1
|
Anam V, Guerrero BV, Srivastav AK, Stollenwerk N, Aguiar M. Within-host models unravelling the dynamics of dengue reinfections. Infect Dis Model 2024; 9:458-473. [PMID: 38385021 PMCID: PMC10879676 DOI: 10.1016/j.idm.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024] Open
Abstract
Caused by four serotypes, dengue fever is a major public health concern worldwide. Current modeling efforts have mostly focused on primary and heterologous secondary infections, assuming that lifelong immunity prevents reinfections by the same serotype. However, recent findings challenge this assumption, prompting a reevaluation of dengue immunity dynamics. In this study, we develop a within-host modeling framework to explore different scenarios of dengue infections. Unlike previous studies, we go beyond a deterministic framework, considering individual immunological variability. Both deterministic and stochastic models are calibrated using empirical data on viral load and antibody (IgM and IgG) concentrations for all dengue serotypes, incorporating confidence intervals derived from stochastic realizations. With good agreement between the mean of the stochastic realizations and the mean field solution for each model, our approach not only successfully captures primary and heterologous secondary infection dynamics facilitated by antibody-dependent enhancement (ADE) but also provides, for the first time, insights into homotypic reinfection dynamics. Our study discusses the relevance of homotypic reinfections in dengue transmission at the population level, highlighting potential implications for disease prevention and control strategies.
Collapse
Affiliation(s)
- Vizda Anam
- Basque Center for Applied Mathematics, Basque Country, Spain
- Department of Mathematics and Statistics, University of Basque Country, Basque Country, Spain
| | | | | | | | - Maíra Aguiar
- Basque Center for Applied Mathematics, Basque Country, Spain
- Ikerbasque, Basque Foundation for Science, Basque Country, Spain
| |
Collapse
|
2
|
Zitzmann C, Ke R, Ribeiro RM, Perelson AS. How robust are estimates of key parameters in standard viral dynamic models? PLoS Comput Biol 2024; 20:e1011437. [PMID: 38626190 PMCID: PMC11051641 DOI: 10.1371/journal.pcbi.1011437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/26/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Mathematical models of viral infection have been developed, fitted to data, and provide insight into disease pathogenesis for multiple agents that cause chronic infection, including HIV, hepatitis C, and B virus. However, for agents that cause acute infections or during the acute stage of agents that cause chronic infections, viral load data are often collected after symptoms develop, usually around or after the peak viral load. Consequently, we frequently lack data in the initial phase of viral growth, i.e., when pre-symptomatic transmission events occur. Missing data may make estimating the time of infection, the infectious period, and parameters in viral dynamic models, such as the cell infection rate, difficult. However, having extra information, such as the average time to peak viral load, may improve the robustness of the estimation. Here, we evaluated the robustness of estimates of key model parameters when viral load data prior to the viral load peak is missing, when we know the values of some parameters and/or the time from infection to peak viral load. Although estimates of the time of infection are sensitive to the quality and amount of available data, particularly pre-peak, other parameters important in understanding disease pathogenesis, such as the loss rate of infected cells, are less sensitive. Viral infectivity and the viral production rate are key parameters affecting the robustness of data fits. Fixing their values to literature values can help estimate the remaining model parameters when pre-peak data is missing or limited. We find a lack of data in the pre-peak growth phase underestimates the time to peak viral load by several days, leading to a shorter predicted growth phase. On the other hand, knowing the time of infection (e.g., from epidemiological data) and fixing it results in good estimates of dynamical parameters even in the absence of early data. While we provide ways to approximate model parameters in the absence of early viral load data, our results also suggest that these data, when available, are needed to estimate model parameters more precisely.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| |
Collapse
|
3
|
Hanley KA, Cecilia H, Azar SR, Moehn BA, Gass JT, Oliveira da Silva NI, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts. Nat Commun 2024; 15:2682. [PMID: 38538621 PMCID: PMC10973334 DOI: 10.1038/s41467-024-46810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brett A Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jordan T Gass
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Information School, University of Washington, Seattle, WA, 98105, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
4
|
Singh P, Best A. The impact of sterility-mortality tolerance and recovery-transmission trade-offs on host-parasite coevolution. Proc Biol Sci 2024; 291:20232610. [PMID: 38378150 PMCID: PMC10878805 DOI: 10.1098/rspb.2023.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Understanding the coevolutionary dynamics of hosts and their parasites remains a major focus of much theoretical literature. Despite empirical evidence supporting the presence of sterility-mortality tolerance trade-offs in hosts and recovery-transmission trade-offs in parasites, none of the current models have explored the potential outcomes when both trade-offs are considered within a coevolutionary framework. In this study, we consider a model where the host evolves sterility tolerance at the cost of increased mortality and the parasite evolves higher transmission rate at the cost of increased recovery rate (reduced infection duration), and use adaptive dynamics to predict the coevolutionary outcomes under such trade-off assumptions. We particularly aim to understand how our coevolutionary dynamics compare with single species evolutionary models. We find that evolutionary branching in the host can drive the parasite population to branch, but that cycles in the population dynamics can prevent the coexisting strains from reaching their extremes. We also find that varying crowding does not impact the recovery rate when only the parasite evolves, yet coevolution reduces recovery as crowding intensifies. We conclude by discussing how different host and parasite trade-offs shape coevolutionary outcomes, underscoring the pivotal role of trade-offs in coevolution.
