Roffey
- School of History, Archaeology and Philosophy, University of Winchester, Medecroft Building, Sparkford Road, Winchester SO22 4NH, UK
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland; Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
5
|
Shyam M, Kumar S, Singh V. Unlocking Opportunities for Mycobacterium leprae and Mycobacterium ulcerans. ACS Infect Dis 2024; 10:251-269. [PMID: 38295025 PMCID: PMC10862552 DOI: 10.1021/acsinfecdis.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
In the recent decade, scientific communities have toiled to tackle the emerging burden of drug-resistant tuberculosis (DR-TB) and rapidly growing opportunistic nontuberculous mycobacteria (NTM). Among these, two neglected mycobacteria species of the Acinetobacter family, Mycobacterium leprae and Mycobacterium ulcerans, are the etiological agents of leprosy and Buruli ulcer infections, respectively, and fall under the broad umbrella of neglected tropical diseases (NTDs). Unfortunately, lackluster drug discovery efforts have been made against these pathogenic bacteria in the recent decade, resulting in the discovery of only a few countable hits and majorly repurposing anti-TB drug candidates such as telacebec (Q203), P218, and TB47 for current therapeutic interventions. Major ignorance in drug candidate identification might aggravate the dramatic consequences of rapidly spreading mycobacterial NTDs in the coming days. Therefore, this Review focuses on an up-to-date account of drug discovery efforts targeting selected druggable targets from both bacilli, including the accompanying challenges that have been identified and are responsible for the slow drug discovery. Furthermore, a succinct discussion of the all-new possibilities that could be alternative solutions to mitigate the neglected mycobacterial NTD burden and subsequently accelerate the drug discovery effort is also included. We anticipate that the state-of-the-art strategies discussed here may attract major attention from the scientific community to navigate and expand the roadmap for the discovery of next-generation therapeutics against these NTDs.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department
of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mersa, Ranchi, Jharkhand 835215, India
| | - Sumit Kumar
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute
of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
6
|
Duchene S. Tracing the origin of virulence. Science 2023; 382:1245-1246. [PMID: 38096277 DOI: 10.1126/science.adl6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Microbial genomes from ancient chickens uncover the drivers of pathogenicity.
Collapse
Affiliation(s)
- Sebastian Duchene
- Department of Computational Biology, Institut Pasteur, Paris, France
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Dwivedi P, Sharma M, Singh P. Multiplex PCR-based RFLP assay for early identification of prevalent Mycobacterium leprae genotypes. Diagn Microbiol Infect Dis 2023; 107:116084. [PMID: 37832201 DOI: 10.1016/j.diagmicrobio.2023.116084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023]
Abstract
Mycobacterium leprae is classified into four SNP genotypes and 16 subtypes (from 1A to 4P) that exhibit phylogeographical association reported from around the world. Among them, genotypes 1D and 3I represent more than 60% of M. leprae strains. Here, we report a new method for M. leprae genotyping which identifies the genotypes 1D and 3I by combining multiplex PCR amplification and restriction fragment length polymorphism (RFLP) of a M. leprae DNA amplicons using AgeI restriction enzyme. Agarose gel electrophoresis showed a deletion of 11 bp only among 3I genotypes by electrophoresis. When this multiplex PCR reaction is subjected to AgeI digestion, successful restriction digestion shows three bands for all the genotypes except 1D where only two bands were observed due to loss of restriction site. This method gives us the advantage of 1-step identification of the two most prevalent strains of M. leprae without using specialized equipments such as the Sanger sequencing system or quantitative PCR.
Collapse
Affiliation(s)
- Purna Dwivedi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India.
| |
Collapse
|
8
|
Faber WR, Sewpersad K, Menke H, Avanzi C, Geluk A, Verhard EM, Tió Coma M, Chan M, Pieters T. Origin and spread of leprosy in Suriname. A historical and biomedical study. FRONTIERS IN TROPICAL DISEASES 2023; 4:1258006. [PMID: 39175563 PMCID: PMC7616386 DOI: 10.3389/fitd.2023.1258006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The new world was considered free of leprosy before the arrival of Europeans. In Suriname, historical migration routes suggest that leprosy could have been introduced from West Africa by the slave trade, from Asia by indentured workers, from Europe by the colonizers, and more recently by Brazilian gold miners. Previous molecular studies on environmental and ancient samples suggested a high variability of the strains circulating in the country, possibly resulting from the various migration waves. However, a current overview of such diversity in humans still needs to be explored. The origin and spread of leprosy in Suriname are investigated from a historical point of view and by strain genotyping of Mycobacterium leprae from skin biopsies of 26 patients with multibacillary leprosy using PCR-genotyping and whole-genome sequencing. Moreover, molecular signs of resistance to the commonly used anti-leprosy drugs i.e. dapsone, rifampicin and ofloxacin, were investigated. Molecular detection was positive for M. leprae in 25 out of 26 patient samples, while M. lepromatosis was not found in any of the samples. The predominant M. leprae strain in our sample set is genotype 4P (n=8) followed by genotype 1D-2 (n=3), 4N (n=2), and 4O/P (n=1). Genotypes 4P, 4N, 4O/P are predominant in West Africa and Brazil, and could have been introduced in Suriname by the slave trade from West Africa, and more recently by gold miners from Brazil. The presence of the Asian strains 1D-2 probably reflects an introduction by contract workers from India, China and Indonesia during the late 19th and early 20th century after the abolition of slavery. There is currently no definite evidence for the occurrence of the European strain 3 in the 26 patients. Geoplotting reflects internal migration, and also shows that most patients live in and around Paramaribo. A biopsy of one patient harbored two M. leprae genotypes, 1D-2 and 4P, suggesting co-infection. A mutation in the dapsone resistance determining region of folP1 was detected in two out of 13 strains for which molecular drug susceptibility was obtained, suggesting the circulation of dapsone resistant strains.
Collapse
Affiliation(s)
- William R Faber
- Faculty of Medicine, Department of Dermatology, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Sewpersad
- Dermatology Service, Ministry of Health, Paramaribo, Suriname
| | - Henk Menke
- Dermatology Service, Ministry of Health, Paramaribo, Suriname
| | - Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Els M Verhard
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Tió Coma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Mike Chan
- Department of Pathology, Academic Hospital, Paramaribo, Suriname
| | - Toine Pieters
- Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Bouth RC, Gobbo AR, Barreto JG, do Carmo Pinto PD, Bittencourt MS, Frade MAC, Nascimento AC, Bandeira SS, da Costa PF, Conde GAB, Avanzi C, Ribeiro-dos-Santos Â, Spencer JS, da Silva MB, Salgado CG. Specialized active leprosy search strategies in an endemic area of the Brazilian Amazon identifies a hypermutated Mycobacterium leprae strain causing primary drug resistance. Front Med (Lausanne) 2023; 10:1243571. [PMID: 37780551 PMCID: PMC10534026 DOI: 10.3389/fmed.2023.1243571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Leprosy, an infectious disease caused by Mycobacterium leprae, remains a public health concern in endemic countries, particularly in Brazil. In this study, we conducted an active surveillance campaign in the hyperendemic city of Castanhal in the northeastern part of the state of Pará using clinical signs and symptoms combined with serological and molecular tools to diagnose new cases and to identify drug resistance of circulating M. leprae strains and their distribution in the community. Methods During an active surveillance of one week, we enrolled 318 individuals using three different strategies to enroll subjects for this study: (i) an active survey of previously treated cases from 2006 to 2016 found in the Brazil National Notifiable Disease Information System database (n = 23) and their healthy household contacts (HHC) (n = 57); (ii) an active survey of school children (SC) from two primary public schools in low-income neighborhoods (n = 178), followed by visits to the houses of these newly diagnosed SC (n = 7) to examine their HHC (n = 34) where we diagnosed additional new cases (n = 6); (iii) and those people who spontaneously presented themselves to our team or the local health center with clinical signs and/or symptoms of leprosy (n = 6) with subsequent follow-up of their HHC when the case was confirmed (n = 20) where we diagnosed two additional cases (n = 2). Individuals received a dermato-neurological examination, 5 ml of peripheral blood was collected to assess the anti-PGL-I titer by ELISA and intradermal earlobe skin scrapings were taken from HHC and cases for amplification of the M. leprae RLEP region by qPCR. Results Anti-PGL-I positivity was highest in the new leprosy case group (52%) followed by the treated group (40.9%), HHC (40%) and lowest in SC (24.6%). RLEP qPCR from SSS was performed on 124 individuals, 22 in treated cases, 24 in newly diagnosed leprosy cases, and 78 in HHC. We detected 29.0% (36/124) positivity overall in this sample set. The positivity in treated cases was 31.8% (7/22), while in newly diagnosed leprosy cases the number of positives were higher, 45.8% (11/23) and lower in HHC at 23.7% (18/76). Whole genome sequencing of M. leprae from biopsies of three infected individuals from one extended family revealed a hypermutated M. leprae strain in an unusual case of primary drug resistance while the other two strains were drug sensitive. Discussion This study represents the extent of leprosy in an active surveillance campaign during a single week in the city of Castanhal, a city that we have previously surveyed several times during the past ten years. Our results indicate the continuing high transmission of leprosy that includes fairly high rates of new cases detected in children indicating recent spread by multiple foci of infection in the community. An unusual case of a hypermutated M. leprae strain in a case of primary drug resistance was discovered. It also revealed a high hidden prevalence of overt disease and subclinical infection that remains a challenge for correct clinical diagnosis by signs and symptoms that may be aided using adjunct laboratory tests, such as RLEP qPCR and anti-PGL-I serology.
