1
|
Cantilena S, AlAmeri M, Che N, Williams O, de Boer J. Synergistic Strategies for KMT2A-Rearranged Leukemias: Beyond Menin Inhibitor. Cancers (Basel) 2024; 16:4017. [PMID: 39682203 DOI: 10.3390/cancers16234017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A-menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often driven by menin mutations or alternative oncogenic pathways, remains a significant challenge. This review explores combination therapies aimed at overcoming resistance and improving patient outcomes. Potential strategies include inhibiting DOT1L, a histone methyltransferase essential for KMT2A-driven transcription, and BRD4, a regulator of transcriptional super-enhancers. Additionally, targeting MYC, a key oncogene frequently upregulated in KMT2A-rearranged leukemia, offers another approach. Direct inhibition of KMT2A-fusion proteins and c-MYB, a transcription factor critical for leukemic stem cell maintenance, is also explored. By integrating these diverse strategies, we propose a comprehensive therapeutic paradigm that targets multiple points of the leukemic transcriptional and epigenetic network. These combination approaches aim to disrupt key oncogenic pathways, reduce resistance, and enhance treatment efficacy, ultimately providing more durable remissions and improved survival for patients with KMT2A-rearranged leukemias.
Collapse
Affiliation(s)
- Sandra Cantilena
- Hemispherian AS, 0585 Oslo, Norway
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Mohamed AlAmeri
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Department of Health-Abu Dhabi, Abu Dhabi 20224, United Arab Emirates
| | - Noelia Che
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Owen Williams
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Jasper de Boer
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Australian & New Zealand Children's Haematology/Oncology Group, Melbourne, VIC 3052, Australia
- Australia & Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| |
Collapse
|
2
|
Zhang Q, Falqués‐Costa T, Pilheden M, Sturesson H, Ovlund T, Rissler V, Castor A, Marquart HVH, Lausen B, Fioretos T, Hyrenius‐Wittsten A, Hagström‐Andersson AK. Activating mutations remodel the chromatin accessibility landscape to drive distinct regulatory networks in KMT2A-rearranged acute leukemia. Hemasphere 2024; 8:e70006. [PMID: 39329074 PMCID: PMC11426354 DOI: 10.1002/hem3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024] Open
Abstract
Activating FLT3 and RAS mutations commonly occur in leukemia with KMT2A-gene rearrangements (KMT2A-r). However, how these mutations cooperate with the KMT2A-r to remodel the epigenetic landscape is unknown. Using a retroviral acute myeloid leukemia (AML) mouse model driven by KMT2A::MLLT3, we show that FLT3 ITD , FLT3 N676K , and NRAS G12D remodeled the chromatin accessibility landscape and associated transcriptional networks. Although the activating mutations shared a common core of chromatin changes, each mutation exhibits unique profiles with most opened peaks associating with enhancers in intronic or intergenic regions. Specifically, FLT3 N676K and NRAS G12D rewired similar chromatin and transcriptional networks, distinct from those mediated by FLT3 ITD . Motif analysis uncovered a role for the AP-1 family of transcription factors in KMT2A::MLLT3 leukemia with FLT3 N676K and NRAS G12D , whereas Runx1 and Stat5a/Stat5b were active in the presence of FLT3 ITD . Furthermore, transcriptional programs linked to immune cell regulation were activated in KMT2A-r AML expressing NRAS G12D or FLT3 N676K , and the expression of NKG2D-ligands on KMT2A-r cells rendered them sensitive to CAR T cell-mediated killing. Human KMT2A-r AML cells could be pharmacologically sensitized to NKG2D-CAR T cells by treatment with the histone deacetylase inhibitor LBH589 (panobinostat) which caused upregulation of NKG2D-ligand levels. Co-treatment with LBH589 and NKG2D-CAR T cells enabled robust AML cell killing, and the strongest effect was observed for cells expressing NRAS G12D . Finally, the results were validated and extended to acute leukemia in infancy. Combined, activating mutations induced mutation-specific changes in the epigenetic landscape, leading to changes in transcriptional programs orchestrated by specific transcription factor networks.
Collapse
Affiliation(s)
- Qirui Zhang
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Ton Falqués‐Costa
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Mattias Pilheden
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Helena Sturesson
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Tina Ovlund
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Vendela Rissler
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Anders Castor
- Childhood Cancer CenterSkåne University HospitalLundSweden
| | - Hanne V. H. Marquart
- Department of Clinical ImmunologyNational University HospitalRigshospitalet, CopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Thoas Fioretos
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Axel Hyrenius‐Wittsten
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | | |
Collapse
|
3
|
Hernández-Sánchez A, González T, Sobas M, Sträng E, Castellani G, Abáigar M, Valk PJM, Villaverde Ramiro Á, Benner A, Metzeler KH, Azibeiro R, Tettero JM, Martínez-López J, Pratcorona M, Martínez Elicegui J, Mills KI, Thiede C, Sanz G, Döhner K, Heuser M, Haferlach T, Turki AT, Reinhardt D, Schulze-Rath R, Barbus M, Hernández-Rivas JM, Huntly B, Ossenkoppele G, Döhner H, Bullinger L. Rearrangements involving 11q23.3/KMT2A in adult AML: mutational landscape and prognostic implications - a HARMONY study. Leukemia 2024; 38:1929-1937. [PMID: 38965370 PMCID: PMC11347382 DOI: 10.1038/s41375-024-02333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Balanced rearrangements involving the KMT2A gene (KMT2Ar) are recurrent genetic abnormalities in acute myeloid leukemia (AML), but there is lack of consensus regarding the prognostic impact of different fusion partners. Moreover, prognostic implications of gene mutations co-occurring with KMT2Ar are not established. From the HARMONY AML database 205 KMT2Ar adult patients were selected, 185 of whom had mutational information by a panel-based next-generation sequencing analysis. Overall survival (OS) was similar across the different translocations, including t(9;11)(p21.3;q23.3)/KMT2A::MLLT3 (p = 0.756). However, independent prognostic factors for OS in intensively treated patients were age >60 years (HR 2.1, p = 0.001), secondary AML (HR 2.2, p = 0.043), DNMT3A-mut (HR 2.1, p = 0.047) and KRAS-mut (HR 2.0, p = 0.005). In the subset of patients with de novo AML < 60 years, KRAS and TP53 were the prognostically most relevant mutated genes, as patients with a mutation of any of those two genes had a lower complete remission rate (50% vs 86%, p < 0.001) and inferior OS (median 7 vs 30 months, p < 0.001). Allogeneic hematopoietic stem cell transplantation in first complete remission was able to improve OS (p = 0.003). Our study highlights the importance of the mutational patterns in adult KMT2Ar AML and provides new insights into more accurate prognostic stratification of these patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Myeloid-Lymphoid Leukemia Protein/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Middle Aged
- Prognosis
- Adult
- Female
- Male
- Mutation
- Chromosomes, Human, Pair 11/genetics
- Aged
- Young Adult
- Translocation, Genetic
- Gene Rearrangement
- Adolescent
- Aged, 80 and over
- Survival Rate
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- Alberto Hernández-Sánchez
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Teresa González
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | | | - Eric Sträng
