1
|
Vorobevskaia E, Loot C, Mazel D, Schlierf M. The recombination efficiency of the bacterial integron depends on the mechanical stability of the synaptic complex. SCIENCE ADVANCES 2024; 10:eadp8756. [PMID: 39671485 PMCID: PMC11641012 DOI: 10.1126/sciadv.adp8756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Multiple antibiotic resistances are a major global health threat. The predominant tool for adaptation in Gram-negative bacteria is the integron. Under stress, it rearranges gene cassettes to offer an escape using the tyrosine recombinase IntI, recognizing folded DNA hairpins, the attC sites. Four recombinases and two attC sites form the synaptic complex. Yet, for unclear reasons, the recombination efficiency varies greatly. Here, we established an optical tweezers force spectroscopy assay to probe the synaptic complex stability and revealed, for seven combinations of attC sites, significant variability in the mechanical stability. We found a strong correlation between mechanical stability and recombination efficiency of attC sites in vivo, indicating a regulatory mechanism from the DNA structure to the macromolecular complex stability. Taking into account known forces during DNA metabolism, we propose that the variation of the integron in vivo recombination efficiency is mediated by the synaptic complex stability. We anticipate that further recombination processes are also affected by their corresponding mechanical stability.
Collapse
Affiliation(s)
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Michael Schlierf
- B CUBE, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
- Physics of Life, DFG Cluster of Excellence, TU Dresden, 01062 Dresden, Germany
- Faculty of Physics, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
2
|
Marzano N, Johnston B, Paudel BP, Schmidberger J, Jergic S, Böcking T, Agostino M, Small I, van Oijen AM, Bond CS. Single-molecule visualization of sequence-specific RNA binding by a designer PPR protein. Nucleic Acids Res 2024; 52:14154-14170. [PMID: 39530228 DOI: 10.1093/nar/gkae984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Pentatricopeptide repeat proteins (PPR) are a large family of modular RNA-binding proteins, whereby each module can be modified to bind to a specific ssRNA nucleobase. As such, there is interest in developing 'designer' PPRs (dPPRs) for a range of biotechnology applications, including diagnostics or in vivo localization of ssRNA species; however, the mechanistic details regarding how PPRs search for and bind to target sequences is unclear. To address this, we determined the structure of a dPPR bound to its target sequence and used two- and three-color single-molecule fluorescence resonance energy transfer to interrogate the mechanism of ssRNA binding to individual dPPRs in real time. We demonstrate that dPPRs are slower to bind longer ssRNA sequences (or could not bind at all) and that this is, in part, due to their propensity to form stable secondary structures that sequester the target sequence from dPPR. Importantly, dPPR binds only to its target sequence (i.e. it does not associate with non-target ssRNA sequences) and does not 'scan' longer ssRNA oligonucleotides for the target sequence. The kinetic constraints imposed by random 3D diffusion may explain the long-standing conundrum of why PPR proteins are abundant in organelles, but almost unknown outside them (i.e. in the cytosol and nucleus).
Collapse
Affiliation(s)
- Nicholas Marzano
- University of Wollongong, School of Chemistry and Molecular Bioscience, Molecular Horizons, Northfields Avenue, Wollongong, NSW 2500, Australia
| | - Brady Johnston
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bishnu P Paudel
- University of Wollongong, School of Chemistry and Molecular Bioscience, Molecular Horizons, Northfields Avenue, Wollongong, NSW 2500, Australia
| | - Jason Schmidberger
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Slobodan Jergic
- University of Wollongong, School of Chemistry and Molecular Bioscience, Molecular Horizons, Northfields Avenue, Wollongong, NSW 2500, Australia
| | - Till Böcking
- University of New South Wales, Department of Molecular Medicine, EMBL Australia Node in Single Molecule Science, Gate 11, Botany St, Sydney, NSW 2052, Australia
| | - Mark Agostino
- Curtin University, Curtin Medical School, Curtin Health Innovation Research Institute, and Curtin Institute for Computation, Kent St, Bentley, WA 6102, Australia
| | - Ian Small
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Antoine M van Oijen
- University of Sydney, Faculty of Medicine and Health, G02 Jane Foss Russell Building, Sydney, NSW 2006, Australia
| | - Charles S Bond
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
5
|
McDowell R, Small I, Bond CS. Synthetic PPR proteins as tools for sequence-specific targeting of RNA. Methods 2022; 208:19-26. [DOI: 10.1016/j.ymeth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
6
|
Construction of a Versatile, Programmable RNA-Binding Protein Using Designer PPR Proteins and Its Application for Splicing Control in Mammalian Cells. Cells 2022; 11:cells11223529. [PMID: 36428958 PMCID: PMC9688318 DOI: 10.3390/cells11223529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
RNAs play many essential roles in gene expression and are involved in various human diseases. Although genome editing technologies have been established, the engineering of sequence-specific RNA-binding proteins that manipulate particular cellular RNA molecules is immature, in contrast to nucleotide-based RNA manipulation technology, such as siRNA- and RNA-targeting CRISPR/Cas. Here, we demonstrate a versatile RNA manipulation technology using pentatricopeptide-repeat (PPR)-motif-containing proteins. First, we developed a rapid construction and evaluation method for PPR-based designer sequence-specific RNA-binding proteins. This system has enabled the steady construction of dozens of functional designer PPR proteins targeting long 18 nt RNA, which targets a single specific RNA in the mammalian transcriptome. Furthermore, the cellular functionality of the designer PPR proteins was first demonstrated by the control of alternative splicing of either a reporter gene or an endogenous CHK1 mRNA. Our results present a versatile protein-based RNA manipulation technology using PPR proteins that facilitates the understanding of unknown RNA functions and the creation of gene circuits and has potential for use in future therapeutics.
