1
|
Pashley SL, Papageorgiou S, O'Regan L, Barone G, Robinson SW, Lucken K, Straatman KR, Roig J, Fry AM. The mesenchymal morphology of cells expressing the EML4-ALK V3 oncogene is dependent on phosphorylation of Eg5 by NEK7. J Biol Chem 2024; 300:107144. [PMID: 38458397 PMCID: PMC11061729 DOI: 10.1016/j.jbc.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) oncogenic fusion proteins are found in approximately 5% of non-small cell lung cancers. Different EML4-ALK fusion variants exist with variant 3 (V3) being associated with a significantly higher risk than other common variants, such as variant 1 (V1). Patients with V3 respond less well to targeted ALK inhibitors, have accelerated rates of metastasis, and have poorer overall survival. A pathway has been described downstream of EML4-ALK V3 that is independent of ALK catalytic activity but dependent on the NEK9 and NEK7 kinases. It has been proposed that assembly of an EML4-ALK V3-NEK9-NEK7 complex on microtubules leads to cells developing a mesenchymal-like morphology and exhibiting enhanced migration. However, downstream targets of this complex remain unknown. Here, we show that the microtubule-based kinesin, Eg5, is recruited to interphase microtubules in cells expressing EML4-ALK V3, whereas chemical inhibition of Eg5 reverses the mesenchymal morphology of cells. Furthermore, we show that depletion of NEK7 interferes with Eg5 recruitment to microtubules in cells expressing EML4-ALK V3 and cell length is reduced, but this is reversed by coexpression of a phosphomimetic mutant of Eg5, in a site, S1033, phosphorylated by NEK7. Intriguingly, we also found that expression of Eg5-S1033D led to cells expressing EML4-ALK V1 adopting a more mesenchymal-like morphology. Together, we propose that Eg5 acts as a substrate of NEK7 in cells expressing EML4-ALK V3 and Eg5 phosphorylation promotes the mesenchymal morphology typical of these cells.
Collapse
Affiliation(s)
- Sarah L Pashley
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Savvas Papageorgiou
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Laura O'Regan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Giancarlo Barone
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Susan W Robinson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Kellie Lucken
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Kees R Straatman
- Advanced Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Joan Roig
- Department of Cell & Developmental Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
2
|
Zhang H, Lu C, Yao Q, Jiao Q. In silico study to identify novel NEK7 inhibitors from natural sources by a combination strategy. Mol Divers 2024:10.1007/s11030-024-10838-4. [PMID: 38598164 DOI: 10.1007/s11030-024-10838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Cancer poses a significant global health challenge and significantly contributes to mortality. NEK7, related to the NIMA protein kinase family, plays a crucial role in spindle assembly and cell division. The dysregulation of NEK7 is closely linked to the onset and progression of various cancers, especially colon and breast cancer, making it a promising target for cancer therapy. Nevertheless, the shortage of high-quality NEK7 inhibitors highlights the need for new therapeutic strategies. In this study, we utilized a multidisciplinary approach, including virtual screening, molecular docking, pharmacokinetics, molecular dynamics simulations (MDs), and MM/PBSA calculations, to evaluate natural compounds as NEK7 inhibitors comprehensively. Through various docking strategies, we identified three natural compounds: (-)-balanol, digallic acid, and scutellarin. Molecular docking revealed significant interactions at residues such as GLU112 and ALA114, with docking scores of -15.054, -13.059, and -11.547 kcal/mol, respectively, highlighting their potential as NEK7 inhibitors. MDs confirmed the stability of these compounds at the NEK7-binding site. Hydrogen bond analysis during simulations revealed consistent interactions, supporting their strong binding capacity. MM/PBSA analysis identified other crucial amino acids contributing to binding affinity, including ILE20, VAL28, ILE75, LEU93, ALA94, LYS143, PHE148, LEU160, and THR161, crucial for stabilizing the complex. This research demonstrated that these compounds exceeded dabrafenib in binding energy, according to MM/PBSA calculations, underscoring their effectiveness as NEK7 inhibitors. ADME/T predictions showed lower oral toxicity for these compounds, suggesting their potential for further development. This study highlights the promise of these natural compounds as bases for creating more potent derivatives with significant biological activities, paving the way for future experimental validation.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chenhong Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qilong Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Drozd CJ, Quinn CC. UNC-116 and UNC-16 function with the NEKL-3 kinase to promote axon targeting. Development 2023; 150:dev201654. [PMID: 37756604 PMCID: PMC10561693 DOI: 10.1242/dev.201654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