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - María Abáigar
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ángela Villaverde Ramiro
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Raúl Azibeiro
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jesse M Tettero
- Department of Hematology, Amsterdam UMC Location VUMC, Amsterdam, The Netherlands
| | | | - Marta Pratcorona
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Javier Martínez Elicegui
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Ken I Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christian Thiede
- University of Technics Dresden Medical Department, Dresden, Germany
| | - Guillermo Sanz
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Amin T Turki
- Marienhospital University Hospital, Ruhr-University Bochum, Bochum, Germany
- Universitätsklinikum Essen, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Jesús María Hernández-Rivas
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Brian Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Gert Ossenkoppele
- Department of Hematology, Amsterdam UMC Location VUMC, Amsterdam, The Netherlands
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Guarnera L, D’Addona M, Bravo-Perez C, Visconte V. KMT2A Rearrangements in Leukemias: Molecular Aspects and Therapeutic Perspectives. Int J Mol Sci 2024; 25:9023. [PMID: 39201709 PMCID: PMC11354696 DOI: 10.3390/ijms25169023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
KMT2A (alias: mixed-lineage leukemia [MLL]) gene mapping on chromosome 11q23 encodes the lysine-specific histone N-methyltransferase 2A and promotes transcription by inducing an open chromatin conformation. Numerous genomic breakpoints within the KMT2A gene have been reported in young children and adults with hematologic disorders and are present in up to 10% of acute leukemias. These rearrangements describe distinct features and worse prognosis depending on the fusion partner, characterized by chemotherapy resistance and high rates of relapse, with a progression-free survival of 30-40% and overall survival below 25%. Less intensive regimens are used in pediatric patients, while new combination therapies and targeted immunotherapeutic agents are being explored in adults. Beneficial therapeutic effects, and even cure, can be reached with hematopoietic stem cell transplantation, mainly in young children with dismal molecular lesions; however, delayed related toxicities represent a concern. Herein, we summarize the translocation partner genes and partial tandem duplications of the KMT2A gene, their molecular impact, clinical aspects, and novel targeted therapies.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo D’Addona
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
| | - Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, CIBERER—Instituto de Salud Carlos III, University of Murcia, IMIB-Pascual Parrilla, 30005 Murcia, Spain
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
| |
Collapse
|
5
|
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms. Front Immunol 2024; 15:1320689. [PMID: 38318177 PMCID: PMC10839018 DOI: 10.3389/fimmu.2024.1320689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.
Collapse
Affiliation(s)
- Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Jiang B, Zhao Y, Luo Y, Yu J, Chen Y, Ye B, Fu H, Lai X, Liu L, Ye Y, Zheng W, Sun J, He J, Zhao Y, Wei G, Cai Z, Huang H, Shi J. Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients With Acute Myeloid Leukemia Harboring KMT2A Rearrangement and Its Prognostic Factors. Cell Transplant 2024; 33:9636897231225821. [PMID: 38270130 PMCID: PMC10812095 DOI: 10.1177/09636897231225821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
KMT2A rearrangement (KMT2A-r) in patients with acute myeloid leukemia (AML) is associated with poor outcomes; the prognostic factors after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remain unclear. We investigated 364 adults with AML who underwent allo-HSCT between April 2016 and May 2022, and 45 had KMT2A-r among them. Propensity score analysis with 1:1 matching and the nearest neighbor matching method identified 42 patients in KMT2A-r and non-KMT2A-r cohorts, respectively. The 2-year overall survival (OS), relapse-free survival (RFS), cumulative incidence of relapse (CIR), and non-relapsed mortality rates of patients with KMT2A-r (n = 45) were 59.1%, 49.6%, 41.5%, and 8.9%, respectively. Using propensity score matching, the 2-year OS rate of patients with KMT2A-r (n = 42) was lower than that of those without KMT2A-r (n = 42; 56.1% vs 88.1%, P = 0.003). Among patients with KMT2A-r (n = 45), the prognostic advantage was exhibited from transplantation in first complete remission (CR1) and measurable residual disease (MRD) negative, which was reflected in OS, RFS, and CIR (P < 0.001, P < 0.001, and P = 0.002, respectively). Furthermore, patients with AF6 had poorer outcomes than those with AF9, ELL, and other KMT2A-r subtypes (P = 0.032, P = 0.001, and P = 0.001 for OS, RFS, and CIR, respectively). However, no differences were found in the OS, RFS, and CIR between patients with KMT2A-r with and without mutations (all P > 0.05). Univariate and multivariate analyses revealed that achieving CR1 MRD negative before HSCT was a protective factor for OS [hazard ratio (HR) = 0.242, P = 0.007], RFS (HR = 0.350, P = 0.036), and CIR (HR = 0.271, P = 0.021), while AF6 was a risk factor for RFS (HR = 2.985, P = 0.028) and CIR (HR = 4.675, P = 0.004). The prognosis of patients with KMT2A-r AML was poor, particularly those harboring AF6-related translocation; however, it is not associated with the presence of mutations. These patients can benefit from achieving CR1 MRD negative before HSCT.
Collapse
Affiliation(s)
- Bingqian Jiang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hematology, Wenzhou, People’s Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Casado-García A, Isidro-Hernández M, Alemán-Arteaga S, Ruiz-Corzo B, Riesco S, Prieto-Matos P, Sánchez L, Sánchez-García I, Vicente-Dueñas C. Lessons from mouse models in the impact of risk factors on the genesis of childhood B-cell leukemia. Front Immunol 2023; 14:1285743. [PMID: 37901253 PMCID: PMC10602728 DOI: 10.3389/fimmu.2023.1285743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) stands as the primary contributor to childhood cancer-related mortality on a global scale. The development of the most conventional forms of this disease has been proposed to be conducted by two different steps influenced by different types of risk factors. The first step is led by a genetic insult that is presumably acquired before birth that transforms a healthy cell into a preleukemic one, which is maintained untransformed until the second step takes place. This necessary next step to leukemia development will be triggered by different risk factors to which children are exposed after birth. Murine models that recap the stepwise progression of B-ALL have been instrumental in identifying environmental and genetic factors that contribute to disease risk. Recent evidence from these models has demonstrated that specific environmental risk factors, such as common infections or gut microbiome dysbiosis, induce immune stress, driving the transformation of preleukemic cells, and harboring genetic alterations, into fully transformed leukemic cells. Such models serve as valuable tools for investigating the mechanisms underlying preleukemic events and can aid in the development of preventive approaches for leukemia in child. Here, we discuss the existing knowledge, learned from mouse models, of the impact of genetic and environmental risk factors on childhood B-ALL evolution and how B-ALL prevention could be reached by interfering with preleukemic cells.