Collapse
Affiliation(s)
- Prerna Singh
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08648, USA
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| |
Collapse
|
5
|
Hanley KA, Cecilia H, Azar SR, Moehn B, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Immunologically mediated trade-offs shaping transmission of sylvatic dengue and Zika viruses in native and novel non-human primate hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547187. [PMID: 37425901 PMCID: PMC10327119 DOI: 10.1101/2023.06.30.547187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic cycles involving monkey hosts, spilled over into human transmission, and were translocated to the Americas, creating potential for spillback into neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We exposed native (cynomolgus macaque) or novel (squirrel monkey) hosts to mosquitoes infected with either sylvatic DENV or ZIKV and monitored viremia, natural killer cells, transmission to mosquitoes, cytokines, and neutralizing antibody titers. Unexpectedly, DENV transmission from both host species occurred only when serum viremia was undetectable or near the limit of detection. ZIKV replicated in squirrel monkeys to much higher titers than DENV and was transmitted more efficiently but stimulated lower neutralizing antibody titers. Increasing ZIKV viremia led to greater instantaneous transmission and shorter duration of infection, consistent with a replication-clearance trade-off.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| |
Collapse
|
6
|
Kennedy DA. Death is overrated: the potential role of detection in driving virulence evolution. Proc Biol Sci 2023; 290:20230117. [PMID: 36987649 PMCID: PMC10050922 DOI: 10.1098/rspb.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
A common assumption in the evolution of virulence theory literature is that pathogens transmit better when they exploit their host more heavily, but by doing so, they impose a greater risk of killing their host, thus truncating infectious periods and reducing their own opportunities for transmission. Here, I derive an equation for the magnitude of this cost in terms of the infection fatality rate, and in doing so, I show that there are many cases where mortality costs are too small to plausibly constrain increases in host exploitation by pathogens. I propose that pathogen evolution may often be constrained by detection costs, whereby hosts alter their behaviour when infection is detectable, and thus reduce pathogen opportunities for onward transmission. I then derive an inequality to illustrate when mortality costs or detection costs impose stronger constraints on pathogen evolution, and I use empirical data from the literature to demonstrate that detection costs are frequently large in both human and animal populations. Finally, I give examples of how evolutionary predictions can change depending on whether costs of host exploitation are borne out through mortality or detection.
Collapse
Affiliation(s)
- David A. Kennedy
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Taurel AF, Luong CQ, Nguyen TTT, Do KQ, Diep TH, Nguyen TV, Cao MT, Hoang TND, Huynh PT, Huynh TKL, Le MH, Nealon J, Moureau A. Age distribution of dengue cases in southern Vietnam from 2000 to 2015. PLoS Negl Trop Dis 2023; 17:e0011137. [PMID: 36827445 PMCID: PMC9994699 DOI: 10.1371/journal.pntd.0011137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/08/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Dengue is the most common vector-borne viral infection. In recent times, an increase in the age of cases with clinical dengue has been reported in the national surveillance system and published literature of Vietnam. This change not only alter the risk of transmission and disease burden in different populations but also will impact for prevention and control strategies. A retrospective study was conducted from 2000 to 2015 in 19 provinces of southern Vietnam to describe the changes in age distribution of dengue cases and circulating serotypes. METHODOLOGY/PRINCIPAL FINDINGS The study is a time trend analysis of the data aggregated from the database of dengue surveillance system. The database consisted of clinically diagnosed and laboratory-confirmed cases of dengue in southern Vietnam from 2000 to 2015. In the study period, the mean age of dengue cases increased from 12.2 ± 8.8 years old (y/o) to 16.8 ± 13.3 y/o between 2000 and 2015. Majority of severe cases were observed in the age group of 5-9 y/o and 10-14 y/o. Overall, the mortality and case fatality rates (CFR) were lowest during 2010 to 2015, and all four serotypes of dengue were observed. CONCLUSIONS/SIGNIFICANCE With the exception of severe form, the age distribution of clinical cases of dengue appears to be shifting towards older age groups. An increase in the mean age of clinical cases of dengue has been observed in southern Vietnam over the past decade, and the highest incidence was observed in age group of 5-14 y/o. All serotypes of dengue were in circulation.