Collapse
Affiliation(s)
- Raquel Carvalho Bouth
- Laboratório de Dermato-Imunologia, Universidade Federal do Pará, Marituba, Pará, Brazil
| | - Angélica Rita Gobbo
- Laboratório de Dermato-Imunologia, Universidade Federal do Pará, Marituba, Pará, Brazil
| | - Josafá Gonçalves Barreto
- Laboratório de Dermato-Imunologia, Universidade Federal do Pará, Marituba, Pará, Brazil
- Spatial Epidemiology Laboratory, Federal University of Pará, Castanhal, Brazil
| | | | | | - Marco Andrey Cipriani Frade
- Divisão de Dermatologia, Departamento de Clínica Médica da Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Apolônio Carvalho Nascimento
- Unidade de Referência Especializada em Dermatologia Sanitária do Estado do Pará – URE Dr. Marcelo Candia, Marituba, Pará, Brazil
| | - Sabrina Sampaio Bandeira
- Unidade de Referência Especializada em Dermatologia Sanitária do Estado do Pará – URE Dr. Marcelo Candia, Marituba, Pará, Brazil
| | | | | | - Charlotte Avanzi
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | | | - John Stewart Spencer
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | | | - Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Universidade Federal do Pará, Marituba, Pará, Brazil
- Coordenação de Atenção às Doenças Transmissíveis na Atenção Primária à Saúde, Departamento de Gestão do Cuidado Integral, Secretaria de Atenção Primária à Saúde, Ministério da Saúde, Brasília, Brazil
| |
Collapse
|
10
|
Jouet A, Braet SM, Gaudin C, Bisch G, Vasconcellos S, Epaminondas Nicacio de Oliveira do Livramento RE, Prado Palacios YY, Fontes AB, Lucena N, Rosa P, Moraes M, La K, Badalato N, Lenoir E, Ferré A, Clément M, Hasker E, Grillone SH, Abdou W, Said A, Assoumani Y, Attoumani N, Laurent Y, Cambau E, de Jong BC, Suffys PN, Supply P. Hi-plex deep amplicon sequencing for identification, high-resolution genotyping and multidrug resistance prediction of Mycobacterium leprae directly from patient biopsies by using Deeplex Myc-Lep. EBioMedicine 2023; 93:104649. [PMID: 37327675 DOI: 10.1016/j.ebiom.2023.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Expansion of antimicrobial resistance monitoring and epidemiological surveillance are key components of the WHO strategy towards zero leprosy. The inability to grow Mycobacterium leprae in vitro precludes routine phenotypic drug susceptibility testing, and only limited molecular tests are available. We evaluated a culture-free targeted deep sequencing assay, for mycobacterial identification, genotyping based on 18 canonical SNPs and 11 core variable-number tandem-repeat (VNTR) markers, and detection of rifampicin, dapsone and fluoroquinolone resistance-associated mutations in rpoB/ctpC/ctpI, folP1, gyrA/gyrB, respectively, and hypermutation-associated mutations in nth. METHODS The limit of detection (LOD) was determined using DNA of M. leprae reference strains and from 246 skin biopsies and 74 slit skin smears of leprosy patients, with genome copies quantified by RLEP qPCR. Sequencing results were evaluated versus whole genome sequencing (WGS) data of 14 strains, and versus VNTR-fragment length analysis (FLA) results of 89 clinical specimens. FINDINGS The LOD for sequencing success ranged between 80 and 3000 genome copies, depending on the sample type. The LOD for minority variants was 10%. All SNPs detected in targets by WGS were identified except in a clinical sample where WGS revealed two dapsone resistance-conferring mutations instead of one by Deeplex Myc-Lep, due to partial duplication of the sulfamide-binding domain in folP1. SNPs detected uniquely by Deeplex Myc-Lep were missed by WGS due to insufficient coverage. Concordance with VNTR-FLA results was 99.4% (926/932 alleles). INTERPRETATION Deeplex Myc-Lep may help improve the diagnosis and surveillance of leprosy. Gene domain duplication is an original putative drug resistance-related genetic adaptation in M. leprae. FUNDING EDCTP2 programme supported by the European Union (grant number RIA2017NIM-1847 -PEOPLE). EDCTP, R2Stop: Effect:Hope, The Mission To End Leprosy, the Flemish Fonds Wetenschappelijk Onderzoek.
Collapse
Affiliation(s)
| | - Sofie Marijke Braet
- Institute of Tropical Medicine, Antwerp, Belgium; Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium; Research Foundation Flanders, Brussels, Belgium
| | | | | | - Sidra Vasconcellos
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Yrneh Yadamis Prado Palacios
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Patricia Rosa
- Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | | | - Kevin La
- APHP-GHU Paris Nord Hôpital Bichat, Service de mycobactériologie spécialisée et de référence, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux - Laboratoire Associé, Paris, France; Université Paris Cité, INSERM, IAME UMR1137, Paris, France
| | | | | | | | | | - Epco Hasker
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | - Younoussa Assoumani
- Damien Foundation, Comoros; National Tuberculosis and Leprosy Control Program, Moroni, Comoros
| | | | | | - Emmanuelle Cambau
- APHP-GHU Paris Nord Hôpital Bichat, Service de mycobactériologie spécialisée et de référence, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux - Laboratoire Associé, Paris, France; Université Paris Cité, INSERM, IAME UMR1137, Paris, France
| | | | - Philip Noël Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Philip Supply
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
11
|
Finardi AJ, de Oliveira NG, de Moraes EB, Batista LCF, Bortolomai BE, Suffys PN, Baptista IMFD. Genetic diversity of Mycobacterium leprae in the state of São Paulo, an area of low-leprosy incidence in Brazil. Rev Soc Bras Med Trop 2023; 56:S0037-86822023000100607. [PMID: 36995787 PMCID: PMC10042472 DOI: 10.1590/0037-8682-0612-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Brazil has the second largest number of leprosy cases worldwide, and the state of São Paulo has been considered non-endemic since 2006. Methods: We analyzed 16 variable number tandem repeats loci and three single nucleotide polymorphisms loci of Mycobacterium leprae (M. leprae) in 125 clinical isolates from patients in different municipalities in the state. Results: The clustering pattern of M. leprae indicated that the transmission of leprosy persisted in the state and included scenarios of intra-extra-familial transmission in areas with low endemicity. Conclusions: A significantly active circulation of M. leprae was observed. Therefore, surveillance and control measures must be implemented.
Collapse
Affiliation(s)
- Amanda Juliane Finardi
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brasil
| | - Nathan Guilherme de Oliveira
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brasil
| | - Eloise Brasil de Moraes
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brasil
| | | | - Bruna Eduarda Bortolomai
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brasil
| | - Philip Noel Suffys
- Fundação Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
12
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
13
|
Yotsu RR, Miyamoto Y, Mori S, Ato M, Sugawara-Mikami M, Yamaguchi S, Yamazaki M, Ozaki M, Ishii N. Hansen's disease (leprosy) in Japan, 1947-2020: an epidemiologic study during the declining phase to elimination. Int J Infect Dis 2022; 125:265-274. [PMID: 36280096 PMCID: PMC9798910 DOI: 10.1016/j.ijid.2022.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Leprosy, or Hansen's disease was a major public health problem in Japan in the early 20th century. Today, the number of new cases has decreased significantly. We aimed to investigate the trends of leprosy in Japan over the past 73 years and the challenges faced in recent years. METHODS We assessed the data on newly registered cases of leprosy from 1947 to 2020. RESULTS A total of 10,796 newly registered cases of leprosy were reported during the study period, of which 7573 were registered in mainland Japan, 2962 in Okinawa, and 250 were of foreign origin. Most autochthonous cases were born before 1950 in mainland Japan and before 1975 in Okinawa. The number of nonautochthonous cases surpassed that of autochthonous cases in 1992. Nonautochthonous cases originated from 26 countries, particularly Brazil and the Philippines. Three cases of antimicrobial resistance have been detected among nonautochthonous cases since 2004. CONCLUSION Our data suggest that ongoing transmission of leprosy likely ceased in the 1940s in mainland Japan and in the 1970s in Okinawa. With the recent rise of nonautochthonous cases with globalization, continuous surveillance and efforts to maintain leprosy services within the country are necessary even after reaching the state of elimination.