Collapse
Affiliation(s)
- Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Alemán-Arteaga
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Belén Ruiz-Corzo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Susana Riesco
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Prieto-Matos
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Sánchez
- School of Law, University of Salamanca, Salamanca, Spain
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carolina Vicente-Dueñas
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
8
|
Neault M, Lebert-Ghali CÉ, Fournier M, Capdevielle C, Garfinkle EAR, Obermayer A, Cotton A, Boulay K, Sawchyn C, St-Amand S, Nguyen KH, Assaf B, Mercier FE, Delisle JS, Drobetsky EA, Hulea L, Shaw TI, Zuber J, Gruber TA, Melichar HJ, Mallette FA. CBFA2T3-GLIS2-dependent pediatric acute megakaryoblastic leukemia is driven by GLIS2 and sensitive to navitoclax. Cell Rep 2023; 42:113084. [PMID: 37716355 DOI: 10.1016/j.celrep.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.
Collapse
Affiliation(s)
- Mathieu Neault
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Charles-Étienne Lebert-Ghali
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Caroline Capdevielle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth A R Garfinkle
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Karine Boulay
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Christina Sawchyn
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sarah St-Amand
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Kamy H Nguyen
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Béatrice Assaf
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | | | - Jean-Sébastien Delisle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elliot A Drobetsky
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laura Hulea
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Tanja A Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| | - Frédérick A Mallette
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
9
|
Hu DY, Wang M, Shen K, Pan JL, Guo YS, Zhang ZB, Zhang FH, Yin J, Chen SN. A new breakpoint fusion gene involving KMT2A::EDC4 rearrangement in de novo acute myeloid leukemia. Int J Lab Hematol 2023; 45:596-598. [PMID: 36811287 DOI: 10.1111/ijlh.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Affiliation(s)
- De-Yuan Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Man Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Lan Pan
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yu-Sha Guo
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhi-Bo Zhang
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Feng-Hong Zhang
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Yin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Lieske A, Agyeman-Duah E, Selich A, Dörpmund N, Talbot SR, Schambach A, Maetzig T. A pro B cell population forms the apex of the leukemic hierarchy in Hoxa9/Meis1-dependent AML. Leukemia 2023; 37:79-90. [PMID: 36517672 PMCID: PMC9883166 DOI: 10.1038/s41375-022-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Relapse is a major challenge to therapeutic success in acute myeloid leukemia (AML) and can be partly associated with heterogeneous leukemic stem cell (LSC) properties. In the murine Hoxa9/Meis1-dependent (H9M) AML model, LSC potential lies in three defined immunophenotypes, including Lin-cKit+ progenitor cells (Lin-), Gr1+CD11b+cKit+ myeloid cells, and lymphoid cells (Lym+). Previous reports demonstrated their interconversion and distinct drug sensitivities. In contrast, we here show that H9M AML is hierarchically organized. We, therefore, tracked the developmental potential of LSC phenotypes. This unexpectedly revealed a substantial fraction of Lin- LSCs that failed to regenerate Lym+ LSCs, and that harbored reduced leukemogenic potential. However, Lin- LSCs capable of producing Lym+ LSCs as well as Lym+ LSCs triggered rapid disease development suggestive of their high relapse-driving potential. Transcriptional analyses revealed that B lymphoid master regulators, including Sox4 and Bach2, correlated with Lym+ LSC development and presumably aggressive disease. Lentiviral overexpression of Sox4 and Bach2 induced dedifferentiation of H9M cells towards a lineage-negative state in vitro as the first step of lineage conversion. This work suggests that the potency to initiate a partial B lymphoid primed transcriptional program as present in infant AML correlates with aggressive disease and governs the H9M LSC hierarchy.
Collapse
Affiliation(s)
- Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nicole Dörpmund
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Pearson AD, Allen C, Fangusaro J, Hutter C, Witt O, Weiner S, Reaman G, Russo M, Bandopadhayay P, Ahsan S, Barone A, Barry E, de Rojas T, Fisher M, Fox E, Bender JG, Gore L, Hargrave D, Hawkins D, Kreider B, Langseth AJ, Lesa G, Ligas F, Marotti M, Marshall LV, Nasri K, Norga K, Nysom K, Pappo A, Rossato G, Scobie N, Smith M, Stieglitz E, Weigel B, Weinstein A, Viana R, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development in mitogen-activated protein kinase pathway inhibitors: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 177:120-142. [PMID: 36335782 DOI: 10.1016/j.ejca.2022.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
As the mitogen-activated protein kinase (MAPK) signalling pathway is activated in many paediatric cancers, it is an important therapeutic target. Currently, a range of targeted MAPK pathway inhibitors are being developed in adults. However, MAPK signals through many cascades and feedback loops and perturbing the MAPK pathway may have substantial influence on other pathways as well as normal development. In view of these issues, the ninth Paediatric Strategy Forum focused on MAPK inhibitors. Development of MAPK pathway inhibitors to date has been predominantly driven by adult indications such as malignant melanoma. However, these inhibitors may also target unmet needs in paediatric low-grade gliomas, high-grade gliomas, Langerhans cell histiocytosis, juvenile myelomonocytic leukaemia and several other paediatric conditions. Although MAPK inhibitors have demonstrated activity in paediatric cancer, the response rates and duration of responses needs improvement and better documentation. The rapid development and evaluation of combination approaches, based on a deep understanding of biology, is required to optimise responses and to avoid paradoxical tumour growth and other unintended consequences including severe toxicity. Better inhibitors with higher central nervous systempenetration for primary brain tumours and cancers with a propensity for central nervous system metastases need to be studied to determine if they are more effective than agents currently being used, and the optimum duration of therapy with MAPK inhibition needs to be determined. Systematic and coordinated clinical investigations to inform future treatment strategies with MAPK inhibitors, rather than use outside of clinical trials, are needed to fully assess the risks and benefits of these single agents and combination strategies in both front-line and in the refractory/relapse settings. Platform trials could address the investigation of multiple similar products and combinations. Accelerating the introduction of MAPK inhibitors into front-line paediatric studies is a priority, as is ensuring that these studies generate data appropriate for scientific and regulatory purposes. Early discussions with regulators are crucial, particularly if external controls are considered as randomised control trials in small patient populations can be challenging. Functional end-points specific to the populations in which they are studied, such as visual acuity, motor and neuro psychological function are important, as these outcomes are often more reflective of benefit for lower grade tumours (such as paediatric low-grade glioma and plexiform neurofibroma) and should be included in initial study designs for paediatric low-grade glioma. Early prospective discussions and agreements with regulators are necessary. Long-term follow-up of patients receiving MAPK inhibitors is crucial in view of their prolonged administration and the important involvement of this pathway in normal development. Further rational development, with a detailed understanding of biology of this class of products, is crucial to ensure they provide optimal benefit while minimising toxicity to children and adolescents with cancer.