KIF5C is a kinesin-1 heavy chain that has been associated with neurodevelopmental disorders. Although the roles of kinesin-1 in axon transport are well known, little is known about how it regulates axon targeting. We report that UNC-116/KIF5C functions with the NEKL-3/NEK6/7 kinase to promote axon targeting in Caenorhabditis elegans. Loss of UNC-116 causes the axon to overshoot its target and UNC-116 gain-of-function causes premature axon termination. We find that loss of the UNC-16/JIP3 kinesin-1 cargo adaptor disrupts axon termination, but loss of kinesin-1 light chain function does not affect axon termination. Genetic analysis indicates that UNC-16 functions with the NEKL-3 kinase to promote axon termination. Consistent with this observation, imaging experiments indicate that loss of UNC-16 and UNC-116 disrupt localization of NEKL-3 in the axon. Moreover, genetic interactions suggest that NEKL-3 promotes axon termination by functioning with RPM-1, a ubiquitin ligase that regulates microtubule stability in the growth cone. These observations support a model where UNC-116 functions with UNC-16 to promote localization of NEKL-3 in the axon. NEKL-3, in turn, functions with the RPM-1 ubiquitin ligase to promote axon termination.
Collapse
Affiliation(s)
- Cody J. Drozd
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
4
|
Xu Y, Kusuyama J, Osana S, Matsuhashi S, Li L, Takada H, Inada H, Nagatomi R. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J Biol Chem 2023:104802. [PMID: 37172727 DOI: 10.1016/j.jbc.2023.104802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joji Kusuyama
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Graduate School of Informatics and Engineering, University of Electro-Communications
| | - Satayuki Matsuhashi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Longfei Li
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
5
|
Li X, Qiu H, Gan J, Liu Z, Yang S, Yuan R, Gao H. Total tanshinones protect against acute lung injury through the PLCγ2/NLRP3 inflammasome signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116478. [PMID: 37121449 DOI: 10.1016/j.jep.2023.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge is a widely used traditional Chinese medicine with anticholinesterase, antitumor, and anti-inflammatory. Total Tanshinones (TTN), the most significant active ingredient of Salvia miltiorrhiza Bunge, exerts anti-inflammatory activity. However, the protective mechanism of total Tanshinones on acute lung injury (ALI) still needs to be explored. AIM OF THIS STUDY In this study, the underlying mechanisms of TTN to treat with ALI were investigated in vitro and in vivo. MATERIALS AND METHODS Cell experiments established an in vitro model of LPS-induced J774A.1 and MH-S macrophages to verify the mechanism. The levels of inflammatory cytokines (TNF-α, IL-6 and IL-1β) were estimated by ELISA. The changes of ROS, Ca2+ and NO were detected by flow cytometry. The expression levels of proteins related to the NLRP3 inflammasome were determined by Western blotting. The effect of TTN on NLRP3 inflammasome activation was examined by immunofluorescence analysis of caspase-1 p20. Male BALB/c mice were selected to establish the ALI model. The experiment was randomly divided into six groups: control, LPS, LPS + si-NC, LPA + si-Nek7, LPS + TTN, and DEX. Pathological alterations were explored by H&E staining. The expression levels of proteins related to the NLRP3 inflammasome were analyzed by Western blotting. RESULTS TTN decreased pro-inflammatory cytokines levels like TNF-α, IL-6, IL-1β, NO, and ROS in alveolar macrophages. TTN bound to NIMA-related kinase 7 (NEK7), a new therapeutic protein to modulate NLRP3 inflammasome and PLCγ2-PIP2 signaling pathway. In ALI mice, LPS enhanced IL-1β levels in the serum, lung tissues, and bronchoalveolar lavage fluid (BALF),which were reversed by TTN. TTN decreased cleaved-caspase-1 and NLRP3 expressions in lung tissues. When Nek7 was knocked down in mice by siRNA, the syndrome of ALI in mice was significantly suppressed, of which the effect was similar to that of TTN. CONCLUSIONS This research demonstrates that TTN alleviated ALI by binding to NEK7 in vitro and in vivo to modulate NLRP3 inflammasome activation and PLCγ2-PIP2 signaling pathways.