Collapse
Affiliation(s)
- Rie R. Yotsu
- Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, USA,Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan,Corresponding author: Rie R. Yotsu 1440 Canal Street, New Orleans, LA 70118, (R.R. Yotsu)
| | - Yuji Miyamoto
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuichi Mori
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mariko Sugawara-Mikami
- West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan,Department of Clinical Laboratory Science, Faculty of Medicine Technology, Teikyo University, Tokyo, Japan
| | - Sayaka Yamaguchi
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | | | - Motoaki Ozaki
- National Sanatorium Nagashima-Aiseien, Setouchi-shi, Japan
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan,National Sanatorium Tamazenshoen, Tokyo, Japan
| |
Collapse
|
14
|
Cole G, Taylor GM, Stewart GR, Dawson-Hobbis H. Ancient DNA confirmation of lepromatous leprosy in a skeleton with concurrent osteosarcoma, excavated from the leprosarium of St. Mary Magdalen in Winchester, Hants., UK. Eur J Clin Microbiol Infect Dis 2022; 41:1295-1304. [DOI: 10.1007/s10096-022-04494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
|
15
|
Investigating drug resistance of Mycobacterium leprae in the Comoros: an observational deep-sequencing study. THE LANCET MICROBE 2022; 3:e693-e700. [DOI: 10.1016/s2666-5247(22)00117-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
|
16
|
Sharma M, Singh P. Advances in the Diagnosis of Leprosy. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.893653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leprosy is a public health issue, and early detection is critical to avert disability. Despite the global attempt to eradicate this disease as a public health problem, it remains an important cause of global neurological disability. India, Brazil and Indonesia share more than 70% of the cases. The reduction of new cases is a priority in the WHO global strategy 2021-2030 which aims to reduce disease transmission in the community by diagnosing cases and identifying subclinical infection. The clinical manifestations of leprosy range from a few to several lesions. The identification remains difficult due to the limited sensitivity of traditional approaches based on bacillary counts of skin smears and histology. To aid in the diagnosis of this disease, molecular biology, and biotechnological technologies have been applied, each with its own set of benefits and downsides despite providing an essential tool to validate the clinical diagnosis of leprosy. Because of this, it is strongly recognized that specific, inexpensive point of care technologies should be developed, particularly to identify asymptomatic M. leprae infections or leprosy nearer to the suspected cases seeking medical attention. Thus, this review will provide an overview of the advancements in leprosy diagnosis over the world. The purpose of this review is to improve our understanding of the outcomes of current tests and technologies used in leprosy diagnosis and to emphasize critical aspects concerning the detection of leprosy bacilli.
Collapse
|
17
|
A Bibliometric Analysis of Leprosy during 2000-2021 from Web of Science Database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148234. [PMID: 35886085 PMCID: PMC9324497 DOI: 10.3390/ijerph19148234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
In recent years, after the essential elimination of leprosy (the prevalence of which is <1/100,000), the trends, research hotpots, and frontiers of leprosy research are not clear. This study provides a detailed overview of leprosy in terms of papers, journal, language, year, citations, h-index, author keywords, institution, and country through bibliometrics. The results are as follows: (1) The publication rate has increased in recent years, and 8892 papers were obtained. Most of the publications are in English, and the subject categories are mainly focused on “Dermatology.” The “leprosy review” published the most significant number of papers on leprosy, followed by “Plos Neglected Tropical Disease” and “International Journal of Leprosy and Other Mycobacterial Diseases.” (2) Leprosy-related research was contributed to by 24,672 authors, and the ten authors with the most significant number of publications were identified. (3) The University of London (including the London School of Hygiene and Tropical Medicine) has the highest h-index, and Fundacao Oswaldo Cruz is the most productive institution. (4) Brazil, India, the United States, the United Kingdom, and the Netherlands are the most productive countries, and the collaborative network reveals that they have established close cooperation with other countries. France has the highest average number of citations. (5) The keyword co-occurrence network identifies five highly relevant clusters representing topical issues in leprosy research (public health, leprosy vaccine, immune mechanisms, treatment, and genomics research). Overall, these results provide valuable insights for scholars, research institutions, and policymakers to better understand developments in the field of leprosy.
Collapse
|
18
|
Shi Y, Kong W, Jiang H, Zhang W, Wang C, Wu L, Shen Y, Yao Q, Wang H. Molecular Surveillance of Antimicrobial Resistance of Mycobacterium leprae from Leprosy Patients in Zhejiang Province, China. Infect Drug Resist 2022; 15:4029-4036. [PMID: 35924023 PMCID: PMC9342246 DOI: 10.2147/idr.s368682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Reports on antimicrobial resistance (AMR) of Mycobacterium leprae (M. leprae) in Zhejiang Province are limited. Thus, this study aimed to investigate the drug resistance of new leprosy cases within several years and analyse the emergence of AMR mutations from Zhejiang Province. Methods This study enrolled 34 leprosy cases in Zhejiang Province, China, from 2018 to 2021. Gene mutation of WHO-recommended DRDRs (folP1, rpoB and gyrA) and genes of compensatory AMR-associated DRDRs, including nth, rpoA, rpoC, gyrB and 23S rRNA, were detected by amplification. Clinical data analysis was performed to investigate the epidemiological association of leprosy. Results Of the 34 samples, 2 (5.9%) strains showed drug resistance, which were mutated to dapsone and ofloxacin, separately. Two single mutations in gyrB were detected in different strains (5.9%), whereas one of the rpoC mutation was also detected in one strain each (2.9%), which were proved to be polymorphs. No correlation of drug resistance proportion was identified in male vs female, nerve vs no nerve involvement, deformity vs no deformity and reaction vs non-reaction cases. Conclusion Results showed well control of leprosy patients in Zhejiang Province. Gene mutations of WHO-recommended DRDRs folP1 and gyrA confirmed the resistance to dapsone and ofloxacin. Compensatory AMR-associated mutations confirmed to be polymorphs still require further study to determine their phenotypic outcomes in M. leprae. The results demonstrated that drug-resistant strains are not epidemic in this area. Given the few cases of leprosy, analysing the AMR of M. leprae in Zhejiang Province more comprehensively is difficult. However, regular MDT treatment and population management in the early stage may contribute to the low prevalence of leprosy.
Collapse
Affiliation(s)
- Ying Shi
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
- Hospital of Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, People’s Republic of China
| | - Wenming Kong
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
| | - Haiqin Jiang
- Hospital of Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, People’s Republic of China
| | - Wenyue Zhang
- Hospital of Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, People’s Republic of China
| | - Chen Wang
- Hospital of Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Limei Wu
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
| | - Yunliang Shen
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
| | - Qiang Yao
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
- Correspondence: Qiang Yao, Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, St 61, Zhejiang, People’s Republic of China, Email
| | - Hongsheng Wang
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
- Hospital of Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, People’s Republic of China
- Centre for Global health, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
- Hongsheng Wang, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 12 Jiangwangmiao Street, Nanjing, People’s Republic of China, Tel: +86 025 8547 8953, Email
| |
Collapse
|
19
|
Shibata K, Shimizu T, Nakahara M, Ito E, Legoux F, Fujii S, Yamada Y, Furutani-Seiki M, Lantz O, Yamasaki S, Watarai M, Shirai M. The intracellular pathogen Francisella tularensis escapes from adaptive immunity by metabolic adaptation. Life Sci Alliance 2022; 5:5/10/e202201441. [PMID: 35667686 PMCID: PMC9170078 DOI: 10.26508/lsa.202201441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
This study shows that metabolic adaptation allows the intracellular bacterial pathogen Francisella tularensis to escape recognition by the host adaptive immunity. Intracellular pathogens lose many metabolic genes during their evolution from free-living bacteria, but the pathogenic consequences of their altered metabolic programs on host immunity are poorly understood. Here, we show that a pathogenic strain of Francisella tularensis subsp. tularensis (FT) has five amino acid substitutions in RibD, a converting enzyme of the riboflavin synthetic pathway responsible for generating metabolites recognized by mucosal-associated invariant T (MAIT) cells. Metabolites from a free-living strain, F. tularensis subsp. novicida (FN), activated MAIT cells in a T-cell receptor (TCR)–dependent manner, whereas introduction of FT-type ribD to the free-living strain was sufficient to attenuate this activation in both human and mouse MAIT cells. Intranasal infection in mice showed that the ribDFT-expressing FN strain induced impaired Th1-type MAIT cell expansion and resulted in reduced bacterial clearance and worsened survival compared with the wild-type free-living strain FN. These results demonstrate that F. tularensis can acquire immune evasion capacity by alteration of metabolic programs during evolution.
Collapse
Affiliation(s)
- Kensuke Shibata
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan .,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Ophthalmology, Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Mashio Nakahara
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | - Shotaro Fujii
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuka Yamada
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Furutani-Seiki
- Systems Biochemistry in Pathology and Regeneration, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Olivier Lantz
- INSERM U932, PSL University, Laboratoire d'Immunologie Clinique, Centre d'Investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, France
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Mutsunori Shirai
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
20
|
Wu Z, Wang C, Wang Z, Shi Y, Jiang H, Wang H. Risk factors for Dapsone Resistance in Leprosy Patients: A systematic meta-analysis. J Glob Antimicrob Resist 2022; 30:459-467. [DOI: 10.1016/j.jgar.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022] Open
|
21
|
Jiang H, Shi Y, Chokkakula S, Zhang W, Long S, Wang Z, Kong W, Long H, Wu L, Hu L, Yao Q, Wang H. Utility of Multi-target Nested PCR and ELISPOT Assays for the Detection of Paucibacillary Leprosy: A Possible Conclusion of Clinical Laboratory Misdiagnosis. Front Cell Infect Microbiol 2022; 12:814413. [PMID: 35480232 PMCID: PMC9036522 DOI: 10.3389/fcimb.2022.814413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
The diagnosis of paucibacillary (PB) leprosy often possesses a diagnostic challenge, especially for pure neuritic and lesser skin lesions with the zero bacillary load, requiring a sensitive and accurate diagnostic tool. We have included 300 clinically diagnosed new leprosy cases (comprising 98 PB cases) and analyzed the sensitivity and specificity of PB leprosy cases by nested PCR with folP, gyrA, rpoB, RLEP, and 16SrRNA and Enzyme-linked Immunospot Assay test (ELISPOT) with MMPII, NDO-BSA, and LID-1 antigens by detecting interferon gamma (IFN-γ) release. The overall positivity rates of genes tested in 300 clinical specimens were identified as 55% of 16SrRNA, 59% of RLEP, 59.3% of folP, 57.3% of rpoB, 61% of gyrA while 90% of nested folP, 92.6% of nested rpoB, and 95% of nested gyrA, and 285 (95%) of at least one gene positive cases. For PB specimens, 95% PCR positivity was achieved by three tested genes in nested PCR. The data obtained from ELISPOT for three antigens were analyzed for IFN-γ expression with 600 subjects. Among 98 PB leprosy cases, the sensitivity of MMP II, LID-1, and NDO-BSA was 90%, 87%, and 83%, respectively, and the specificity was 90%, 91%, and 86%, respectively. The total number of cases positive for at least one antigen was 90 (91.8%) in PB, which is significantly higher than that in multibacillary (MB) leprosy (56.7%). The combination of multi-targets nested PCR and ELISPOT assay provides a specific tool to early clinical laboratory diagnosis of PB leprosy cases. The two assays are complementary to each other and beneficial for screening PB patients.
