1
|
Mollick T, Laín S. Modulating pyrimidine ribonucleotide levels for the treatment of cancer. Cancer Metab 2020; 8:12. [PMID: 33020720 PMCID: PMC7285601 DOI: 10.1186/s40170-020-00218-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
By providing the necessary building blocks for nucleic acids and precursors for cell membrane synthesis, pyrimidine ribonucleotides are essential for cell growth and proliferation. Therefore, depleting pyrimidine ribonucleotide pools has long been considered as a strategy to reduce cancer cell growth. Here, we review the pharmacological approaches that have been employed to modulate pyrimidine ribonucleotide synthesis and degradation routes and discuss their potential use in cancer therapy. New developments in the treatment of myeloid malignancies with inhibitors of pyrimidine ribonucleotide synthesis justify revisiting the literature as well as discussing whether targeting this metabolic pathway can be effective and sufficiently selective for cancer cells to warrant an acceptable therapeutic index in patients.
Collapse
Affiliation(s)
- Tanzina Mollick
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| |
Collapse
|
2
|
Abt ER, Rosser EW, Durst MA, Lok V, Poddar S, Le TM, Cho A, Kim W, Wei L, Song J, Capri JR, Xu S, Wu N, Slavik R, Jung ME, Damoiseaux R, Czernin J, Donahue TR, Lavie A, Radu CG. Metabolic Modifier Screen Reveals Secondary Targets of Protein Kinase Inhibitors within Nucleotide Metabolism. Cell Chem Biol 2020; 27:197-205.e6. [PMID: 31734178 PMCID: PMC7035983 DOI: 10.1016/j.chembiol.2019.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/30/2019] [Accepted: 10/25/2019] [Indexed: 01/02/2023]
Abstract
Biosynthesis of the pyrimidine nucleotide uridine monophosphate (UMP) is essential for cell proliferation and is achieved by the activity of convergent de novo and salvage metabolic pathways. Here we report the development and application of a cell-based metabolic modifier screening platform that leverages the redundancy in pyrimidine metabolism for the discovery of selective UMP biosynthesis modulators. In evaluating a library of protein kinase inhibitors, we identified multiple compounds that possess nucleotide metabolism modifying activity. The JNK inhibitor JNK-IN-8 was found to potently inhibit nucleoside transport and engage ENT1. The PDK1 inhibitor OSU-03012 (also known as AR-12) and the RAF inhibitor TAK-632 were shown to inhibit the therapeutically relevant de novo pathway enzyme DHODH and their affinities were unambiguously confirmed through in vitro assays and co-crystallization with human DHODH.
Collapse
Affiliation(s)
- Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ethan W Rosser
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew A Durst
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA; The Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Liu Wei
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Janet Song
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Capri
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Shili Xu
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Nanping Wu
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA; The Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|