Collapse
Affiliation(s)
| | | | | | - Kien Quoc Do
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thanh Hai Diep
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thanh Vu Nguyen
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Thang Cao
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | | | - Minh Hieu Le
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | |
Collapse
|
8
|
Amin MR, Islam MR, Bhuiyan M, Islam MS, Islam F, Tuli HJ, Nawar A, Tabassum T, Fardous J, Hasan MJ. Sketch of 2018 dengue outbreak in a megacity, Bangladesh. Trop Med Health 2022; 50:80. [PMID: 36289528 PMCID: PMC9598007 DOI: 10.1186/s41182-022-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background Dengue has become a major public health threat in Bangladesh since 2000, when the first outbreak was reported. Each outbreak has distinct characteristics, and thus, the report of the outbreak helps to understand the disease process and subsequent clinical management of these patients. On that ground, the study was designed to sketch the clinico-epidemiological characteristics of the 2018 dengue outbreak in Bangladesh. Methods This hospital-based cross-sectional study was conducted in one of the largest public medical college hospitals and a single private hospital located in the southern and northern parts of the megacity of the country. A total of 297 confirmed dengue cases were assessed with a preformed pretested questionnaire. Clinico-epidemiological and laboratory parameters were reported along with sociodemographic details. Statistical analysis was performed with SPSS 20. Results Male patients were predominantly affected by dengue infection. The mean age of the patients was 31.24 ± 13.99 (SD) years, with a range from 2 to 85 years. Eighty-two percent of patients reported from the Dhaka metropolitan city. The highest percentage of cases (37.1%) was isolated from Bansree, Dhaka city, followed by Rampura (21.4%) and Khilgaon (6.2%). In addition to common symptoms, e.g., fever (90.6%), headache (90.6%), chills (81.8%), anorexia and vomiting (76.4%), backache, and redness of the eyes were two prominent symptoms that affected more than two-thirds of the study population. On the other hand, less common symptoms, such as cough, abdominal pain, and respiratory distress, were present in 39.7%, 33.7%, and 15.5% of patients, respectively. Overall, 17.6% of patients were hypotensive during admission, with a mean systolic blood pressure of 107.65 ± 18.17 (SD) mmHg. Other prominent signs were dehydration (80.5%) and rash (33%). Conclusion This outbreak was especially characterized by gastrointestinal symptoms, which were predominant along with other typical features.