Collapse
Affiliation(s)
- Haiqin Jiang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
- Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying Shi
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
| | - Santosh Chokkakula
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
- Department of Microbiology, Chungbuk National University College of Medicine, and Medical Research Institute, Cheongju, South Korea
| | - Wenyue Zhang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
| | - Siyu Long
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
| | - Zhenzhen Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Wenming Kong
- Department of Leprosy Control, Zhejiang, Provincial Institute of Dermatology, Zhejiang, China
| | - Heng Long
- Department of Leprosy Control, Wenshan institute of Dermatology, Wenshan, China
| | - Limei Wu
- Department of Leprosy Control, Zhejiang, Provincial Institute of Dermatology, Zhejiang, China
| | - Lihua Hu
- Department of Leprosy Control, Zhejiang, Provincial Institute of Dermatology, Zhejiang, China
| | - Qiang Yao
- Department of Leprosy Control, Zhejiang, Provincial Institute of Dermatology, Zhejiang, China
- *Correspondence: Hongsheng Wang, ; Qiang Yao,
| | - Hongsheng Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
- Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Hongsheng Wang, ; Qiang Yao,
| |
Collapse
|
22
|
da Rocha NP, Barbosa EJ, Barros de Araujo GL, Bou-Chacra NA. Innovative drug delivery systems for leprosy treatment. Indian J Dermatol Venereol Leprol 2022; 88:1-6. [PMID: 35434984 DOI: 10.25259/ijdvl_1119_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/01/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Nataly Paredes da Rocha
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Eduardo José Barbosa
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Drug resistance in leprosy: an update following 70 years of chemotherapy. Infect Dis Now 2022; 52:243-251. [DOI: 10.1016/j.idnow.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
|
24
|
Vera-Cabrera L, Ramos-Cavazos CJ, Youssef NA, Pearce CM, Molina-Torres CA, Avalos-Ramirez R, Gagneux S, Ocampo-Candiani J, Gonzalez-Juarrero M, Mayorga-Rodriguez JA, Mayorga-Garibaldi L, Spencer JS, Jackson M, Avanzi C. Mycobacterium leprae Infection in a Wild Nine-Banded Armadillo, Nuevo León, Mexico. Emerg Infect Dis 2022. [DOI: 10.3201/eid2803.21295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Vera-Cabrera L, Ramos-Cavazos CJ, Youssef NA, Pearce CM, Molina-Torres CA, Avalos-Ramirez R, Gagneux S, Ocampo-Candiani J, Gonzalez-Juarrero M, Mayorga-Rodriguez JA, Mayorga-Garibaldi L, Spencer JS, Jackson M, Avanzi C. Mycobacterium leprae Infection in a Wild Nine-Banded Armadillo, Nuevo León, Mexico. Emerg Infect Dis 2022; 28:747-749. [PMID: 35202538 PMCID: PMC8888246 DOI: 10.3201/eid2803.211295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and are implicated in the zoonotic transmission of leprosy in the United States. In Mexico, the existence of such a reservoir remains to be characterized. We describe a wild armadillo infected by M. leprae in the state of Nuevo León, Mexico.
Collapse
|
26
|
Verbenko DA, Solomka VS, Kozlova IV, Kubanov AA. The genetic determinants of Mycobacterium leprae resistance to antimicrobial drugs. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The review is devoted to the appearance of resistance of a slowly developing disease leprosy to antimicrobial therapy (AMP), primarily recommended by the World Health Organization. The main danger of drug resistant leprosy is in the difficulty of identifying, since the causative agent of the disease is not cultivated on artificial media, and the methods for diagnosing drug resistance that are currently used take a long time. The drug resistance of the Mycobacterium leprae strain even to individual components of combination drug therapy result to the development of symptoms of the disease despite undergo anti-leprosy therapy, which in turn can cause the patient to become disabled. Currently, in the Russian Federation, there is no approved test for detecting Mycobacterium leprae DNA, and the determination of genetic determinants of resistance is carried out by sequencing genome regions determined by WHO recommendations: small gyrA, folP and rpoB genes loci. At the same time, modern studies in endemic regions reveal an increased level of Mycobacterium leprae strains resistant to individual components of combined drug therapy. The use of next generation sequencing (NGS) has made it possible to identify additional genetic determinants of leprosy resistance to the components of combination drug therapy. The current situation is relevant to antimicrobal drug resistance surveillance by using of quick identification systems for most frequent genetic resistance determinants of Mycobacterium leprae.
The literature search was carried out using keywords in the Scopus, PubMed and RSCI databases.
Collapse
|
27
|
Marin A, Van Huss K, Corbett J, Kim S, Mohl J, Hong BY, Cervantes J. Human macrophage polarization in the response to Mycobacterium leprae genomic DNA. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100015. [PMID: 34841308 PMCID: PMC8610329 DOI: 10.1016/j.crmicr.2020.100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
Infection with Mycobacterium leprae, the causative organism of leprosy, is still endemic in numerous parts of the world including the southwestern United States. The broad variation of symptoms in the leprosy disease spectrum range from the milder tuberculoid leprosy (paucibacillary) to the more severe and disfiguring lepromatous leprosy (multibacillary). The established thinking in the health community is that host response, rather than M. leprae strain variation, is the reason for the range of disease severity. More recent discoveries suggest that macrophage polarization also plays a significant role in the spectrum of leprosy disease but to what degree it contributes is not fully established. In this study, we aimed to analyze if different strains of M. leprae elicit different transcription responses in human macrophages, and to examine the role of macrophage polarization in these responses. Genomic DNA from three different strains of M. leprae DNA (Strains NHDP, Br4923, and Thai-53) were used to stimulate human macrophages under three polarization conditions (M1, M1-activated, and M2). Transcriptome analysis revealed a large number of differentially expressed (DE) genes upon stimulation with DNA from M. leprae strain Thai-53 compared to strains NHDP and Br4923, independent of the macrophage polarization condition. We also found that macrophage polarization affects the responses to M. leprae DNA, with up-regulation of numerous interferon stimulated genes. These findings provide a deeper understanding of the role of macrophage polarization in the recognition of M. leprae DNA, with the potential to improve leprosy treatment strategies.
Collapse
Affiliation(s)
- Alberto Marin
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Kristopher Van Huss
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - John Corbett
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Sangjin Kim
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jonathon Mohl
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Bo-young Hong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jorge Cervantes
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
28
|
Urban C, Blom AA, Pfrengle S, Walker-Meikle K, Stone AC, Inskip SA, Schuenemann VJ. One Health Approaches to Trace Mycobacterium leprae's Zoonotic Potential Through Time. Front Microbiol 2021; 12:762263. [PMID: 34745073 PMCID: PMC8566891 DOI: 10.3389/fmicb.2021.762263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Hansen's disease (leprosy), mainly caused by infection with Mycobacterium leprae, has accompanied humanity for thousands of years. Although currently rare in Europe, there are over 200,000 new infections annually in South East Asia, Africa, and South America. Over the years many disciplines - palaeopathology, ancient DNA and other ancient biomolecules, and history - have contributed to a better understanding of leprosy's past, in particular its history in medieval Europe. We discuss their contributions and potential, especially in relation to the role of inter-species transmission, an unexplored phenomenon in the disease's history. Here, we explore the potential of interdisciplinary approaches that understand disease as a biosocial phenomenon, which is a product of both infection with M. leprae and social behaviours that facilitate transmission and spread. Genetic evidence of M. leprae isolated from archaeological remains combined with systematic zooarchaeological and historical analysis would not only identify when and in what direction transmission occurred, but also key social behaviours and motivations that brought species together. In our opinion, this combination is crucial to understand the disease's zoonotic past and current potential.
Collapse
Affiliation(s)
- Christian Urban
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Alette A. Blom
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | | | - Anne C. Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| | - Sarah A. Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
29
|
Pfrengle S, Neukamm J, Guellil M, Keller M, Molak M, Avanzi C, Kushniarevich A, Montes N, Neumann GU, Reiter E, Tukhbatova RI, Berezina NY, Buzhilova AP, Korobov DS, Suppersberger Hamre S, Matos VMJ, Ferreira MT, González-Garrido L, Wasterlain SN, Lopes C, Santos AL, Antunes-Ferreira N, Duarte V, Silva AM, Melo L, Sarkic N, Saag L, Tambets K, Busso P, Cole ST, Avlasovich A, Roberts CA, Sheridan A, Cessford C, Robb J, Krause J, Scheib CL, Inskip SA, Schuenemann VJ. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biol 2021; 19:220. [PMID: 34610848 PMCID: PMC8493730 DOI: 10.1186/s12915-021-01120-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/07/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.