Collapse
|
7
|
U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Commun Biol 2022; 5:968. [PMID: 36109586 PMCID: PMC9478123 DOI: 10.1038/s42003-022-03927-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Programmable RNA editing offers significant therapeutic potential for a wide range of genetic diseases. Currently, several deaminase enzymes, including ADAR and APOBEC, can perform programmable adenosine-to-inosine or cytidine-to-uridine RNA correction. However, enzymes to perform guanosine-to-adenosine and uridine-to-cytidine (U-to-C) editing are still lacking to complete the set of transition reactions. It is believed that the DYW:KP proteins, specific to seedless plants, catalyze the U-to-C reactions in mitochondria and chloroplasts. In this study, we designed seven DYW:KP domains based on consensus sequences and fused them to a designer RNA-binding pentatricopeptide repeat (PPR) domain. We show that three of these PPR-DYW:KP proteins edit targeted uridine to cytidine in bacteria and human cells. In addition, we show that these proteins have a 5′ but not apparent 3′ preference for neighboring nucleotides. Our results establish the DYW:KP aminase domain as a potential candidate for the development of a U-to-C editing tool in human cells. DYW:KP domains, designed on proteins found in the mitochondria and chloroplasts of seedless plants, are fused to a designer RNA-binding pentatricopeptide repeat (PPR) domain to edit targeted uridine to cytidine in bacteria and human cells.
Collapse
|
8
|
Lesch E, Schilling MT, Brenner S, Yang Y, Gruss O, Knoop V, Schallenberg-Rüdinger M. Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells. Nucleic Acids Res 2022; 50:9966-9983. [PMID: 36107771 PMCID: PMC9508816 DOI: 10.1093/nar/gkac752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Maximilian T Schilling
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Oliver J Gruss
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| |
Collapse
|
9
|
Raven SA, Payne B, Bruce M, Filipovska A, Rackham O. In silico evolution of nucleic acid-binding proteins from a nonfunctional scaffold. Nat Chem Biol 2022; 18:403-411. [PMID: 35210620 DOI: 10.1038/s41589-022-00967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022]
Abstract
Directed evolution emulates the process of natural selection to produce proteins with improved or altered functions. These approaches have proven to be very powerful but are technically challenging and particularly time and resource intensive. To bypass these limitations, we constructed a system to perform the entire process of directed evolution in silico. We employed iterative computational cycles of mutation and evaluation to predict mutations that confer high-affinity binding activities for DNA and RNA to an initial de novo designed protein with no inherent function. Beneficial mutations revealed modes of nucleic acid recognition not previously observed in natural proteins, highlighting the ability of computational directed evolution to access new molecular functions. Furthermore, the process by which new functions were obtained closely resembles natural evolution and can provide insights into the contributions of mutation rate, population size and selective pressure on functionalization of macromolecules in nature.
Collapse
Affiliation(s)
- Samuel A Raven
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,University of Western Australia Centre for Medical Research, Nedlands, Western Australia, Australia
| | - Blake Payne
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,University of Western Australia Centre for Medical Research, Nedlands, Western Australia, Australia
| | - Mitchell Bruce
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,University of Western Australia Centre for Medical Research, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia. .,Curtin Medical School, Curtin University, Bentley, Western Australia, Australia. .,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.