Collapse
Affiliation(s)
- Mohammad Robed Amin
- grid.413674.30000 0004 5930 8317Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | | | - Muktadir Bhuiyan
- grid.413674.30000 0004 5930 8317Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Md. Shahnoor Islam
- grid.413674.30000 0004 5930 8317Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Fathema Islam
- grid.413674.30000 0004 5930 8317Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Habiba Jannatun Tuli
- grid.413674.30000 0004 5930 8317Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Afra Nawar
- grid.413674.30000 0004 5930 8317Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | | | - Jannatul Fardous
- Tropical and Infectious Disease Division, Tropical Disease and Health Research Center, Dhaka, Bangladesh
| | - Mohammad Jahid Hasan
- Tropical and Infectious Disease Division, Tropical Disease and Health Research Center, Dhaka, Bangladesh
| |
Collapse
|
9
|
Infection with a Recently Discovered Gammaherpesvirus Variant in European Badgers, Meles meles, is Associated with Higher Relative Viral Loads in Blood. Pathogens 2022; 11:pathogens11101154. [PMID: 36297210 PMCID: PMC9606972 DOI: 10.3390/pathogens11101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens infecting most animals. Although host immunity continually coevolves to combat virulence, viral variants with enhanced transmissibility or virulence occasionally emerge, resulting in disease burdens in host populations. Mustelid gammaherpesvirus 1 (MusGHV-1) is the only herpesvirus species identified thus far in European badgers, Meles meles. No MusGHV-1 associated pathomorbidity has been reported, but reactivation of MusGHV-1 in genital tracts is linked to impaired female reproductive success. An analysis of a short sequence from the highly conserved DNA polymerase (DNApol) gene previously identified two variants in a single host population. Here we compared genetic variance in blood samples from 66 known individuals of this same free-ranging badger population using a partial sequence comprising 2874 nucleotides of the DNApol gene, among which we identified 15 nucleotide differences resulting in 5 amino acid differences. Prevalence was 86% (59/66) for the common and 17% (11/66) for the novel variant, with 6% (4/66) of badgers presenting with coinfection. MusGHV-1 variants were distributed unevenly across the population, with individuals infected with the novel genotype clustered in 3 of 25 contiguous social groups. Individuals infected with the novel variant had significantly higher MusGHV-1 viral loads in their blood (p = 0.002) after adjusting for age (juveniles > adults, p < 0.001) and season (summer > spring and autumn, p = 0.005; mixed-effect linear regression), likely indicating higher virulence of the novel variant. Further genome-wide analyses of MusGHV-1 host resistance genes and host phenotypic variations are required to clarify the drivers and sequelae of this new MusGHV-1 variant.
Collapse
|
10
|
Decomposing virulence to understand bacterial clearance in persistent infections. Nat Commun 2022; 13:5023. [PMID: 36028497 PMCID: PMC9418333 DOI: 10.1038/s41467-022-32118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
Following an infection, hosts cannot always clear the pathogen, instead either dying or surviving with a persistent infection. Such variation is ecologically and evolutionarily important because it can affect infection prevalence and transmission, and virulence evolution. However, the factors causing variation in infection outcomes, and the relationship between clearance and virulence are not well understood. Here we show that sustained persistent infection and clearance are both possible outcomes across bacterial species showing a range of virulence in Drosophila melanogaster. Variation in virulence arises because of differences in the two components of virulence: bacterial infection intensity inside the host (exploitation), and the amount of damage caused per bacterium (per parasite pathogenicity). As early-phase exploitation increased, clearance rates later in the infection decreased, whereas there was no apparent effect of per parasite pathogenicity on clearance rates. Variation in infection outcomes is thereby determined by how virulence - and its components - relate to the rate of pathogen clearance. Taken together we demonstrate that the virulence decomposition framework is broadly applicable and can provide valuable insights into host-pathogen interactions.
Collapse
|
11
|
Zitzmann C, Dächert C, Schmid B, van der Schaar H, van Hemert M, Perelson AS, van Kuppeveld FJ, Bartenschlager R, Binder M, Kaderali L. Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.25.501353. [PMID: 35923314 PMCID: PMC9347285 DOI: 10.1101/2022.07.25.501353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and show that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, especially polyprotein cleavage, and viral RNA synthesis may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the viral replication in vitro early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth. Author summary Plus-strand RNA viruses comprise a large group of related and medically relevant viruses. The current global pandemic of COVID-19 caused by the SARS-coronavirus-2 as well as the constant spread of diseases such as dengue and chikungunya fever show the necessity of a comprehensive and precise analysis of plus-strand RNA virus infections. Plus-strand RNA viruses share similarities in their life cycle. To understand their within-host replication strategies, we developed a mathematical model that studies pan-viral similarities and virus-specific differences of three plus-strand RNA viruses, namely hepatitis C, dengue, and coxsackievirus. By fitting our model to in vitro data, we found that only small virus-specific variations in the model were required to describe the dynamics of all three viruses. Furthermore, our model predicted that ribosomes involved in viral RNA translation seem to be a key player in plus-strand RNA replication efficiency, which may determine acute or chronic infection outcome. Furthermore, our in-silico drug treatment analysis suggests that targeting viral proteases involved in polyprotein cleavage, in combination with viral RNA replication, may represent promising drug targets with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Schmid