Collapse
Affiliation(s)
| | - Carl Allen
- Texas Children Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, USA; Emory University School of Medicine, Atlanta, USA
| | - Caroline Hutter
- St. Anna Children's Hospital, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany; German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Pratiti Bandopadhayay
- Department of Pediatrics, Harvard Medical School, Broad Institute, USA; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, USA
| | | | - Amy Barone
- US Food and Drug Administration, Silver Springs, USA
| | - Elly Barry
- Day One Biopharmaceuticals, San Francisco, USA
| | | | - Michael Fisher
- The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Elizabeth Fox
- St Jude Children's Research Hospital, Tennessee, USA
| | | | - Lia Gore
- Children's Hospital Colorado, USA; University of Colorado, USA
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health, London UK
| | - Doug Hawkins
- Seattle Children's Hospital, USA; Children's Oncology Group, Seattle, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | | | - Lynley V Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency, (EMA), Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children's Research Hospital, Tennessee, USA
| | | | | | | | | | | | | | - Ruth Viana
- Alexion Pharmaceuticals, Zurich, Switzerland
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
12
|
Pilheden M, Ahlgren L, Hyrenius-Wittsten A, Gonzalez-Pena V, Sturesson H, Hansen Marquart HV, Lausen B, Castor A, Pronk CJ, Barbany G, Pokrovskaja Tamm K, Fogelstrand L, Lohi O, Norén-Nyström U, Asklin J, Chen Y, Song G, Walsh M, Ma J, Zhang J, Saal LH, Gawad C, Hagström-Andersson AK. Duplex Sequencing Uncovers Recurrent Low-frequency Cancer-associated Mutations in Infant and Childhood KMT2A-rearranged Acute Leukemia. Hemasphere 2022; 6:e785. [PMID: 36204688 PMCID: PMC9529062 DOI: 10.1097/hs9.0000000000000785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Infant acute lymphoblastic leukemia (ALL) with KMT2A-gene rearrangements (KMT2A-r) have few mutations and a poor prognosis. To uncover mutations that are below the detection of standard next-generation sequencing (NGS), a combination of targeted duplex sequencing and NGS was applied on 20 infants and 7 children with KMT2A-r ALL, 5 longitudinal and 6 paired relapse samples. Of identified nonsynonymous mutations, 87 had been previously implicated in cancer and targeted genes recurrently altered in KMT2A-r leukemia and included mutations in KRAS, NRAS, FLT3, TP53, PIK3CA, PAX5, PIK3R1, and PTPN11, with infants having fewer such mutations. Of identified cancer-associated mutations, 62% were below the resolution of standard NGS. Only 33 of 87 mutations exceeded 2% of cellular prevalence and most-targeted PI3K/RAS genes (31/33) and typically KRAS/NRAS. Five patients only had low-frequency PI3K/RAS mutations without a higher-frequency signaling mutation. Further, drug-resistant clones with FLT3 D835H or NRAS G13D/G12S mutations that comprised only 0.06% to 0.34% of diagnostic cells, expanded at relapse. Finally, in longitudinal samples, the relapse clone persisted as a minor subclone from diagnosis and through treatment before expanding during the last month of disease. Together, we demonstrate that infant and childhood KMT2A-r ALL harbor low-frequency cancer-associated mutations, implying a vast subclonal genetic landscape.
Collapse
Affiliation(s)
- Mattias Pilheden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Louise Ahlgren
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Axel Hyrenius-Wittsten
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Veronica Gonzalez-Pena
- Division of Pediatric Hematology/Oncology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Helena Sturesson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Castor
- Childhood Cancer Center, Skane University Hospital, Lund, Sweden
| | | | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
| | | | | | | | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michael Walsh
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lao H. Saal
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Charles Gawad
- Division of Pediatric Hematology/Oncology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Anna K. Hagström-Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Center for Translational Genomics, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Yuan O, Ugale A, de Marchi T, Anthonydhason V, Konturek-Ciesla A, Wan H, Eldeeb M, Drabe C, Jassinskaja M, Hansson J, Hidalgo I, Velasco-Hernandez T, Cammenga J, Magee JA, Niméus E, Bryder D. A somatic mutation in moesin drives progression into acute myeloid leukemia. SCIENCE ADVANCES 2022; 8:eabm9987. [PMID: 35442741 PMCID: PMC9020775 DOI: 10.1126/sciadv.abm9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.
Collapse
Affiliation(s)
- Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Amol Ugale
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tommaso de Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
| | - Vimala Anthonydhason
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Caroline Drabe
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Maria Jassinskaja
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | | | - Jörg Cammenga
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Entrégatan 7, 222 42 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
14
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
15
|
Pronier E, Imanci A, Selimoglu-Buet D, Badaoui B, Itzykson R, Roger T, Jego C, Naimo A, Francillette M, Breckler M, Wagner-Ballon O, Figueroa ME, Aglave M, Gautheret D, Porteu F, Bernard OA, Vainchenker W, Delhommeau F, Solary E, Droin NM. Macrophage migration inhibitory factor is overproduced through EGR1 in TET2 low resting monocytes. Commun Biol 2022; 5:110. [PMID: 35115654 PMCID: PMC8814058 DOI: 10.1038/s42003-022-03057-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Somatic mutation in TET2 gene is one of the most common clonal genetic events detected in age-related clonal hematopoiesis as well as in chronic myelomonocytic leukemia (CMML). In addition to being a pre-malignant state, TET2 mutated clones are associated with an increased risk of death from cardiovascular disease, which could involve cytokine/chemokine overproduction by monocytic cells. Here, we show in mice and in human cells that, in the absence of any inflammatory challenge, TET2 downregulation promotes the production of MIF (macrophage migration inhibitory factor), a pivotal mediator of atherosclerotic lesion formation. In healthy monocytes, TET2 is recruited to MIF promoter and interacts with the transcription factor EGR1 and histone deacetylases. Disruption of these interactions as a consequence of TET2-decreased expression favors EGR1-driven transcription of MIF gene and its secretion. MIF favors monocytic differentiation of myeloid progenitors. These results designate MIF as a chronically overproduced chemokine and a potential therapeutic target in patients with clonal TET2 downregulation in myeloid cells. To improve our understanding of the pathological role of TET2 mutations, Pronier, Imanci et al. use mice and human cells to show that TET2 downregulation promotes the production of macrophage migration inhibitory factor (MIF). In addition they show that whilst TET2 is recruited to the MIF promoter in healthy monocytes, decreased TET2 expression results in chronic overproduction of MIF - suggesting that MIF signaling could therefore constitute a potential therapeutic target for conditions associated with TET2 mutations.
Collapse
Affiliation(s)
- Elodie Pronier
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Owkin Lab, Owkin, Inc., New York, NY, 10003, USA
| | - Aygun Imanci
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Dorothée Selimoglu-Buet
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Bouchra Badaoui
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Département d'Hématologie et Immunologie Biologiques, 94000, Créteil, France
| | - Raphael Itzykson
- AP-HP, Service Hématologie Adultes, Hôpital Saint-Louis, 75010, Paris, France
| | - Thierry Roger
- Infectious Disease Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland
| | - Chloé Jego
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Audrey Naimo
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Maëla Francillette
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Marie Breckler
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Orianne Wagner-Ballon
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Département d'Hématologie et Immunologie Biologiques, 94000, Créteil, France.,Université Paris Est Créteil, INSERM, IMRB, Equipe 9, 94010, Créteil, France
| | - Maria E Figueroa
- Human Genetics, University of Miami Miller School of Medicine, 33136, Miami, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 33136, Miami, USA
| | - Marine Aglave
- INSERM US23, CNRS UMS 3655, AMMICa, Bioinformatic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Daniel Gautheret
- INSERM US23, CNRS UMS 3655, AMMICa, Bioinformatic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Olivier A Bernard
- Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France.,INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - François Delhommeau
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012, Paris, France.,AP-HP, Sorbonne Université, Hôpital Saint-Antoine, Service d'Hématologie et Immunologie Biologique, 75012, Paris, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France.,Hematology department, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Nathalie M Droin
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France. .,INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France.