| |
Collapse
|
10
|
Bernath-Levin K, Schmidberger J, Honkanen S, Gutmann B, Sun YK, Pullakhandam A, Colas des Francs-Small C, Bond CS, Small I. Cofactor-independent RNA editing by a synthetic S-type PPR protein. Synth Biol (Oxf) 2022; 7:ysab034. [PMID: 35128071 PMCID: PMC8809517 DOI: 10.1093/synbio/ysab034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are attractive tools for RNA processing in synthetic biology applications given their modular structure and ease of design. Several distinct types of motifs have been described from natural PPR proteins, but almost all work so far with synthetic PPR proteins has focused on the most widespread P-type motifs. We have investigated synthetic PPR proteins based on tandem repeats of the more compact S-type PPR motif found in plant organellar RNA editing factors and particularly prevalent in the lycophyte Selaginella. With the aid of a novel plate-based screening method, we show that synthetic S-type PPR proteins are easy to design and bind with high affinity and specificity and are functional in a wide range of pH, salt and temperature conditions. We find that they outperform a synthetic P-type PPR scaffold in many situations. We designed an S-type editing factor to edit an RNA target in E. coli and demonstrate that it edits effectively without requiring any additional cofactors to be added to the system. These qualities make S-type PPR scaffolds ideal for developing new RNA processing tools.
Collapse
Affiliation(s)
- Kalia Bernath-Levin
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Jason Schmidberger
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Yueming Kelly Sun
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Anuradha Pullakhandam
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
11
|
Royan S, Gutmann B, Colas des Francs-Small C, Honkanen S, Schmidberger J, Soet A, Sun YK, Vincis Pereira Sanglard L, Bond CS, Small I. A synthetic RNA editing factor edits its target site in chloroplasts and bacteria. Commun Biol 2021; 4:545. [PMID: 33972654 PMCID: PMC8110955 DOI: 10.1038/s42003-021-02062-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Members of the pentatricopeptide repeat (PPR) protein family act as specificity factors in C-to-U RNA editing. The expansion of the PPR superfamily in plants provides the sequence variation required for design of consensus-based RNA-binding proteins. We used this approach to design a synthetic RNA editing factor to target one of the sites in the Arabidopsis chloroplast transcriptome recognised by the natural editing factor CHLOROPLAST BIOGENESIS 19 (CLB19). We show that our synthetic editing factor specifically recognises the target sequence in in vitro binding assays. The designed factor is equally specific for the target rpoA site when expressed in chloroplasts and in the bacterium E. coli. This study serves as a successful pilot into the design and application of programmable RNA editing factors based on plant PPR proteins.
Collapse
Affiliation(s)
- Santana Royan
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.,Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT, Australia
| | - Jason Schmidberger
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ashley Soet
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Yueming Kelly Sun
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
12
|
Guterres AN, Villanueva J. Targeting telomerase for cancer therapy. Oncogene 2020; 39:5811-5824. [PMID: 32733068 PMCID: PMC7678952 DOI: 10.1038/s41388-020-01405-w] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Telomere maintenance via telomerase reactivation is a nearly universal hallmark of cancer cells which enables replicative immortality. In contrast, telomerase activity is silenced in most adult somatic cells. Thus, telomerase represents an attractive target for highly selective cancer therapeutics. However, development of telomerase inhibitors has been challenging and thus far there are no clinically approved strategies exploiting this cancer target. The discovery of prevalent mutations in the TERT promoter region in many cancers and recent advances in telomerase biology has led to a renewed interest in targeting this enzyme. Here we discuss recent efforts targeting telomerase, including immunotherapies and direct telomerase inhibitors, as well as emerging approaches such as targeting TERT gene expression driven by TERT promoter mutations. We also address some of the challenges to telomerase-directed therapies including potential therapeutic resistance and considerations for future therapeutic applications and translation into the clinical setting. Although much work remains to be done, effective strategies targeting telomerase will have a transformative impact for cancer therapy and the prospect of clinically effective drugs is boosted by recent advances in structural models of human telomerase.
Collapse
Affiliation(s)
- Adam N Guterres
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Corley M, Burns MC, Yeo GW. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Mol Cell 2020; 78:9-29. [PMID: 32243832 PMCID: PMC7202378 DOI: 10.1016/j.molcel.2020.03.011] [Citation(s) in RCA: 415] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
RNA-binding proteins (RBPs) comprise a large class of over 2,000 proteins that interact with transcripts in all manner of RNA-driven processes. The structures and mechanisms that RBPs use to bind and regulate RNA are incredibly diverse. In this review, we take a look at the components of protein-RNA interaction, from the molecular level to multi-component interaction. We first summarize what is known about protein-RNA molecular interactions based on analyses of solved structures. We additionally describe software currently available for predicting protein-RNA interaction and other resources useful for the study of RBPs. We then review the structure and function of seventeen known RNA-binding domains and analyze the hydrogen bonds adopted by protein-RNA structures on a domain-by-domain basis. We conclude with a summary of the higher-level mechanisms that regulate protein-RNA interactions.