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Hilde van der Schaar
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Frank J.M. van Kuppeveld
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ralf Bartenschlager
- Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Gutierrez SO, Minchella DJ, Bernal XE. Survival of the sickest: selective predation differentially modulates ecological and evolutionary disease dynamics. OIKOS 2022. [DOI: 10.1111/oik.09126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Ximena E. Bernal
- Dept of Biology, Purdue Univ. West Lafayette IN USA
- Smithsonian Tropical Research Inst. Panama Republic of Panama
| |
Collapse
|
13
|
Bull JJ, Antia R. Which 'imperfect vaccines' encourage the evolution of higher virulence? Evol Med Public Health 2022; 10:202-213. [PMID: 35539897 PMCID: PMC9081871 DOI: 10.1093/emph/eoac015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/06/2022] [Indexed: 12/27/2022] Open
Abstract
Background and objectives Theory suggests that some types of vaccines against infectious pathogens may lead to the evolution of variants that cause increased harm, particularly when they infect unvaccinated individuals. This theory was supported by the observation that the use of an imperfect vaccine to control Marek's disease virus in chickens resulted in the virus evolving to be more lethal to unvaccinated birds. This raises the concern that the use of some other vaccines may lead to similar pernicious outcomes. We examine that theory with a focus on considering the regimes in which such outcomes are expected. Methodology We evaluate the plausibility of assumptions in the original theory. The previous theory rested heavily on a particular form of transmission-mortality-recovery trade-off and invoked other assumptions about the pathways of evolution. We review alternatives to mortality in limiting transmission and consider evolutionary pathways that were omitted in the original theory. Results The regime where the pernicious evolutionary outcome occurs is narrowed by our analysis but remains possible in various scenarios. We propose a more nuanced consideration of alternative models for the within-host dynamics of infections and for factors that limit virulence. Our analysis suggests imperfect vaccines against many pathogens will not lead to the evolution of pathogens with increased virulence in unvaccinated individuals. Conclusions and implications Evolution of greater pathogen mortality driven by vaccination remains difficult to predict, but the scope for such outcomes appears limited. Incorporation of mechanistic details into the framework, especially regarding immunity, may be requisite for prediction accuracy. Lay Summary A virus of chickens appears to have evolved high mortality in response to a vaccine that merely prevented disease symptoms. Theory has predicted this type of evolution in response to a variety of vaccines and other interventions such as drug treatment. Under what circumstances is this pernicious result likely to occur? Analysis of the theory in light of recent changes in our understanding of viral biology raises doubts that medicine-driven, pernicious evolution is likely to be common. But we are far from a mechanistic understanding of the interaction between pathogen and host that can predict when vaccines and other medical interventions will lead to the unwanted evolution of more virulent pathogens. So, while the regime where a pernicious result obtains may be limited, caution remains warranted in designing many types of interventions.
Collapse
Affiliation(s)
- James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Aguiar M, Anam V, Blyuss KB, Estadilla CDS, Guerrero BV, Knopoff D, Kooi BW, Srivastav AK, Steindorf V, Stollenwerk N. Mathematical models for dengue fever epidemiology: A 10-year systematic review. Phys Life Rev 2022; 40:65-92. [PMID: 35219611 PMCID: PMC8845267 DOI: 10.1016/j.plrev.2022.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Mathematical models have a long history in epidemiological research, and as the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. Mathematical models describing dengue fever epidemiological dynamics are found back from 1970. Dengue fever is a viral mosquito-borne infection caused by four antigenically related but distinct serotypes (DENV-1 to DENV-4). With 2.5 billion people at risk of acquiring the infection, it is a major international public health concern. Although most of the cases are asymptomatic or mild, the disease immunological response is complex, with severe disease linked to the antibody-dependent enhancement (ADE) - a disease augmentation phenomenon where pre-existing antibodies to previous dengue infection do not neutralize but rather enhance the new infection. Here, we present a 10-year systematic review on mathematical models for dengue fever epidemiology. Specifically, we review multi-strain frameworks describing host-to-host and vector-host transmission models and within-host models describing viral replication and the respective immune response. Following a detailed literature search in standard scientific databases, different mathematical models in terms of their scope, analytical approach and structural form, including model validation and parameter estimation using empirical data, are described and analyzed. Aiming to identify a consensus on infectious diseases modeling aspects that can contribute to public health authorities for disease control, we revise the current understanding of epidemiological and immunological factors influencing the transmission dynamics of dengue. This review provide insights on general features to be considered to model aspects of real-world public health problems, such as the current epidemiological scenario we are living in.