| |
Collapse
|
16
|
Ding Y, Liu X, Yang C, Ruan X, Wang D, Liu Y, Shang X, Liu Q, Shen S, Zhu L, Xue Y. Pseudogene RPL32P3 regulates the blood-tumor barrier permeability via the YBX2/HNF4G axis. Cell Death Discov 2021; 7:367. [PMID: 34819492 PMCID: PMC8613260 DOI: 10.1038/s41420-021-00758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
The existence of the blood–tumor barrier (BTB) severely hinders the transport of anti-tumor drugs to brain tumor tissues. Selectively opening BTB is of great significance to improve the chemotherapy effect of glioma. Pseudogenes have been recognized as important regulators in various biologic processes. In this study, we identified that ribosomal protein L32 pseudogene 3 (RPL32P3) was highly expressed in glioma-exposed endothelial cells (GECs). Knockdown of RPL32P3 decreased the expression of tight junction-related proteins (TJPs) and increased BTB permeability. Subsequent analysis of the underlying mechanism indicated that RPL32P3 recruited lysine methyltransferase 2 A (KMT2A) to the Y-box binding protein 2 (YBX2) promoter region and mediated H3K4me3 to promote YBX2 transcription. Highly expressed YBX2 bound and stabilized hepatocyte nuclear factor 4 gamma (HNF4G) mRNA. Highly expressed HNF4G directly bound to the promoters of TJPs ZO-1, occludin and claudin-5 to promote their transcriptional activities and regulated BTB permeability. The simultaneous knockdown of RPL32P3, YBX2, and HNF4G combined with doxorubicin (DOX) increased the apoptosis of glioma cells. In conclusion, the current study indicated that RPL32P3 knockdown increased BTB permeability through the YBX2/HNF4G pathway. These findings may provide new targets for the comprehensive treatment of glioma.
Collapse
Affiliation(s)
- Ye Ding
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qianshuo Liu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Shuyuan Shen
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Lu Zhu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
17
|
Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13205055. [PMID: 34680203 PMCID: PMC8533805 DOI: 10.3390/cancers13205055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary AML is a heterogenous malignancy with a variety of underlying genomic abnormalities. Some of the genetic aberrations in AML have led to the development of specific inhibitors which were approved by the Food and Drug Administration (FDA) and are currently used to treat eligible patients. In this review, we describe five gene mutations for which approved inhibitors have been developed, the response of AML patients to these inhibitors, and the known mechanism(s) of resistance. This review also highlights the significance of developing function-based screens for target discovery in the era of personalized medicine. Abstract Acute myeloid leukemia (AML) is a highly heterogeneous malignancy characterized by the clonal expansion of myeloid stem and progenitor cells in the bone marrow, peripheral blood, and other tissues. AML results from the acquisition of gene mutations or chromosomal abnormalities that induce proliferation or block differentiation of hematopoietic progenitors. A combination of cytogenetic profiling and gene mutation analyses are essential for the proper diagnosis, classification, prognosis, and treatment of AML. In the present review, we provide a summary of genomic abnormalities in AML that have emerged as both markers of disease and therapeutic targets. We discuss the abnormalities of RARA, FLT3, BCL2, IDH1, and IDH2, their significance as therapeutic targets in AML, and how various mechanisms cause resistance to the currently FDA-approved inhibitors. We also discuss the limitations of current genomic approaches for producing a comprehensive picture of the activated signaling pathways at diagnosis or at relapse in AML patients, and how innovative technologies combining genomic and functional methods will improve the discovery of novel therapeutic targets in AML. The ultimate goal is to optimize a personalized medicine approach for AML patients and possibly those with other types of cancers.
Collapse
|
18
|
Issa GC, Zarka J, Sasaki K, Qiao W, Pak D, Ning J, Short NJ, Haddad F, Tang Z, Patel KP, Cuglievan B, Daver N, DiNardo CD, Jabbour E, Kadia T, Borthakur G, Garcia-Manero G, Konopleva M, Andreeff M, Kantarjian HM, Ravandi F. Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer J 2021; 11:162. [PMID: 34588432 PMCID: PMC8481264 DOI: 10.1038/s41408-021-00557-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) with rearrangement of the lysine methyltransferase 2a gene (KMT2Ar) has adverse outcomes. However, reports on the prognostic impact of various translocations causing KMT2Ar are conflicting. Less is known about associated mutations and their prognostic impact. In a retrospective analysis, we identified 172 adult patients with KMT2Ar AML and compared them to 522 age-matched patients with diploid AML. KMT2Ar AML had fewer mutations, most commonly affecting RAS and FLT3 without significant impact on prognosis, except for patients with ≥2 mutations with lower overall survival (OS). KMT2Ar AML had worse outcomes compared with diploid AML when newly diagnosed and at relapse, especially following second salvage (median OS of 2.4 vs 4.8 months, P < 0.0001). Therapy-related KMT2Ar AML (t-AML) had worse outcomes compared with de novo KMT2Ar AML (median OS of 0.7 years vs 1.4 years, P < 0.0001). Allogeneic hematopoietic stem cell transplant (allo-HSCT) in first remission was associated with improved OS (5-year, 52 vs 14% for no allo-HSCT, P < 0.0001). In a multivariate analysis, translocation subtypes causing KMT2Ar did not predict survival, unlike age and allo-HSCT. In conclusion, KMT2Ar was associated with adverse outcomes regardless of translocation subtype. Therefore, AML risk stratification guidelines should include all KMT2Ar as adverse.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Female
- Gene Rearrangement
- Hematopoietic Stem Cell Transplantation
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Mutation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Prognosis
- Retrospective Studies
- Survival Analysis
- Transplantation, Homologous
- Young Adult
Collapse
Affiliation(s)
- Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| | - Jabra Zarka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, PA, Pittsburgh, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Daewoo Pak
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
- Division of Data Science, Yonsei University, Wonju, South Korea
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Fadi Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | | | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|
19
|
Cobaleda C, Vicente-Dueñas C, Sanchez-Garcia I. Infectious triggers and novel therapeutic opportunities in childhood B cell leukaemia. Nat Rev Immunol 2021; 21:570-581. [PMID: 33558682 DOI: 10.1038/s41577-021-00505-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
B cell acute lymphoblastic leukaemia (B-ALL) is the most common form of childhood cancer. Although treatment has advanced remarkably in the past 50 years, it still fails in ~20% of patients. Recent studies revealed that more than 5% of healthy newborns carry preleukaemic clones that originate in utero, but only a small percentage of these carriers will progress to overt B-ALL. The drivers of progression are unclear, but B-ALL incidence seems to be increasing in parallel with the adoption of modern lifestyles. Emerging evidence shows that a major driver for the conversion from the preleukaemic state to the B-ALL state is exposure to immune stressors, such as infection. Here, we discuss our current understanding of the environmental triggers and genetic predispositions that may lead to B-ALL, highlighting lessons from epidemiology, the clinic and animal models, and identifying priority areas for future research.