Collapse
Affiliation(s)
- Meredith Corley
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Margaret C Burns
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Saurer M, Ramrath DJF, Niemann M, Calderaro S, Prange C, Mattei S, Scaiola A, Leitner A, Bieri P, Horn EK, Leibundgut M, Boehringer D, Schneider A, Ban N. Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science 2020; 365:1144-1149. [PMID: 31515389 DOI: 10.1126/science.aaw5570] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/02/2019] [Accepted: 08/04/2019] [Indexed: 01/02/2023]
Abstract
Mitochondrial ribosomes (mitoribosomes) are large ribonucleoprotein complexes that synthesize proteins encoded by the mitochondrial genome. An extensive cellular machinery responsible for ribosome assembly has been described only for eukaryotic cytosolic ribosomes. Here we report that the assembly of the small mitoribosomal subunit in Trypanosoma brucei involves a large number of factors and proceeds through the formation of assembly intermediates, which we analyzed by using cryo-electron microscopy. One of them is a 4-megadalton complex, referred to as the small subunit assemblosome, in which we identified 34 factors that interact with immature ribosomal RNA (rRNA) and recognize its functionally important regions. The assembly proceeds through large-scale conformational changes in rRNA coupled with successive incorporation of mitoribosomal proteins, providing an example for the complexity of the ribosomal assembly process in mitochondria.
Collapse
Affiliation(s)
- Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - David J F Ramrath
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Salvatore Calderaro
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Céline Prange
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Simone Mattei
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Elke K Horn
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland.
| |
Collapse
|
15
|
Li X, Zhang N, Wu N, Li J, Yang J, Yu Y, Zheng J, Li X, Wang X, Gong P, Zhang X. Identification of GdRFC1 as a novel regulator of telomerase in Giardia duodenalis. Parasitol Res 2020; 119:1035-1041. [PMID: 32072328 DOI: 10.1007/s00436-020-06610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022]
Abstract
Telomerase plays a crucial role in ageing and tumourigenesis. However, the regulatory network of its activity is complicated and not fully understood. In the present study, a yeast two-hybrid screen identified a homologue of human replication factor C subunit 1 (RFC1) as a novel interacting protein of Giardia duodenalis GdTRBD (Giardia duodenalis telomerase ribonucleoprotein complex RNA binding domain GdTRBD). This interaction was further verified via GST pull-down in vitro and co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) in vivo. We also found that GdRFC1 (Giardia duodenalis replication factor C subunit 1) only interacted with GdTRBD in one nucleus in Giardia duodenalis via a proximity ligation assay (PLA). We reasoned that the two nuclei might have significant heterogeneity in their functional activities during the trophozoite stage and that the two molecules might be involved in other unidentified functions in addition to telomerase activity. In addition, knockdown of GdRFC1 decreased telomerase activity. Collectively, our results indicate that GdRFC1 is a novel binding partner and positive regulator of telomerase in Giardia duodenalis.
Collapse
Affiliation(s)
- Xianhe Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
- The First Bethune Hospital, Jilin University, Changchun, 130021, China
| | - Na Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Ju Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Yanhui Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jingtong Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
16
|
Wallis CP, Scott LH, Filipovska A, Rackham O. Manipulating and elucidating mitochondrial gene expression with engineered proteins. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190185. [PMID: 31787043 DOI: 10.1098/rstb.2019.0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many conventional, modern genome engineering tools cannot be used to study mitochondrial genetics due to the unusual structure and physiology of the mitochondrial genome. Here, we review a number of newly developed, synthetic biology-based approaches for altering levels of mutant mammalian mitochondrial DNA and mitochondrial RNAs, including transcription activator-like effector nucleases, zinc finger nucleases and engineered RNA-binding proteins. These approaches allow researchers to manipulate and visualize mitochondrial processes and may provide future therapeutics. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Christopher P Wallis
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Louis H Scott
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
17
|
Vos PD, Leedman PJ, Filipovska A, Rackham O. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer. Cell Mol Life Sci 2019; 76:3745-3752. [PMID: 31165201 PMCID: PMC11105495 DOI: 10.1007/s00018-019-03163-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
RNA-binding proteins (RBPs) and microRNAs (miRNAs) are the most important regulators of mRNA stability and translation in eukaryotic cells; however, the complex interplay between these systems is only now coming to light. RBPs and miRNAs regulate a unique set of targets in either a positive or negative manner and their regulation is mainly opposed to each other on overlapping targets. In some cases, the levels of RBPs or miRNAs regulate the cellular levels of one another and decreased levels of either results in changes in translation of their targets. There is growing evidence that these regulatory circuits are crucial in the development and progression of cancer; however, the rules underlying synergism and antagonism between miRNAs and RNA-binding proteins remain unclear. Synthetic biology seeks to develop artificial systems to better understand their natural counterparts and to develop new, useful technologies for manipulation of gene expression at the RNA level. The recent development of artificial RNA-binding proteins promises to enable a much greater understanding of the importance of the functional interactions between RNA-binding proteins and miRNAs, as well as enabling their manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- Pascal D Vos
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Molecular and Chemical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Peter J Leedman
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- Medical School, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Molecular and Chemical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|