Collapse
Affiliation(s)
- Maíra Aguiar
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Vizda Anam
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Konstantin B Blyuss
- VU University, Faculty of Science, De Boelelaan 1085, NL 1081, HV Amsterdam, the Netherlands
| | - Carlo Delfin S Estadilla
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Bruno V Guerrero
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Damián Knopoff
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Centro de Investigaciones y Estudios de Matemática CIEM, CONICET, Medina Allende s/n, Córdoba, 5000, Argentina
| | - Bob W Kooi
- University of Sussex, Department of Mathematics, Falmer, Brighton, UK
| | - Akhil Kumar Srivastav
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Vanessa Steindorf
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Nico Stollenwerk
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy
| |
Collapse
|
15
|
Loo SL, Tanaka MM. The role of a programmatic immune response on the evolution of pathogen traits. J Theor Biol 2022; 534:110962. [PMID: 34822803 DOI: 10.1016/j.jtbi.2021.110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
In modelling pathogen evolution during epidemics, it is important to understand the interactions between within-host infection dynamics and between-host pathogen transmission. Multiscale models often assume an immune response that is highly responsive to pathogen dynamics. Empirical evidence, however, suggests that the immune response in acute infections is triggered and programmatic. This leads to somewhat more predictable infection trajectories where transition times and, consequently, the infectious window are non-exponentially distributed. Here, we develop a within-host model where the immune response is triggered by pathogen growth but otherwise develops independently, and use this to obtain analytic expressions for the infectious period and peak pathogen load. This allows us to model the basic reproductive number in terms of explicit functional relationships among within-host traits including the growth rate of the pathogen. We find that the dependence of pathogen load and the infectious window on within-host parameters constrains the evolution of the pathogen growth rate. At low growth rate, selection favours a higher pathogen load and therefore increasing pathogen growth rate. At high growth rates, selection for a longer infectious window trades off against selection against the effects of virulence. At intermediate growth rates the basic reproductive number is relatively insensitive to changes in the growth rate. The resulting "flat" region of the pathogen fitness landscape is due to the stability of the programmatic immune response in clearing the infection.
Collapse
Affiliation(s)
- Sara L Loo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Hwang EH, Kim G, Oh H, An YJ, Kim J, Kim JH, Hwang ES, Park JH, Hong J, Koo BS. Molecular and evolutionary analysis of dengue virus serotype 2 isolates from Korean travelers in 2015. Arch Virol 2020; 165:1739-1748. [PMID: 32409874 PMCID: PMC7351809 DOI: 10.1007/s00705-020-04653-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
In Korea, dengue infection has been frequently reported in travelers to tropical and subtropical countries. Global warming increases the probability of autochthonous dengue outbreaks in Korea. In this report, the molecular and evolutionary properties of four dengue virus (DENV) type 2 isolates from Korean overseas travelers were examined. Three of these isolates were classified as Cosmopolitan genotypes and further divided into sublineages 1 (43,253, 43,254) and 2 (43,248), while the other isolate (KBPV-VR29) was related to American genotypes. The variable amino acid motifs related to virulence and replication were identified in the structural and non-structural proteins. A negative selection mechanism was clearly verified in all of the DENV proteins. Potential recombination events were identified in the NS5 protein of the XSBN10 strain. The substitution rate (5.32 × 10-4 substitutions per site) and the time of the most recent common ancestor (TMRCA) for each evolutionary group were determined by the Bayesian skyline coalescent method. This study shows that DENV type 2 strains with distinct phylogenetic, evolutionary, and virulence characteristics have been introduced into Korea by overseas travelers and have the potential to trigger autochthonous dengue outbreaks.