Collapse
Affiliation(s)
- Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, Madrid, Spain.
| | | | - Isidro Sanchez-Garcia
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC and Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
20
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Single base substitution mutational signatures in pediatric acute myeloid leukemia based on whole genome sequencing. Leukemia 2021; 35:1485-1489. [PMID: 33864028 PMCID: PMC8102186 DOI: 10.1038/s41375-021-01242-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
|
22
|
Kato S, Kubota Y, Sekiguchi M, Watanabe K, Shinozaki-Ushiku A, Takita J, Hiwatari M. KMT2A-rearranged diffuse large B-cell lymphoma in a child: a case report and molecular characterization. Pediatr Hematol Oncol 2021; 38:281-289. [PMID: 33150819 DOI: 10.1080/08880018.2020.1838013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
KMT2A-rearranged diffuse large B-cell lymphoma (DLBCL) is rare in both the adult and pediatric populations, and its biological features are unclear. We here report the case of a 19-month-old female with a right temporal bone tumor that was ultimately diagnosed as DLBCL by tumor biopsy. There was no morphological evidence of bone marrow infiltration at diagnosis. The tumor nearly completely dissolved after scheduled chemotherapy for mature B-cell lymphoma; however, leukemic conversion occurred 2 months after completion of chemotherapy. Additional chemotherapy including hematopoietic cell transplantation in a non-remission state was unsuccessful, and disease progression ultimately resulted in the death of the patient 18 months after the diagnosis. We detected the KMT2A-MLLT3 fused transcript in the bone marrow of the patient with primary and recurrent cancer. RNA-sequencing of the bone marrow with recurrent cancer confirmed the KMT2A-MLLT3 fusion gene, although fusion genes involving BCL6, BCL2, or were not detected. Moreover, RNA-sequencing revealed overexpression of MEIS1 and MEF2C, which are highly expressed in KMT2A-rearranged leukemia, whereas the HOXA gene cluster was not overexpressed. The current case formed part of the KMT2A-rearranged acute lymphoblastic leukemia cluster in a T-distributed stochastic neighbor embedding plot. The aggressive clinical course and RNA-sequencing results of the present case suggest that KMT2A-rearranged DLBCL shares biological features with KMT2A-rearranged leukemia.
Collapse
Affiliation(s)
- Shota Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Kubota
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Watanabe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Ras pathway mutations are one of the most common type of alterations in pediatric hematologic malignancies and are frequently associated with adverse outcomes. Despite ongoing efforts to use targeted treatments, there remain no Food and Drug Administration (FDA)-approved medications specifically for children with Ras pathway-mutated leukemia. This review will summarize the role of Ras pathway mutations in pediatric leukemia, discuss the current state of Ras pathway inhibitors and highlight the most promising agents currently being evaluated in clinical trials. RECENT FINDINGS Efficacy using RAF and MEK inhibitors has been demonstrated across multiple solid and brain tumors, and these are now considered standard-of-care for certain tumor types in adults and children. Clinical trials are now testing these medications for the first time in pediatric hematologic disorders, such as acute lymphoblastic leukemia, juvenile myelomonocytic leukemia, and histiocytic disorders. Novel inhibitors of the Ras pathway, including direct RAS inhibitors, are also being tested in clinical trials across a spectrum of pediatric and adult malignancies. SUMMARY Activation of the Ras pathway is a common finding in pediatric hematologic neoplasms. Implementation of precision medicine with a goal of improving outcomes for these patients will require testing of Ras pathway inhibitors in combination with other drugs in the context of current and future clinical trials.
Collapse
|
24
|
Mutational landscape and clinical outcome of patients with de novo acute myeloid leukemia and rearrangements involving 11q23/ KMT2A. Proc Natl Acad Sci U S A 2020; 117:26340-26346. [PMID: 33020282 DOI: 10.1073/pnas.2014732117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Balanced rearrangements involving the KMT2A gene, located at 11q23, are among the most frequent chromosome aberrations in acute myeloid leukemia (AML). Because of numerous fusion partners, the mutational landscape and prognostic impact of specific 11q23/KMT2A rearrangements are not fully understood. We analyzed clinical features of 172 adults with AML and recurrent 11q23/KMT2A rearrangements, 141 of whom had outcome data available. We compared outcomes of these patients with outcomes of 1,097 patients without an 11q23/KMT2A rearrangement categorized according to the 2017 European LeukemiaNet (ELN) classification. Using targeted next-generation sequencing, we investigated the mutational status of 81 leukemia/cancer-associated genes in 96 patients with 11q23/KMT2A rearrangements with material for molecular studies available. Patients with 11q23/KMT2A rearrangements had a low number of additional gene mutations (median, 1; range 0 to 6), which involved the RAS pathway (KRAS, NRAS, and PTPN11) in 32% of patients. KRAS mutations occurred more often in patients with t(6;11)(q27;q23)/KMT2A-AFDN compared with patients with the other 11q23/KMT2A subsets. Specific gene mutations were too infrequent in patients with specific 11q23/KMT2A rearrangements to assess their associations with outcomes. We demonstrate that younger (age <60 y) patients with t(9;11)(p22;q23)/KMT2A-MLLT3 had better outcomes than patients with other 11q23/KMT2A rearrangements and those without 11q23/KMT2A rearrangements classified in the 2017 ELN intermediate-risk group. Conversely, outcomes of older patients (age ≥60 y) with t(9;11)(p22;q23) were poor and comparable to those of the ELN adverse-risk group patients. Our study shows that patients with an 11q23/KMT2A rearrangement have distinct mutational patterns and outcomes depending on the fusion partner.
Collapse
|
25
|
High-fat diet intensifies MLL-AF9-induced acute myeloid leukemia through activation of the FLT3 signaling in mouse primitive hematopoietic cells. Sci Rep 2020; 10:16187. [PMID: 32999332 PMCID: PMC7528010 DOI: 10.1038/s41598-020-73020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Using a MLL-AF9 knock-in mouse model, we discovered that consumption of a high-fat diet (HFD) accelerates the risk of developing acute myeloid leukemia (AML). This regimen increases the clusterization of FLT3 within lipid rafts on the cell surface of primitive hematopoietic cells, which overactivates this receptor as well as the downstream JAK/STAT signaling known to enhance the transformation of MLL-AF9 knock-in cells. Treatment of mice on a HFD with Quizartinib, a potent inhibitor of FLT3 phosphorylation, inhibits the JAK3/STAT3, signaling and finally antagonizes the accelerated development of AML that occurred following the HFD regimen. We can therefore conclude that, on a mouse model of AML, a HFD enforces the FLT3 signaling pathway on primitive hematopoietic cells and, in turn, improves the oncogenic transformation of MLL-AF9 knock-in cells and the leukemia initiation.