Collapse
Affiliation(s)
- Xinxing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Haixin Qiu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Jinyue Gan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
6
|
Lucero EM, Freund RK, Smith A, Johnson NR, Dooling B, Sullivan E, Prikhodko O, Ahmed MM, Bennett DA, Hohman TJ, Dell’Acqua ML, Chial HJ, Potter H. Increased KIF11/ kinesin-5 expression offsets Alzheimer Aβ-mediated toxicity and cognitive dysfunction. iScience 2022; 25:105288. [PMID: 36304124 PMCID: PMC9593841 DOI: 10.1016/j.isci.2022.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Previously, we found that amyloid-beta (Aβ) competitively inhibits the kinesin motor protein KIF11 (Kinesin-5/Eg5), leading to defects in the microtubule network and in neurotransmitter and neurotrophin receptor localization and function. These biochemical and cell biological mechanisms for Aβ-induced neuronal dysfunction may underlie learning and memory defects in Alzheimer's disease (AD). Here, we show that KIF11 overexpression rescues Aβ-mediated decreases in dendritic spine density in cultured neurons and in long-term potentiation in hippocampal slices. Furthermore, Kif11 overexpression from a transgene prevented spatial learning deficits in the 5xFAD mouse model of AD. Finally, increased KIF11 expression in neuritic plaque-positive AD patients' brains was associated with better cognitive performance and higher expression of synaptic protein mRNAs. Taken together, these mechanistic biochemical, cell biological, electrophysiological, animal model, and human data identify KIF11 as a key target of Aβ-mediated toxicity in AD, which damages synaptic structures and functions critical for learning and memory in AD.
Collapse
Affiliation(s)
- Esteban M. Lucero
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Program for Human Medical Genetics and Genomics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronald K. Freund
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Smith
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Noah R. Johnson
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Breanna Dooling
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Program for Human Medical Genetics and Genomics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olga Prikhodko
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Md. Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark L. Dell’Acqua
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heidi J. Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Wang J, Chen S, Liu M, Zhang M, Jia X. NEK7: a new target for the treatment of multiple tumors and chronic inflammatory diseases. Inflammopharmacology 2022; 30:1179-1187. [PMID: 35829941 DOI: 10.1007/s10787-022-01026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022]
Abstract
NIMA-related kinase 7 (NEK7) is a serine/threonine kinase, which is the smallest one in mammalian NEK family. At present, many studies have reported that NEK7 has a physiological role in regulating the cell cycle and promoting the mitotic process of cells. In recent years, an increasing number of studies have proposed that NEK7 is involved in the activation of the NLRP3 inflammasome. Under normal conditions, NEK7 is in a low activity state, while under pathological conditions, NEK7 is abnormally expressed and therefore plays a key role in the progression of multiple tumors and chronic inflammatory diseases. This review will concentrate on the mechanism of NEK7 participates in the process of mitosis and regulates the activation of NLRP3 inflammasome, the aberrant expression of NEK7 in a variety of tumors and chronic inflammatory diseases, and some potential inhibitors, which may provide some new ideas for the treatment of diverse tumors and chronic inflammatory diseases associated with NEK7.