Collapse
Affiliation(s)
- Eun-Ha Hwang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Green Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - You Jung An
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jiyeon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jung Heon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eung-Soo Hwang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - JungJoo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
| |
Collapse
|
17
|
McKay B, Ebell M, Dale AP, Shen Y, Handel A. Virulence-mediated infectiousness and activity trade-offs and their impact on transmission potential of influenza patients. Proc Biol Sci 2020; 287:20200496. [PMID: 32396798 DOI: 10.1098/rspb.2020.0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Communicable diseases are often virulent, i.e. they cause morbidity symptoms in those infected. While some symptoms may be transmission-enhancing, other symptoms are likely to reduce transmission potential. For human diseases, the reduction in transmission opportunities is commonly caused by reduced activity. There is limited data regarding the potential impact of virulence on transmission potential. We performed an exploratory data analysis of 324 influenza patients at a university health centre during the 2016/2017 influenza season. We classified symptoms as infectiousness-related or morbidity-related and calculated two scores. The scores were used to explore the relationship between infectiousness, morbidity (virulence), and activity level. We found a decrease in the activity level with increasing morbidity scores. There was no consistent pattern between an activity level and an infectiousness score. We also found a positive correlation between morbidity and infectiousness scores. Overall, we find that increasing virulence leads to increased infectiousness and reduced activity, suggesting a trade-off that can impact overall transmission potential. Our findings indicate that a reduction of systemic symptoms may increase host activity without reducing infectiousness. Therefore, interventions should target both systemic- and infectiousness-related symptoms to reduce overall transmission potential. Our findings can also inform simulation models that investigate the impact of different interventions on transmission.
Collapse
Affiliation(s)
- Brian McKay
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | - Mark Ebell
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | | | - Ye Shen
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | - Andreas Handel
- Department of Epidemiology and Biostatistics and Health Informatics Institute and Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA
| |
Collapse
|
18
|
Support for the Transmission-Clearance Trade-Off Hypothesis from a Study of Zika Virus Delivered by Mosquito Bite to Mice. Viruses 2019; 11:v11111072. [PMID: 31752097 PMCID: PMC6893444 DOI: 10.3390/v11111072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Evolutionary theory indicates that virus virulence is shaped by a trade-off between instantaneous rate of transmission and duration of infection. For most viruses, infection is curtailed by immune clearance, but there are few empirical tests of the transmission–clearance trade-off hypothesis. We exposed A129 mice to bites from groups of 1, 2–4, or 6–9 Aedes albopictus mosquitoes infected with Zika virus (ZIKV). We predicted that a higher number of infectious mosquito bites would deliver a higher total dose of the virus, and that increasing dose would result in earlier onset, higher magnitude, and shorter duration of viremia, as well as a more robust neutralizing antibody response. We found that increases in the number of mosquito bites delivered resulted in significantly different virus replication dynamics with higher, earlier peak titers. All mice experienced a transient weight loss following infection, but the nadir in weight loss was delayed in the mice that received the highest number of bites. Viremia persisted past the period of measurement in this study, so we did not capture its duration. However, the association at the level of the individual mouse between the estimated virus dose delivered and neutralizing antibody titer was remarkably strong, supporting the transmission–clearance trade-off hypothesis.
Collapse
|
19
|
Greischar MA, Beck-Johnson LM, Mideo N. Partitioning the influence of ecology across scales on parasite evolution. Evolution 2019; 73:2175-2188. [PMID: 31495911 DOI: 10.1111/evo.13840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 11/30/2022]
Abstract
Vector-borne parasites must succeed at three scales to persist: they must proliferate within a host, establish in vectors, and transmit back to hosts. Ecology outside the host undergoes dramatic seasonal and human-induced changes, but predicting parasite evolutionary responses requires integrating their success across scales. We develop a novel, data-driven model to titrate the evolutionary impact of ecology at multiple scales on human malaria parasites. We investigate how parasites invest in transmission versus proliferation, a life-history trait that influences disease severity and spread. We find that transmission investment controls the pattern of host infectiousness over the course of infection: a trade-off emerges between early and late infectiousness, and the optimal resolution of that trade-off depends on ecology outside the host. An expanding epidemic favors rapid proliferation, and can overwhelm the evolutionary influence of host recovery rates and mosquito population dynamics. If transmission investment and recovery rate are positively correlated, then ecology outside the host imposes potent selection for aggressive parasite proliferation at the expense of transmission. Any association between transmission investment and recovery represents a key unknown, one that is likely to influence whether the evolutionary consequences of interventions are beneficial or costly for human health.