Collapse
|
26
|
Abstract
Genomic analyses have revolutionized our understanding of the biology of B-progenitor acute lymphoblastic leukemia (ALL). Studies of thousands of cases across the age spectrum have revised the taxonomy of B-ALL by identifying multiple new subgroups with diverse sequence and structural initiating events that vary substantially by age at diagnosis and prognostic significance. There is a growing appreciation of the role of inherited genetic variation in predisposition to ALL and drug responsiveness and of the nature of genetic variegation and clonal evolution that may be targeted for improved diagnostic, risk stratification, disease monitoring, and therapeutic intervention. This review provides an overview of the current state of knowledge of the genetic basis of B-ALL, with an emphasis on recent discoveries that have changed our approach to diagnosis and monitoring.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
27
|
Schwaller J. Learning from mouse models of MLL fusion gene-driven acute leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194550. [PMID: 32320749 DOI: 10.1016/j.bbagrm.2020.194550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/17/2020] [Accepted: 04/05/2020] [Indexed: 01/28/2023]
Abstract
5-10% of human acute leukemias carry chromosomal translocations involving the mixed lineage leukemia (MLL) gene that result in the expression of chimeric protein fusing MLL to >80 different partners of which AF4, ENL and AF9 are the most prevalent. In contrast to many other leukemia-associated mutations, several MLL-fusions are powerful oncogenes that transform hematopoietic stem cells but also more committed progenitor cells. Here, I review different approaches that were used to express MLL fusions in the murine hematopoietic system which often, but not always, resulted in highly penetrant and transplantable leukemias that closely phenocopied the human disease. Due to its simple and reliable nature, reconstitution of irradiated mice with bone marrow cells retrovirally expressing the MLL-AF9 fusion became the most frequently in vivo model to study the biology of acute myeloid leukemia (AML). I review some of the most influential studies that used this model to dissect critical protein interactions, the impact of epigenetic regulators, microRNAs and microenvironment-dependent signals for MLL fusion-driven leukemia. In addition, I highlight studies that used this model for shRNA- or genome editing-based screens for cellular vulnerabilities that allowed to identify novel therapeutic targets of which some entered clinical trials. Finally, I discuss some inherent characteristics of the widely used mouse model based on retroviral expression of the MLL-AF9 fusion that can limit general conclusions for the biology of AML. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| |
Collapse
|
28
|
It takes a village to grow leukemia. Blood 2020; 135:886-887. [PMID: 32191799 DOI: 10.1182/blood.2020004990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
de Barrios O, Meler A, Parra M. MYC's Fine Line Between B Cell Development and Malignancy. Cells 2020; 9:E523. [PMID: 32102485 PMCID: PMC7072781 DOI: 10.3390/cells9020523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor MYC is transiently expressed during B lymphocyte development, and its correct modulation is essential in defined developmental transitions. Although temporary downregulation of MYC is essential at specific points, basal levels of expression are maintained, and its protein levels are not completely silenced until the B cell becomes fully differentiated into a plasma cell or a memory B cell. MYC has been described as a proto-oncogene that is closely involved in many cancers, including leukemia and lymphoma. Aberrant expression of MYC protein in these hematological malignancies results in an uncontrolled rate of proliferation and, thereby, a blockade of the differentiation process. MYC is not activated by mutations in the coding sequence, and, as reviewed here, its overexpression in leukemia and lymphoma is mainly caused by gene amplification, chromosomal translocations, and aberrant regulation of its transcription. This review provides a thorough overview of the role of MYC in the developmental steps of B cells, and of how it performs its essential function in an oncogenic context, highlighting the importance of appropriate MYC regulation circuitry.
Collapse
Affiliation(s)
| | | | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, 08916 Barcelona, Spain (A.M.)
| |
Collapse
|
30
|
Clonal competition within complex evolutionary hierarchies shapes AML over time. Nat Commun 2020; 11:579. [PMID: 32024830 PMCID: PMC7002407 DOI: 10.1038/s41467-019-14106-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Clonal heterogeneity and evolution has major implications for disease progression and relapse in acute myeloid leukemia (AML). To model clonal dynamics in vivo, we serially transplanted 23 AML cases to immunodeficient mice and followed clonal composition for up to 15 months by whole-exome sequencing of 84 xenografts across two generations. We demonstrate vast changes in clonality that both progress and reverse over time, and define five patterns of clonal dynamics: Monoclonal, Stable, Loss, Expansion and Burst. We also show that subclonal expansion in vivo correlates with a more adverse prognosis. Furthermore, clonal expansion enabled detection of very rare clones with AML driver mutations that were undetectable by sequencing at diagnosis, demonstrating that the vast majority of AML cases harbor multiple clones already at diagnosis. Finally, the rise and fall of related clones enabled deconstruction of the complex evolutionary hierarchies of the clones that compete to shape AML over time. Clonal evolution and heterogeneity has strong implications for treatment response in acute myeloid leukemia. Here, the authors use patient derived in vivo modelling to highlight the complex clonal and evolutionary dynamics underpinning acute myeloid leukemia progression.
Collapse
|
31
|
Miyamura T, Kudo K, Tabuchi K, Ishida H, Tomizawa D, Adachi S, Goto H, Yoshida N, Inoue M, Koh K, Sasahara Y, Fujita N, Kakuda H, Noguchi M, Hiwatari M, Hashii Y, Kato K, Atsuta Y, Okamoto Y. Hematopoietic stem cell transplantation for pediatric acute myeloid leukemia patients with KMT2A rearrangement; A nationwide retrospective analysis in Japan. Leuk Res 2019; 87:106263. [DOI: 10.1016/j.leukres.2019.106263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
|
32
|
Chang M, Yan P, Zhang B, Zhang G, Wang J, Ge H, Han N, Du C, Shi W, Tian Y. MicroRNA-769-5p Promotes The Growth Of Glioma Cells By Targeting Lysine Methyltransferase 2A. Onco Targets Ther 2019; 12:9177-9187. [PMID: 31807002 PMCID: PMC6842300 DOI: 10.2147/ott.s222836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Accumulating evidence supports the involvement of microRNAs (miRNAs) in the progression of human cancers including glioma. Recently, miR-769-5p has been reported to play a tumor suppressive role in colorectal cancer and lung cancer, whereas it exerts an oncogenic role in melanoma. However, the role of miR-769-5p and its related mechanism are poorly elucidated. Methods The levels of miR-769-5p in glioma tissues and adjacent non-tumor tissues were detected by qRT-PCR. In addition, the effects of miR-769-5p on cell proliferation and apoptosis were evaluated by CCK-8, EdU, colony formation and flow cytometric assays, respectively. Meanwhile, the dual-luciferase reporter assay was used to investigate the interaction of miR-769-5p and lysine methyltransferase 2A (KMT2A) in glioma. Results We found that miR-769-5p expression was strongly upregulated in glioma tissues and cell lines. Glioma tissues with high World Health Organization (WHO) grades had obvious higher levels of miR-769-5p compared to samples with low WHO grades. Interestingly, glioma patients highly expressing miR-769-5p showed prominent poorer survivals. Knockdown of miR-769-5p significantly suppressed cell proliferation and resulted in apoptosis in glioma cells. Additionally, miR-769-5p silencing restrained in vivo growth of glioma cells in mice. Interestingly, KMT2A was identified to be a direct target of miR-769-5p in glioma cells. The expression of KMT2A mRNA was downregulated in glioma tissues and inversely correlated with miR-769-5p level. KMT2A overexpression inhibited cell proliferation and induced the apoptosis of A172 cells. Moreover, siRNA-mediated KMT2A silencing could partially abolish miR-769-5p knockdown-induced suppressive effects on A172 cells. Conclusion In summary, our findings suggest that targeting miR-769-5p/KMT2A axis may be a promising therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Mingze Chang