Collapse
Affiliation(s)
- Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Martyna Molak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
- Swiss and Tropical Public Health Institute, Basel, Switzerland
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Núria Montes
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Gunnar U Neumann
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Rezeda I Tukhbatova
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
- Laboratory of Structural Biology, Kazan Federal University, Kazan, Russian Federation, 420008
| | - Nataliya Y Berezina
- Research Institute and Museum of Anthropology, Moscow State University, 125009, Mokhovaya str. 11, Moscow, Russian Federation
| | - Alexandra P Buzhilova
- Research Institute and Museum of Anthropology, Moscow State University, 125009, Mokhovaya str. 11, Moscow, Russian Federation
| | - Dmitry S Korobov
- The Institute of Archaeology of the Russian Academy of Sciences, 117292, Dm. Uljanova str. 19, Moscow, Russian Federation
| | - Stian Suppersberger Hamre
- Department of Archaeology, History, Cultural studies and religion, University of Bergen, 5020, Bergen, Norway
| | - Vitor M J Matos
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Maria T Ferreira
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Centre for Functional Ecology, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Área de Antropología Física, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Laura González-Garrido
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Área de Antropología Física, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana, 24071, León, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Sofia N Wasterlain
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Célia Lopes
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Laboratory of Biological Anthropology, Department of Biology; School of Science and Technology, University of Évora, Évora, Portugal
| | - Ana Luisa Santos
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Nathalie Antunes-Ferreira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz (LCFPEM), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Egas Moniz CRL, Monte de Caparica, Portugal
- Laboratory of Biological Anthropology and Human Osteology (LABOH), CRIA/FCSH, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Vitória Duarte
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ana Maria Silva
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Centre for Functional Ecology, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- UNIARQ - University of Lisbon, Lisbon, Portugal
| | - Linda Melo
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Natasa Sarkic
- OSTEO Research, Camino de la Iglesia 1, Barrio de mata, Santiuste De Pedraza, 40171, Segovia, Spain
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Philippe Busso
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, 25-28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Alexei Avlasovich
- Department of Archeology, History of Belarus and Special Historical Disciplines, Mogilev State A. Kuleshov University, Str Kosmonavtov 1, Mogilev, 212022, Republic of Belarus
| | - Charlotte A Roberts
- Department of Archaeology, Durham University, South Road, Durham, DH1 3 LE, UK
| | - Alison Sheridan
- Department of Scottish History and Archaeology, National Museums Scotland, Chambers Street, Edinburgh, EH1 1JF, UK
| | - Craig Cessford
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - John Robb
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
- St John's College, University of Cambridge, Cambridge, CB2 1TP, UK.
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester, LE1 7RH, UK.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.
| |
Collapse
|
30
|
Hockings KJ, Mubemba B, Avanzi C, Pleh K, Düx A, Bersacola E, Bessa J, Ramon M, Metzger S, Patrono LV, Jaffe JE, Benjak A, Bonneaud C, Busso P, Couacy-Hymann E, Gado M, Gagneux S, Johnson RC, Kodio M, Lynton-Jenkins J, Morozova I, Mätz-Rensing K, Regalla A, Said AR, Schuenemann VJ, Sow SO, Spencer JS, Ulrich M, Zoubi H, Cole ST, Wittig RM, Calvignac-Spencer S, Leendertz FH. Leprosy in wild chimpanzees. Nature 2021; 598:652-656. [PMID: 34646009 PMCID: PMC8550970 DOI: 10.1038/s41586-021-03968-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.
Collapse
Affiliation(s)
- Kimberley J Hockings
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Centre for Research in Anthropology (CRIA - NOVA FCSH), Lisbon, Portugal
| | - Benjamin Mubemba
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Charlotte Avanzi
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kamilla Pleh
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Ariane Düx
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Elena Bersacola
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Centre for Research in Anthropology (CRIA - NOVA FCSH), Lisbon, Portugal
| | - Joana Bessa
- Centre for Research in Anthropology (CRIA - NOVA FCSH), Lisbon, Portugal
- Department of Zoology, University of Oxford, Oxford, UK
| | - Marina Ramon
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Sonja Metzger
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Livia V Patrono
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Jenny E Jaffe
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Andrej Benjak
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Philippe Busso
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Emmanuel Couacy-Hymann
- Laboratoire National d'Appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville, Côte d'Ivoire
| | - Moussa Gado
- Programme National de Lutte Contre la Lèpre, Ministry of Public Health, Niamey, Niger
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Roch C Johnson
- Centre Interfacultaire de Formation et de Recherche en Environnement pour le Développement Durable, University of Abomey-Calavi, Jericho, Cotonou, Benin
- Fondation Raoul Follereau, Paris, France
| | - Mamoudou Kodio
- Centre National d'Appui à la Lutte Contre la Maladie, Bamako, Mali
| | | | - Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Aissa Regalla
- Instituto da Biodiversidade e das Áreas Protegidas, Dr. Alfredo Simão da Silva (IBAP), Bissau, Guinea-Bissau
| | - Abílio R Said
- Instituto da Biodiversidade e das Áreas Protegidas, Dr. Alfredo Simão da Silva (IBAP), Bissau, Guinea-Bissau
| | | | - Samba O Sow
- Centre National d'Appui à la Lutte Contre la Maladie, Bamako, Mali
| | - John S Spencer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Markus Ulrich
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Hyacinthe Zoubi
- Programme National d'Elimination de la Lèpre, Dakar, Senegal
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Roman M Wittig
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Fabian H Leendertz
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.
- Helmholtz Institute for One Health, Greifswald, Germany.
| |
Collapse
|
31
|
Iwao Y, Mori S, Ato M, Nakata N. Simultaneous Determination of Mycobacterium leprae Drug Resistance and Single-Nucleotide Polymorphism Genotype by Use of Nested Multiplex PCR with Amplicon Sequencing. J Clin Microbiol 2021; 59:e0081421. [PMID: 34319800 PMCID: PMC8451403 DOI: 10.1128/jcm.00814-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium leprae is the predominant cause of leprosy worldwide, and its genotypes can be classified into four single-nucleotide polymorphism (SNP) types and 16 subtypes. Determining M. leprae drug resistance and genotype is typically done by PCR and Sanger DNA sequencing, which require substantial effort. Here, we describe a rapid method involving multiplex PCR in combination with nested amplification and next-generation sequence analysis that allows simultaneous determination of M. leprae drug resistance and SNP genotype directly from clinical specimens. We used this method to analyze clinical samples from two paucibacillary, nine multibacillary, and six type-undetermined leprosy patients. Regions in folP1, rpoB, gyrA, and gyrB that determine drug resistance and those for 84 SNP-InDels in the M. leprae genome were amplified from clinical samples and their sequences determined. The results showed that seven samples were subtype 1A, three were 1D, and seven were 3K. Three samples of the subtype 3K had folp1 mutation. The method may allow more rapid genetic analyses of M. leprae in clinical samples.
Collapse
Affiliation(s)
- Yasuhisa Iwao
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Shuichi Mori
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Noboru Nakata
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
32
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
33
|
Nath D, Chakraborty S. Genome wide analysis of Mycobacterium leprae for identification of putative microRNAs and their possible targets in human. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Chauffour A, Morel F, Reibel F, Petrella S, Mayer C, Cambau E, Aubry A. A systematic review of Mycobacterium leprae DNA gyrase mutations and their impact on fluoroquinolone resistance. Clin Microbiol Infect 2021; 27:1601-1612. [PMID: 34265461 DOI: 10.1016/j.cmi.2021.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The fact that Mycobacterium leprae does not grow in vitro remains a challenge in the survey of its antimicrobial resistance (AMR). Mainly molecular methods are used to diagnose AMR in M. leprae to provide reliable data concerning mutations and their impact. Fluoroquinolones (FQs) are efficient for the treatment of leprosy and the main second-line drugs in case of multidrug resistance. OBJECTIVES This study aimed at performing a systematic review (a) to characterize all DNA gyrase gene mutations described in clinical isolates of M. leprae, (b) to distinguish between those associated with FQ resistance or susceptibility and (c) to delineate a consensus numbering system for M. leprae GyrA and GyrB. DATA SOURCES Data source was PubMed. STUDY ELIGIBILITY CRITERIA Publications reporting genotypic susceptibility-testing methods and gyrase gene mutations in M. leprae clinical strains. RESULTS In 25 studies meeting our inclusion criteria, 2884 M. leprae isolates were analysed (2236 for gyrA only (77%) and 755 for both gyrA and gyrB (26%)): 3.8% of isolates had gyrA mutations (n = 110), mostly at position 91 (n = 75, 68%) and 0.8% gyrB mutations (n = 6). Since we found discrepancies regarding the location of substitutions associated with FQ resistance, we established a consensus numbering system to properly number the mutations. We also designed a 3D model of the M. leprae DNA gyrase to predict the impact of mutations whose role in FQ-susceptibility has not been demonstrated previously. CONCLUSIONS Mutations in DNA gyrase are observed in 4% of the M. leprae clinical isolates. To solve discrepancies among publications and to distinguish between mutations associated with FQ resistance or susceptibility, the consensus numbering system we proposed as well as the 3D model of the M. leprae gyrase for the evaluation of the impact of unknown mutations in FQ resistance, will provide help for resistance surveillance.