Collapse
Affiliation(s)
- Jin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Simeng Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
8
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
9
|
Awa S, Suzuki G, Masuda-Suzukake M, Nonaka T, Saito M, Hasegawa M. Phosphorylation of endogenous α-synuclein induced by extracellular seeds initiates at the pre-synaptic region and spreads to the cell body. Sci Rep 2022; 12:1163. [PMID: 35064139 PMCID: PMC8782830 DOI: 10.1038/s41598-022-04780-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of phosphorylated α-synuclein aggregates has been implicated in several diseases, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and is thought to spread in a prion-like manner. Elucidating the mechanisms of prion-like transmission of α-synuclein is important for the development of therapies for these diseases, but little is known about the details. Here, we injected α-synuclein fibrils into the brains of wild-type mice and examined the early phase of the induction of phosphorylated α-synuclein accumulation. We found that phosphorylated α-synuclein appeared within a few days after the intracerebral injection. It was observed initially in presynaptic regions and subsequently extended its localization to axons and cell bodies. These results suggest that extracellular α-synuclein fibrils are taken up into the presynaptic region and seed-dependently convert the endogenous normal α-synuclein that is abundant there to an abnormal phosphorylated form, which is then transported through the axon to the cell body.
Collapse
Affiliation(s)
- Shiori Awa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Genjiro Suzuki
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Masami Masuda-Suzukake
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minoru Saito
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan.,Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
10
|
Joseph NF, Zucca A, Wingfield JL, Espadas I, Page D, Puthanveettil SV. Molecular motor KIF3B in the prelimbic cortex constrains the consolidation of contextual fear memory. Mol Brain 2021; 14:162. [PMID: 34749771 PMCID: PMC8573985 DOI: 10.1186/s13041-021-00873-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Molecular and cellular mechanisms underlying the role of the prelimbic cortex in contextual fear memory remain elusive. Here we examined the kinesin family of molecular motor proteins (KIFs) in the prelimbic cortex for their role in mediating contextual fear, a form of associative memory. KIFs function as critical mediators of synaptic transmission and plasticity by their ability to modulate microtubule function and transport of gene products. However, the regulation and function of KIFs in the prelimbic cortex insofar as mediating memory consolidation is not known. We find that within one hour of contextual fear conditioning, the expression of KIF3B is upregulated in the prelimbic but not the infralimbic cortex. Importantly, lentiviral-mediated knockdown of KIF3B in the prelimbic cortex produces deficits in consolidation while reducing freezing behavior during extinction of contextual fear. We also find that the depletion of KIF3B increases spine density within prelimbic neurons. Taken together, these results illuminate a key role for KIF3B in the prelimbic cortex as far as mediating contextual fear memory.
Collapse
Affiliation(s)
- Nadine F Joseph
- The Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Aya Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Damon Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | |
Collapse
|
11
|
Wang Y, Smallwood PM, Williams J, Nathans J. A mouse model for kinesin family member 11 (Kif11)-associated familial exudative vitreoretinopathy. Hum Mol Genet 2021; 29:1121-1131. [PMID: 31993640 DOI: 10.1093/hmg/ddaa018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
During mitosis, Kif11, a kinesin motor protein, promotes bipolar spindle formation and chromosome movement, and during interphase, Kif11 mediates diverse trafficking processes in the cytoplasm. In humans, inactivating mutations in KIF11 are associated with (1) retinal hypovascularization with or without microcephaly and (2) multi-organ syndromes characterized by variable combinations of lymphedema, chorioretinal dysplasia, microcephaly and/or mental retardation. To explore the pathogenic basis of KIF11-associated retinal vascular disease, we generated a Kif11 conditional knockout (CKO) mouse and investigated the consequences of early postnatal inactivation of Kif11 in vascular endothelial cells (ECs). The principal finding is that postnatal