- Department of Neurology, Xi'an No. 3 Hospital, Xi'an 710021, People's Republic of China.,Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an 710021, People's Republic of China
| | - Peng Yan
- The College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
| | - Bei Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, People's Republic of China
| | - Gejuan Zhang
- Department of Neurology, Xi'an No. 3 Hospital, Xi'an 710021, People's Republic of China
| | - Juanhong Wang
- Department of Pathology, Xi'an No.3 Hospital, Xi'an 710021, People's Republic of China.,Departments of Pathology, Xi'an Central Hospital, Xi'an 71000, People's Republic of China
| | - Hanming Ge
- Department of Neurology, Xi'an No. 3 Hospital, Xi'an 710021, People's Republic of China
| | - Nannan Han
- Department of Neurology, Xi'an No. 3 Hospital, Xi'an 710021, People's Republic of China
| | - Chengxue Du
- Department of Neurology, Xi'an No. 3 Hospital, Xi'an 710021, People's Republic of China
| | - Wenzhen Shi
- Department of Neurology, Xi'an No. 3 Hospital, Xi'an 710021, People's Republic of China
| | - Ye Tian
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an 710021, People's Republic of China
| |
Collapse
|
33
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
34
|
Poubel CP, Mansur MB, Boroni M, Emerenciano M. FLT3 overexpression in acute leukaemias: New insights into the search for molecular mechanisms. Biochim Biophys Acta Rev Cancer 2019; 1872:80-88. [PMID: 31201827 DOI: 10.1016/j.bbcan.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
FLT3 overexpression is a recurrent event in various acute leukaemia subtypes. This transcriptional deregulation is important to define the prognostic risk for many patients. Of note, the molecular mechanisms leading to this gene upregulation are unknown for a substantial number of cases. In this Mini-Review, we highlight the role of FLT3 overexpression in acute leukaemia and discuss emerging mechanisms accounting for this upregulation. The benefits of using targeted therapy are also addressed in the overexpression context, posing other therapeutic possibilities based on state-of-the-art knowledge that could be considered for future research.
Collapse
Affiliation(s)
- Caroline Pires Poubel
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil; Bioinformatics and Computational Biology Lab, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Marcela B Mansur
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Mariana Emerenciano
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil.
| |
Collapse
|
35
|
The Impact of PI3-kinase/RAS Pathway Cooperating Mutations in the Evolution of KMT2A-rearranged Leukemia. Hemasphere 2019; 3:e195. [PMID: 31723831 PMCID: PMC6746018 DOI: 10.1097/hs9.0000000000000195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemia is an evolutionary disease and evolves by the accrual of mutations within a clone. Those mutations that are systematically found in all the patients affected by a certain leukemia are called "drivers" as they are necessary to drive the development of leukemia. Those ones that accumulate over time but are different from patient to patient and, therefore, are not essential for leukemia development are called "passengers." The first studies highlighting a potential cooperating role of phosphatidylinositol 3-kinase (PI3K)/RAS pathway mutations in the phenotype of KMT2A-rearranged leukemia was published 20 years ago. The recent development in more sensitive sequencing technologies has contributed to clarify the contribution of these mutations to the evolution of KMT2A-rearranged leukemia and suggested that these mutations might confer clonal fitness and enhance the evolvability of KMT2A-leukemic cells. This is of particular interest since this pathway can be targeted offering potential novel therapeutic strategies to KMT2A-leukemic patients. This review summarizes the recent progress on our understanding of the role of PI3K/RAS pathway mutations in initiation, maintenance, and relapse of KMT2A-rearranged leukemia.
Collapse
|
36
|
Xing S, Wang B, Gao Y, Li M, Wang T, Sun Y, Shen Y, Chao H. Cytogenetics and associated mutation profile in patients with acute monocytic leukemia. Int J Lab Hematol 2019; 41:485-492. [PMID: 31099482 DOI: 10.1111/ijlh.13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Shanshan Xing
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Biao Wang
- Department of Hematology The Third Affiliated Hospital of Soochow University Changzhou China
| | - Yu Gao
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Mengjie Li
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Tong Wang
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Yiwu Sun
- Department of Hematology Affiliated Changzhou Second Hospital of Nanjing Medical University Changzhou China
| | - Yimin Shen
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Hongying Chao
- Department of Hematology Affiliated Changzhou Second Hospital of Nanjing Medical University Changzhou China
| |
Collapse
|
37
|
Liang Y, He L, Zhao Y, Hao Y, Zhou Y, Li M, Li C, Pu X, Wen Z. Comparative Analysis for the Performance of Variant Calling Pipelines on Detecting the de novo Mutations in Humans. Front Pharmacol 2019; 10:358. [PMID: 31105557 PMCID: PMC6499170 DOI: 10.3389/fphar.2019.00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023] Open
Abstract
Despite of the low occurrence rate in the entire genomes, de novo mutation is proved to be deleterious and will lead to severe genetic diseases via impacting on the gene function. Considering the fact that the traditional family based linkage approaches and the genome-wide association studies are unsuitable for identifying the de novo mutations, in recent years, several pipelines have been proposed to detect them based on the whole-genome or whole-exome sequencing data and were used for calling them in the rare diseases. However, how the performance of these variant calling pipelines on detecting the de novo mutations is still unexplored. For the purpose of facilitating the appropriate choice of the pipelines and reducing the false positive rate, in this study, we thoroughly evaluated the performance of the commonly used trio calling methods on the detection of the de novo single-nucleotide variants (DNSNVs) by conducting a comparative analysis for the calling results. Our results exhibited that different pipelines have a specific tendency to detect the DNSNVs in the genomic regions with different GC contents. Additionally, to refine the calling results for a single pipeline, our proposed filter achieved satisfied results, indicating that the read coverage at the mutation positions can be used as an effective index to identify the high-confidence DNSNVs. Our findings should be good support for the committees to choose an appropriate way to explore the de novo mutations for the rare diseases.
Collapse
Affiliation(s)
- Yu Liang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Li He
- Biogas Appliance Quality Supervision and Inspection Center, Biogas Institute of Ministry of Agriculture, Chengdu, China
| | - Yiru Zhao
- College of Computer Science, Sichuan University, Chengdu, China
| | - Yinyi Hao
- College of Chemistry, Sichuan University, Chengdu, China
| | - Yifan Zhou
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
FLT3 N676K drives acute myeloid leukemia in a xenograft model of KMT2A-MLLT3 leukemogenesis. Leukemia 2019; 33:2310-2314. [PMID: 30953031 PMCID: PMC6756218 DOI: 10.1038/s41375-019-0465-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023]
|
39
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|