Collapse
Affiliation(s)
- Aurélie Chauffour
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Florence Reibel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France; Laboratoire de Biologie, Groupe Hospitalier Nord-Essonne, Site de Longjumeau, Longjumeau, France
| | - Stéphanie Petrella
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Claudine Mayer
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Emmanuelle Cambau
- AP-HP GHU Nord, Service de Mycobactériologie Spécialisée et de Référence, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France; Université de Paris, Paris Diderot, INSERM, IAME UMR1137, Paris, France
| | - Alexandra Aubry
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France.
| |
Collapse
|
35
|
Strategies for drug target identification in Mycobacterium leprae. Drug Discov Today 2021; 26:1569-1573. [PMID: 33798649 DOI: 10.1016/j.drudis.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Hansen's disease (HD), or leprosy, continues to be endemic in many parts of the world. Although multidrug therapy (MDT) is successful in curing a large number of patients, some of them abandon it because it is a long-term treatment. Therefore, identification of new drug targets in Mycobacterium leprae is considered of high importance. Here, we introduce an overview of in silico and in vitro studies that might be of help in this endeavor. The essentiality of M. leprae proteins is reviewed with discussion of flux balance analysis, gene expression, and knockout articles. Finally, druggability techniques are proposed for the validation of new M. leprae protein targets (see Fig. 1).
Collapse
|
36
|
Henneberg M, Holloway-Kew K, Lucas T. Human major infections: Tuberculosis, treponematoses, leprosy-A paleopathological perspective of their evolution. PLoS One 2021; 16:e0243687. [PMID: 33630846 PMCID: PMC7906324 DOI: 10.1371/journal.pone.0243687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 01/17/2023] Open
Abstract
The key to evolution is reproduction. Pathogens can either kill the human host or can invade the host without causing death, thus ensuring their own survival, reproduction and spread. Tuberculosis, treponematoses and leprosy are widespread chronic infectious diseases whereby the host is not immediately killed. These diseases are examples of the co-evolution of host and pathogen. They can be well studied as the paleopathological record is extensive, spanning over 200 human generations. The paleopathology of each disease has been well documented in the form of published synthetic analyses recording each known case and case frequencies in the samples they were derived from. Here the data from these synthetic analyses were re-analysed to show changes in the prevalence of each disease over time. A total of 69,379 skeletons are included in this study. There was ultimately a decline in the prevalence of each disease over time, this decline was statistically significant (Chi-squared, p<0.001). A trend may start with the increase in the disease’s prevalence before the prevalence declines, in tuberculosis the decline is monotonic. Increase in skeletal changes resulting from the respective diseases appears in the initial period of host-disease contact, followed by a decline resulting from co-adaptation that is mutually beneficial for the disease (spread and maintenance of pathogen) and host (less pathological reactions to the infection). Eventually either the host may become immune or tolerant, or the pathogen tends to be commensalic rather than parasitic.
Collapse
Affiliation(s)
- Maciej Henneberg
- Biological and Comparative Anatomy Research Unit, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
- Department of Archaeology, Flinders University, Adelaide, Australia
- * E-mail:
| | - Kara Holloway-Kew
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Teghan Lucas
- Department of Archaeology, Flinders University, Adelaide, Australia
- School of Medical Sciences, Anatomy, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Gautam S, Sharma D, Goel A, Patil SA, Bisht D. Insights into Mycobacterium leprae Proteomics and Biomarkers-An Overview. Proteomes 2021; 9:7. [PMID: 33573064 PMCID: PMC7931084 DOI: 10.3390/proteomes9010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although leprosy is curable, the identification of biomarkers for the early diagnosis of leprosy would play a pivotal role in reducing transmission and the overall prevalence of the disease. Leprosy-specific biomarkers for diagnosis, particularly for the paucibacillary disease, are not well defined. Therefore, the identification of new biomarkers for leprosy is one of the prime themes of leprosy research. Studying Mycobacterium leprae, the causative agent of leprosy, at the proteomic level may facilitate the identification, quantification, and characterization of proteins that could be potential diagnostics or targets for drugs and can help in better understanding the pathogenesis. This review aims to shed light on the knowledge gained to understand leprosy or its pathogen employing proteomics and its role in diagnosis.
Collapse
Affiliation(s)
- Sakshi Gautam
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
- Department of Biotechnology, GLA University, NH-2, Mathura-Delhi Road, Mathura 281406, India;
| | - Devesh Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| | - Anjana Goel
- Department of Biotechnology, GLA University, NH-2, Mathura-Delhi Road, Mathura 281406, India;
| | - Shripad A. Patil
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| |
Collapse
|
38
|
Rosa PS, D'Espindula HRS, Melo ACL, Fontes ANB, Finardi AJ, Belone AFF, Sartori BGC, Pires CAA, Soares CT, Marques FB, Branco FJD, Baptista IMFD, Trino LM, Fachin LRV, Xavier MB, Floriano MC, Ura S, Diório SM, Delanina WFB, Moraes MO, Virmond MCL, Suffys PN, Mira MT. Emergence and Transmission of Drug-/Multidrug-resistant Mycobacterium leprae in a Former Leprosy Colony in the Brazilian Amazon. Clin Infect Dis 2021; 70:2054-2061. [PMID: 31260522 PMCID: PMC7201420 DOI: 10.1093/cid/ciz570] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Leprosy has been treated with multidrug therapy, which has been distributed for free across the globe and regarded as highly efficient. However, the impossibility of growing Mycobacterium leprae in axenic media has historically impaired assessments of M. leprae resistance, a parameter only recently detectable through molecular methods. METHODS A systematic, population-based search for M. leprae resistance in suspected leprosy relapse cases and contacts was performed in Prata Village, an isolated, hyperendemic, former leprosy colony located in the Brazilian Amazon. Results led to an extended active search involving the entire Prata population. Confirmed leprosy cases were investigated for bacterial resistance using a combination of in vivo testing and direct sequencing of resistance genes folP1, rpoB, and gyrA. A molecular epidemiology analysis was performed using data from 17 variable number tandem repeats (VNTR). RESULTS Mycobacterium leprae was obtained from biopsies of 37 leprosy cases (18 relapses and 19 new cases): 16 (43.24%) displayed drug-resistance variants. Multidrug resistance to rifampicin and dapsone was observed in 8 relapses and 4 new cases. Single resistance to rifampicin was detected in 1 new case. Resistance to dapsone was present in 2 relapses and 1 new case. Combined molecular resistance and VNTR data revealed evidence of intra-familial primary transmission of resistant M. leprae. CONCLUSIONS A comprehensive, population-based systematic approach to investigate M. leprae resistance in a unique population revealed an alarming scenario of the emergence and transmission of resistant strains. These findings may be used for the development of new strategies for surveillance of drug resistance in other populations.
Collapse
Affiliation(s)
- Patrícia S Rosa
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Helena R S D'Espindula
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Ana C L Melo
- Centro de Referência Nacional em Dermatologia Sanitária Dona Libânia, Fortaleza, Ceará, Brazil
| | - Amanda N B Fontes
- Laboratory of Molecular Biology Applied in Mycobacteria, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Amanda J Finardi
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Andréa F F Belone
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Beatriz G C Sartori
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Carla A A Pires
- Core of Tropical Diseases, Universidade Federal do Pará, Belém, Brazil
| | - Cleverson T Soares
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Flávio B Marques
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Francisco J D Branco
- Centro de Referência Nacional em Dermatologia Sanitária Dona Libânia, Fortaleza, Ceará, Brazil
| | - Ida M F D Baptista
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Lázara M Trino
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Luciana R V Fachin
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Marília B Xavier
- Core of Tropical Diseases, Universidade Federal do Pará, Belém, Brazil.,Center for Biological and Health Sciences, Universidade do Estado do Pará, Belém, Brazil
| | - Marcos C Floriano
- Department of Dermatology, Universidade Federal de São Paulo, Brazil
| | - Somei Ura
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Suzana M Diório
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Wladimir F B Delanina
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Milton O Moraes
- Laboratory of Molecular Biology Applied in Mycobacteria, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcos C L Virmond
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Philip N Suffys
- Laboratory of Molecular Biology Applied in Mycobacteria, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo T Mira
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
39
|
HARP: a database of structural impacts of systematic missense mutations in drug targets of Mycobacterium leprae. Comput Struct Biotechnol J 2020; 18:3692-3704. [PMID: 33304465 PMCID: PMC7711215 DOI: 10.1016/j.csbj.2020.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022] Open
Abstract
Computational Saturation Mutagenesis is an in-silico approach that employs systematic mutagenesis of each amino acid residue in the protein to all other amino acid types, and predicts changes in thermodynamic stability and affinity to the other subunits/protein counterparts, ligands and nucleic acid molecules. The data thus generated are useful in understanding the functional consequences of mutations in antimicrobial resistance phenotypes. In this study, we applied computational saturation mutagenesis to three important drug-targets in Mycobacterium leprae (M. leprae) for the drugs dapsone, rifampin and ofloxacin namely Dihydropteroate Synthase (DHPS), RNA Polymerase (RNAP) and DNA Gyrase (GYR), respectively. M. leprae causes leprosy and is an obligate intracellular bacillus with limited protein structural information associating mutations with phenotypic resistance outcomes in leprosy. Experimentally solved structures of DHPS, RNAP and GYR of M. leprae are not available in the Protein Data Bank, therefore, we modelled the structures of these proteins using template-based comparative modelling and introduced systematic mutations in each model generating 80,902 mutations and mutant structures for all the three proteins. Impacts of mutations on stability and protein-subunit, protein-ligand and protein-nucleic acid affinities were computed using various in-house developed and other published protein stability and affinity prediction software. A consensus impact was estimated for each mutation using qualitative scoring metrics for physicochemical properties and by a categorical grouping of stability and affinity predictions. We developed a web database named HARP (a database of Hansen's Disease Antimicrobial Resistance Profiles), which is accessible at the URL - https://harp-leprosy.org and provides the details to each of these predictions.