EC-specific loss of Kif11 leads to severely stunted growth of the retinal vasculature, mildly stunted growth of the cerebellar vasculature and little or no effect on the vasculature elsewhere in the central nervous system (CNS). Thus, in mice, Kif11 function in early postnatal CNS ECs is most significant in the two CNS regions-the retina and cerebellum-that exhibit the most rapid rate of postnatal growth, which may sensitize ECs to impaired mitotic spindle function. Several lines of evidence indicate that these phenotypes are not caused by reduced beta-catenin signaling in ECs, despite the close resemblance of the Kif11 CKO phenotype to that caused by EC-specific reductions in beta-catenin signaling. Based on prior work, defective beta-catenin signaling had been the only known mechanism responsible for monogenic human disorders of retinal hypovascularization. The present study implies that retinal hypovascularization can arise from a second and mechanistically distinct cause.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Joseph NF, Swarnkar S, Puthanveettil SV. Double Duty: Mitotic Kinesins and Their Post-Mitotic Functions in Neurons. Cells 2021; 10:cells10010136. [PMID: 33445569 PMCID: PMC7827351 DOI: 10.3390/cells10010136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/23/2023] Open
Abstract
Neurons, regarded as post-mitotic cells, are characterized by their extensive dendritic and axonal arborization. This unique architecture imposes challenges to how to supply materials required at distal neuronal components. Kinesins are molecular motor proteins that mediate the active delivery of cellular materials along the microtubule cytoskeleton for facilitating the local biochemical and structural changes at the synapse. Recent studies have made intriguing observations that some kinesins that function during neuronal mitosis also have a critical role in post-mitotic neurons. However, we know very little about the function and regulation of such kinesins. Here, we summarize the known cellular and biochemical functions of mitotic kinesins in post-mitotic neurons.
Collapse
Affiliation(s)
- Nadine F. Joseph
- The Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research Institute, La Jolla, CA 92037, USA;
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA;
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA;
| | - Sathyanarayanan V Puthanveettil
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence: ; Tel.: +1-561-228-3504; Fax: +1-568-228-2249
| |
Collapse
|
13
|
Sun Z, Gong W, Zhang Y, Jia Z. Physiological and Pathological Roles of Mammalian NEK7. Front Physiol 2020; 11:606996. [PMID: 33364979 PMCID: PMC7750478 DOI: 10.3389/fphys.2020.606996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
NEK7 is the smallest NIMA-related kinase (NEK) in mammals. The pathological and physiological roles of NEK7 have been widely reported in many studies. To date, the major function of NEK7 has been well documented in mitosis and NLRP3 inflammasome activation, but the detailed mechanisms of its regulation remain unclear. This review summarizes current advances in NEK7 research involving mitotic regulation, NLRP3 inflammasome activation, related diseases and potential inhibitors, which may provide new insights into the understanding and therapy of the diseases associated with NEK7, as well as the subsequent studies in the future.
Collapse
Affiliation(s)
- Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Li G, Dong Y, Liu D, Zou Z, Hao G, Gao X, Pan P, Liang G. NEK7 Coordinates Rapid Neuroinflammation After Subarachnoid Hemorrhage in Mice. Front Neurol 2020; 11:551. [PMID: 32733353 PMCID: PMC7360676 DOI: 10.3389/fneur.2020.00551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating disease which leads to high morbidity and mortality. Recent studies have indicated that, never in mitosis gene A-related expressed kinase 7 (NEK7), is involved in NLRP3 (NLR family, pyrin domain containing 3) associated inflammation, which may result in subsequent cellular and vascular damage. The aim of this study was to investigate whether NEK7 is involved in the pathophysiology of subarachnoid hemorrhage. Methods: 455 adult male C57B6J mice, weighing 22 to 30 g, were used to investigate the time course of NEK7 expression in the ipsilateral cortex after SAH, and to investigate the intrinsic function and mechanism of NEK7. A vascular puncture model was used to create the mouse SAH model, and intracerebroventricular injection was used to deliver NEK7 recombinant protein, NEK7 small interfering RNA, nigericin, and MCC950. Neurological score, brain water content, Evans