Collapse
Affiliation(s)
- Megan A Greischar
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | | | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
20
|
Perkins TA, Reiner RC, España G, ten Bosch QA, Verma A, Liebman KA, Paz-Soldan VA, Elder JP, Morrison AC, Stoddard ST, Kitron U, Vazquez-Prokopec GM, Scott TW, Smith DL. An agent-based model of dengue virus transmission shows how uncertainty about breakthrough infections influences vaccination impact projections. PLoS Comput Biol 2019; 15:e1006710. [PMID: 30893294 PMCID: PMC6443188 DOI: 10.1371/journal.pcbi.1006710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/01/2019] [Accepted: 12/11/2018] [Indexed: 01/26/2023] Open
Abstract
Prophylactic vaccination is a powerful tool for reducing the burden of infectious diseases, due to a combination of direct protection of vaccinees and indirect protection of others via herd immunity. Computational models play an important role in devising strategies for vaccination by making projections of its impacts on public health. Such projections are subject to uncertainty about numerous factors, however. For example, many vaccine efficacy trials focus on measuring protection against disease rather than protection against infection, leaving the extent of breakthrough infections (i.e., disease ameliorated but infection unimpeded) among vaccinees unknown. Our goal in this study was to quantify the extent to which uncertainty about breakthrough infections results in uncertainty about vaccination impact, with a focus on vaccines for dengue. To realistically account for the many forms of heterogeneity in dengue virus (DENV) transmission, which could have implications for the dynamics of indirect protection, we used a stochastic, agent-based model for DENV transmission informed by more than a decade of empirical studies in the city of Iquitos, Peru. Following 20 years of routine vaccination of nine-year-old children at 80% coverage, projections of the proportion of disease episodes averted varied by a factor of 1.76 (95% CI: 1.54-2.06) across the range of uncertainty about breakthrough infections. This was equivalent to the range of vaccination impact projected across a range of uncertainty about vaccine efficacy of 0.268 (95% CI: 0.210-0.329). Until uncertainty about breakthrough infections can be addressed empirically, our results demonstrate the importance of accounting for it in models of vaccination impact.
Collapse
Affiliation(s)
- T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert C. Reiner
- Fogarty International Center, National Institutes of Health, Bethesda, MD, United States of America
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, United States of America
| | - Guido España
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Quirine A. ten Bosch
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Amit Verma
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Kelly A. Liebman
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - Valerie A. Paz-Soldan
- Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - John P. Elder
- Institute for Behavioral and Community Health, Graduate School of Public Health, San Diego State University, San Diego, CA, United States of America
| | - Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - Steven T. Stoddard
- Institute for Behavioral and Community Health, Graduate School of Public Health, San Diego State University, San Diego, CA, United States of America
| | - Uriel Kitron
- Fogarty International Center, National Institutes of Health, Bethesda, MD, United States of America
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States of America
| | - Gonzalo M. Vazquez-Prokopec
- Fogarty International Center, National Institutes of Health, Bethesda, MD, United States of America
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States of America
| | - Thomas W. Scott
- Fogarty International Center, National Institutes of Health, Bethesda, MD, United States of America
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - David L. Smith
- Fogarty International Center, National Institutes of Health, Bethesda, MD, United States of America
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
21
|
Acevedo MA, Dillemuth FP, Flick AJ, Faldyn MJ, Elderd BD. Virulence-driven trade-offs in disease transmission: A meta-analysis. Evolution 2019; 73:636-647. [PMID: 30734920 DOI: 10.1111/evo.13692] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/22/2018] [Indexed: 12/31/2022]
Abstract
The virulence-transmission trade-off hypothesis proposed more than 30 years ago is the cornerstone in the study of host-parasite co-evolution. This hypothesis rests on the premise that virulence is an unavoidable and increasing cost because the parasite uses host resources to replicate. This cost associated with replication ultimately results in a deceleration in transmission rate because increasing within-host replication increases host mortality. Empirical tests of predictions of the hypothesis have found mixed support, which cast doubt about its overall generalizability. To quantitatively address this issue, we conducted a meta-analysis of 29 empirical studies, after reviewing over 6000 published papers, addressing the four core relationships between (1) virulence and recovery rate, (2) within-host replication rate and virulence, (3) within-host replication and transmission rate, and (4) virulence and transmission rate. We found strong support for an increasing relationship between replication and virulence, and replication and transmission. Yet, it is still uncertain if these relationships generally decelerate due to high within-study variability. There was insufficient data to quantitatively test the other two core relationships predicted by the theory. Overall, the results suggest that the current empirical evidence provides partial support for the trade-off hypothesis, but more work remains to be done.
Collapse
Affiliation(s)
- Miguel A Acevedo
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 32611
| | - Forrest P Dillemuth
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Andrew J Flick
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Matthew J Faldyn
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Bret D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|