Collapse
|
40
|
Székely R, Rengifo-Gonzalez M, Singh V, Riabova O, Benjak A, Piton J, Cimino M, Kornobis E, Mizrahi V, Johnsson K, Manina G, Makarov V, Cole ST. 6,11-Dioxobenzo[ f]pyrido[1,2- a]indoles Kill Mycobacterium tuberculosis by Targeting Iron-Sulfur Protein Rv0338c (IspQ), A Putative Redox Sensor. ACS Infect Dis 2020; 6:3015-3025. [PMID: 32930569 DOI: 10.1021/acsinfecdis.0c00531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Screening of a diversity-oriented compound library led to the identification of two 6,11-dioxobenzo[f]pyrido[1,2-a]indoles (DBPI) that displayed low micromolar bactericidal activity against the Erdman strain of Mycobacterium tuberculosis in vitro. The activity of these hit compounds was limited to tubercle bacilli, including the nonreplicating form, and to Mycobacterium marinum. On hit expansion and investigation of the structure activity relationship, selected modifications to the dioxo moiety of the DBPI scaffold were either neutral or led to reduction or abolition of antimycobacterial activity. To find the target, DBPI-resistant mutants of M. tuberculosis Erdman were raised and characterized first microbiologically and then by whole genome sequencing. Four different mutations, all affecting highly conserved residues, were uncovered in the essential gene rv0338c (ispQ) that encodes a membrane-bound protein, named IspQ, with 2Fe-2S and 4Fe-4S centers and putative iron-sulfur-binding reductase activity. With the help of a structural model, two of the mutations were localized close to the 2Fe-2S domain in IspQ and another in transmembrane segment 3. The mutant genes were recessive to the wild type in complementation experiments and further confirmation of the hit-target relationship was obtained using a conditional knockdown mutant of rv0338c in M. tuberculosis H37Rv. More mechanistic insight was obtained from transcriptome analysis, following exposure of M. tuberculosis to two different DBPI; this revealed strong upregulation of the redox-sensitive SigK regulon and genes induced by oxidative and thiol-stress. The findings of this investigation pharmacologically validate a novel target in tubercle bacilli and open a new vista for tuberculosis drug discovery.
Collapse
Affiliation(s)
- Rita Székely
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Monica Rengifo-Gonzalez
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town 7701, South Africa
| | - Olga Riabova
- FRC Fundamentals of Biotechnology, Russian Academy of Science, 119071 Moscow, Russian Federation
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jérémie Piton
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Mena Cimino
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| | - Etienne Kornobis
- Biomics, C2RT, Institut Pasteur, 75015 Paris, France
- Hub Bioinformatique et Biostatistique, USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town 7701, South Africa
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giulia Manina
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| | - Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, 119071 Moscow, Russian Federation
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
41
|
Blevins KE, Crane AE, Lum C, Furuta K, Fox K, Stone AC. Evolutionary history of Mycobacterium leprae in the Pacific Islands. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190582. [PMID: 33012236 PMCID: PMC7702798 DOI: 10.1098/rstb.2019.0582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As one of the oldest known human diseases, leprosy or Hansen's disease remains a public health concern around the world with over 200 000 new cases in 2018. Most human leprosy cases are caused by Mycobacterium leprae, but a small number of cases are now known to be caused by Mycobacterium lepromatosis, a sister taxon of M. leprae. The global pattern of genomic variation in M. leprae is not well defined. Particularly, in the Pacific Islands, the origins of leprosy are disputed. Historically, it has been argued that leprosy arrived on the islands during nineteenth century colonialism, but some oral traditions and palaeopathological evidence suggest an older introduction. To address this, as well as investigate patterns of pathogen exchange across the Pacific Islands, we extracted DNA from 39 formalin-fixed paraffin-embedded biopsy blocks dating to 1992-2016. Using whole-genome enrichment and next-generation sequencing, we produced nine M. leprae genomes dating to 1998-2015 and ranging from 4-63× depth of coverage. Phylogenetic analyses indicate that these strains belong to basal lineages within the M. leprae phylogeny, specifically falling in branches 0 and 5. The phylogeographical patterning and evolutionary dating analysis of these strains support a pre-modern introduction of M. leprae into the Pacific Islands. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Kelly E Blevins
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Bioarchaeological Research, Arizona State University, Tempe, AZ, USA
| | - Adele E Crane
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Christopher Lum
- Department of Pathology, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Kanako Furuta
- Hawaii Pathologists Laboratory, Honolulu, HI 96813, USA
| | - Keolu Fox
- Departments of Anthropology and Global Health, University of California, San Diego, CA, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Bioarchaeological Research, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
42
|
Fotakis AK, Denham SD, Mackie M, Orbegozo MI, Mylopotamitaki D, Gopalakrishnan S, Sicheritz-Pontén T, Olsen JV, Cappellini E, Zhang G, Christophersen A, Gilbert MTP, Vågene ÅJ. Multi-omic detection of Mycobacterium leprae in archaeological human dental calculus. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190584. [PMID: 33012227 PMCID: PMC7702802 DOI: 10.1098/rstb.2019.0584] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mineralized dental plaque (calculus) has proven to be an excellent source of ancient biomolecules. Here we present a Mycobacterium leprae genome (6.6-fold), the causative agent of leprosy, recovered via shotgun sequencing of sixteenth-century human dental calculus from an individual from Trondheim, Norway. When phylogenetically placed, this genome falls in branch 3I among the diversity of other contemporary ancient strains from Northern Europe. Moreover, ancient mycobacterial peptides were retrieved via mass spectrometry-based proteomics, further validating the presence of the pathogen. Mycobacterium leprae can readily be detected in the oral cavity and associated mucosal membranes, which likely contributed to it being incorporated into this individual's dental calculus. This individual showed some possible, but not definitive, evidence of skeletal lesions associated with early-stage leprosy. This study is the first known example of successful multi-omics retrieval of M. leprae from archaeological dental calculus. Furthermore, we offer new insights into dental calculus as an alternative sample source to bones or teeth for detecting and molecularly characterizing M. leprae in individuals from the archaeological record. This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.
Collapse
Affiliation(s)
- Anna K Fotakis
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Sean D Denham
- Museum of Archaeology, University of Stavanger, Stavanger, Norway
| | - Meaghan Mackie
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway.,Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Miren Iraeta Orbegozo
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Dorothea Mylopotamitaki
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Thomas Sicheritz-Pontén
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Jesper V Olsen
- Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.,BGI-Shenzhen, 518083 Shenzhen, People's Republic of China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, People's Republic of China.,Centre for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, People's Republic of China
| | | | - M Thomas P Gilbert
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway.,NTNU University Museum, Trondheim, Norway
| | - Åshild J Vågene
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| |
Collapse
|
43
|
Avanzi C, Singh P, Truman RW, Suffys PN. Molecular epidemiology of leprosy: An update. INFECTION GENETICS AND EVOLUTION 2020; 86:104581. [PMID: 33022427 DOI: 10.1016/j.meegid.2020.104581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Molecular epidemiology investigations are notoriously challenging in the leprosy field mainly because the inherent characteristics of the disease as well as its yet uncultivated causative agents, Mycobacterium leprae and M. lepromatosis. Despite significant developments in understanding the biology of leprosy bacilli through genomic approaches, the exact mechanisms of transmission is still unclear and the factors underlying pathological variation of the disease in different patients remain as major gaps in our knowledge about leprosy. Despite these difficulties, the last two decades have seen the development of genotyping procedures based on PCR-sequencing of target loci as well as by the genome-wide analysis of an increasing number of geographically diverse isolates of leprosy bacilli. This has provided a foundation for molecular epidemiology studies that are bringing a better understanding of strain evolution associated with ancient human migrations, and phylogeographical insights about the spread of disease globally. This review discusses the advantages and drawbacks of the main tools available for molecular epidemiological investigations of leprosy and summarizes various methods ranging from PCR-based genotyping to genome-typing techniques. We also describe their main applications in analyzing the short-range and long-range transmission of the disease. Finally, we summarise the current gaps and challenges that remain in the field of molecular epidemiology of leprosy.
Collapse
Affiliation(s)
- Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pushpendra Singh
- Indian Council of Medical Research - National Institute of Research in Tribal Health, Jabalpur, India
| | - Richard W Truman
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LO, USA
| | - Philip N Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria - Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
45
|
Neukamm J, Pfrengle S, Molak M, Seitz A, Francken M, Eppenberger P, Avanzi C, Reiter E, Urban C, Welte B, Stockhammer PW, Teßmann B, Herbig A, Harvati K, Nieselt K, Krause J, Schuenemann VJ. 2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biol 2020; 18:108. [PMID: 32859198 PMCID: PMC7456089 DOI: 10.1186/s12915-020-00839-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recent advances in sequencing have facilitated large-scale analyses of the metagenomic composition of different samples, including the environmental microbiome of air, water, and soil, as well as the microbiome of living humans and other animals. Analyses of the microbiome of ancient human samples may provide insights into human health and disease, as well as pathogen evolution, but the field is still in its very early stages and considered highly challenging. RESULTS The metagenomic and pathogen content of Egyptian mummified individuals from different time periods was investigated via genetic analysis of the microbial composition of various tissues. The analysis of the dental calculus' microbiome identified Red Complex bacteria, which are correlated with periodontal diseases. From bone and soft tissue, genomes of two ancient pathogens, a 2200-year-old Mycobacterium leprae strain and a 2000-year-old human hepatitis B virus, were successfully reconstructed. CONCLUSIONS The results show the reliability of metagenomic studies on Egyptian mummified individuals and the potential to use them as a source for the extraction of ancient pathogen DNA.
Collapse
Affiliation(s)
- Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Alexander Seitz
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Michael Francken
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.,Paleoanthropology, Dept. of Geosciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Partick Eppenberger
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Christian Urban
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Beatrix Welte
- Institute of Pre- and Protohistory and Medieval Archaeology, Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Philipp W Stockhammer
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University Munich, 80799, Munich, Germany.,Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Barbara Teßmann
- Berlin Society of Anthropology, Ethnology and Prehistory, 10117, Berlin, Germany.,Museum of Prehistory and Early History, SMPK Berlin, 10117, Berlin, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Katerina Harvati
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.,Paleoanthropology, Dept. of Geosciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.,DFG Centre for Advanced Studies Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany. .,Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany. .,Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany. .,Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.
| |
Collapse
|
46
|
Arning N, Wilson DJ. The past, present and future of ancient bacterial DNA. Microb Genom 2020; 6:mgen000384. [PMID: 32598277 PMCID: PMC7478633 DOI: 10.1099/mgen.0.000384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Groundbreaking studies conducted in the mid-1980s demonstrated the possibility of sequencing ancient DNA (aDNA), which has allowed us to answer fundamental questions about the human past. Microbiologists were thus given a powerful tool to glimpse directly into inscrutable bacterial history, hitherto inaccessible due to a poor fossil record. Initially plagued by concerns regarding contamination, the field has grown alongside technical progress, with the advent of high-throughput sequencing being a breakthrough in sequence output and authentication. Albeit burdened with challenges unique to the analysis of bacteria, a growing number of viable sources for aDNA has opened multiple avenues of microbial research. Ancient pathogens have been extracted from bones, dental pulp, mummies and historical medical specimens and have answered focal historical questions such as identifying the aetiological agent of the black death as Yersinia pestis. Furthermore, ancient human microbiomes from fossilized faeces, mummies and dental plaque have shown shifts in human commensals through the Neolithic demographic transition and industrial revolution, whereas environmental isolates stemming from permafrost samples have revealed signs of ancient antimicrobial resistance. Culminating in an ever-growing repertoire of ancient genomes, the quickly expanding body of bacterial aDNA studies has also enabled comparisons of ancient genomes to their extant counterparts, illuminating the evolutionary history of bacteria. In this review we summarize the present avenues of research and contextualize them in the past of the field whilst also pointing towards questions still to be answered.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
47
|
Tió-Coma M, Avanzi C, Verhard EM, Pierneef L, van Hooij A, Benjak A, Roy JC, Khatun M, Alam K, Corstjens P, Cole ST, Richardus JH, Geluk A. Genomic Characterization of Mycobacterium leprae to Explore Transmission Patterns Identifies New Subtype in Bangladesh. Front Microbiol 2020; 11:1220. [PMID: 32612587 PMCID: PMC7308449 DOI: 10.3389/fmicb.2020.01220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is an unculturable bacterium with a considerably reduced genome (3.27 Mb) compared to homologues mycobacteria from the same ancestry. In 2001, the genome of M. leprae was first described and subsequently four genotypes (1-4) and 16 subtypes (A-P) were identified providing means to study global transmission patterns for leprosy. In order to understand the role of asymptomatic carriers we investigated M. leprae carriage as well as infection in leprosy patients (n = 60) and healthy household contacts (HHC; n = 250) from Bangladesh using molecular detection of the bacterial element RLEP in nasal swabs (NS) and slit skin smears (SSS). In parallel, to study M. leprae genotype distribution in Bangladesh we explored strain diversity by whole genome sequencing (WGS) and Sanger sequencing. In the studied cohort in Bangladesh, M. leprae DNA was detected in 33.3% of NS and 22.2% of SSS of patients with bacillary index of 0 whilst in HHC 18.0% of NS and 12.3% of SSS were positive. The majority of the M. leprae strains detected in this study belonged to genotype 1D (55%), followed by 1A (31%). Importantly, WGS allowed the identification of a new M. leprae genotype, designated 1B-Bangladesh (14%), which clustered separately between the 1A and 1B strains. Moreover, we established that the genotype previously designated 1C, is not an independent subtype but clusters within the 1D genotype. Intraindividual differences were present between the M. leprae strains obtained including mutations in hypermutated genes, suggesting mixed colonization/infection or in-host evolution. In summary, we observed that M. leprae is present in asymptomatic contacts of leprosy patients fueling the concept that these individuals contribute to the current intensity of transmission. Our data therefore emphasize the importance of sensitive and specific tools allowing post-exposure prophylaxis targeted at M. leprae-infected or -colonized individuals.
Collapse
Affiliation(s)
- Maria Tió-Coma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Charlotte Avanzi
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Els M. Verhard
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Louise Pierneef
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Chandra Roy
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Marufa Khatun
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Khorshed Alam
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Paul Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
48
|
Schilling AK, Del-Pozo J, Lurz PWW, Stevenson K, Avanzi C, Shuttleworth CM, Cole ST, Meredith AL. Leprosy in red squirrels in the UK. Vet Rec 2020; 184:416. [PMID: 30926706 DOI: 10.1136/vr.l1385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Anna-Katarina Schilling
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG
| | - Jorge Del-Pozo
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG
| | - Peter W W Lurz
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG
| | - Karen Stevenson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ
| | - Charlotte Avanzi
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | | | - Stewart T Cole
- Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Anna L Meredith
- University of Melbourne, Parkville VIC 3010, Melbourne, Australia
| |
Collapse
|
49
|
Röltgen K, Pluschke G, Spencer JS, Brennan PJ, Avanzi C. The immunology of other mycobacteria: M. ulcerans, M. leprae. Semin Immunopathol 2020; 42:333-353. [PMID: 32100087 PMCID: PMC7224112 DOI: 10.1007/s00281-020-00790-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Mycobacterial pathogens can be categorized into three broad groups: Mycobacterium tuberculosis complex causing tuberculosis, M. leprae and M. lepromatosis causing leprosy, and atypical mycobacteria, or non-tuberculous mycobacteria (NTM), responsible for a wide range of diseases. Among the NTMs, M. ulcerans is responsible for the neglected tropical skin disease Buruli ulcer (BU). Most pathogenic mycobacteria, including M. leprae, evade effector mechanisms of the humoral immune system by hiding and replicating inside host cells and are furthermore excellent modulators of host immune responses. In contrast, M. ulcerans replicates predominantly extracellularly, sheltered from host immune responses through the cytotoxic and immunosuppressive effects of mycolactone, a macrolide produced by the bacteria. In the year 2018, 208,613 new cases of leprosy and 2713 new cases of BU were reported to WHO, figures which are notoriously skewed by vast underreporting of these diseases.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - John Stewart Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Patrick Joseph Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Charlotte Avanzi
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
50
|
Leprosy Transmission in Amazonian Countries: Current Status and Future Trends. CURRENT TROPICAL MEDICINE REPORTS 2020. [DOI: 10.1007/s40475-020-00206-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Purpose of Review
Leprosy is one of the first pathologies described in the history of mankind. However, the ecology, transmission, and pathogenicity of the incriminated bacilli remain poorly understood. Despite effective treatment freely distributed worldwide since 1995, around 200,000 new cases continue to be detected yearly, mostly in the tropics. This review aims to discuss the unique characteristics of leprosy in Amazonian countries, which exhibit a very heterogeneous prevalence among human and animal reservoirs.
Recent Findings
Groundbreaking discoveries made in the last 15 years have challenged the dogmas about leprosy reservoirs, transmission, and treatment. The discovery of a new leprosy causative agent in 2008 and the scientific proof of zoonosis transmission of leprosy by nine-banded armadillos in the southern USA in 2011 challenged the prospects of leprosy eradication. In the Amazonian biome, nine-banded and other armadillo species are present but the lack of large-scale studies does not yet allow accurate assessment of the zoonotic risk. Brazil is the second country in the world reporting the highest number of new leprosy cases annually. The disease is also present, albeit with different rates, in all neighboring countries. Throughout the Amazonian biome, leprosy is mainly found in hyperendemic foci, conducive to the emergence and transmission of drug-resistant strains.
Summary
The deepening of current knowledge on leprosy reservoirs, transmission, and therapeutic issues, with the One Health approach and the help of molecular biology, will allow a better understanding and management of the public health issues and challenges related to leprosy in Amazonia.
Collapse
|