blue extravasation, immunofluorescence, and western blot were evaluated for neurological outcome, neuronal apoptosis, blood-brain barrier damage, microglia accumulation, and the mechanism of NEK7 and NLRP3 activation. Results: Our results exhibited that intrinsic NEK7 was elevated after SAH in the cortex of the left/ipsilateral hemisphere and was colocalized with microglia, endothelial cells, neuron, astrocyte, and oligodendrocyte, and highly expressed in microglia and endothelial cells after SAH. NEK7 recombinant protein aggravated neurological deficits, brain edema, neuronal apoptosis, BBB permeability, microglial accumulation, and activated caspase-1 and IL-1β maturation, while NEK7 small interfering RNA injection reversed those effects. Nigericin administration enhanced ASC oligomerization, caspase-1 and IL-1β maturation without increasing the protein level of NLRP3, and ASC oligomerization and caspase-1 IL-1β maturation reduced when combined with NEK7 knockdown or MCC950 delivery. We found the level of NEK7 expression increased after SAH and could activate the downstream NLRP3 pathway to induce caspase-1, IL-1β expression and then increased the BBB opening, microglia accumulation and neuronal apoptosis after SAH. Conclusions: This study demonstrated for the first time that NEK7 mediated the harmful effects of neuronal apoptosis and BBB disruption after SAH, which may potentially be mediated by the NEK7/NLRP3 signal. NEK7 served as a co-component for NLRP3 inflammasome activation after SAH. NEK7 may be a promising target on the management of SAH patients.
Collapse
Affiliation(s)
- Gen Li
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China.,Dalian Medical University, Dalian, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Dongdong Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China.,Dalian Medical University, Dalian, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| |
Collapse
|
15
|
O'Regan L, Barone G, Adib R, Woo CG, Jeong HJ, Richardson EL, Richards MW, Muller PAJ, Collis SJ, Fennell DA, Choi J, Bayliss R, Fry AM. EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7. J Cell Sci 2020; 133:jcs241505. [PMID: 32184261 PMCID: PMC7240300 DOI: 10.1242/jcs.241505] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
EML4-ALK is an oncogenic fusion present in ∼5% of non-small cell lung cancers. However, alternative breakpoints in the EML4 gene lead to distinct variants of EML4-ALK with different patient outcomes. Here, we show that, in cell models, EML4-ALK variant 3 (V3), which is linked to accelerated metastatic spread, causes microtubule stabilization, formation of extended cytoplasmic protrusions and increased cell migration. EML4-ALK V3 also recruits the NEK9 and NEK7 kinases to microtubules via the N-terminal EML4 microtubule-binding region. Overexpression of wild-type EML4, as well as constitutive activation of NEK9, also perturbs cell morphology and accelerates migration in a microtubule-dependent manner that requires the downstream kinase NEK7 but does not require ALK activity. Strikingly, elevated NEK9 expression is associated with reduced progression-free survival in EML4-ALK patients. Hence, we propose that EML4-ALK V3 promotes microtubule stabilization through NEK9 and NEK7, leading to increased cell migration. This represents a novel actionable pathway that could drive metastatic disease progression in EML4-ALK lung cancer.
Collapse
Affiliation(s)
- Laura O'Regan
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Giancarlo Barone
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
- Department of Oncology and Metabolism, Sheffield Institute for Nucleic Acids (SInFoNiA), University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Rozita Adib
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Chang Gok Woo
- Department of Pathology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Hui Jeong Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Emily L Richardson
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Mark W Richards
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Patricia A J Muller
- Cancer Research UK Manchester Institute, University of Manchester, Alderley Park SK10 4TG, UK
| | - Spencer J Collis
- Department of Oncology and Metabolism, Sheffield Institute for Nucleic Acids (SInFoNiA), University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Dean A Fennell
- Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester LE1 9HN, UK
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
16
|
Liu H, Gu C, Liu M, Liu G, Wang Y. NEK7 mediated assembly and activation of NLRP3 inflammasome downstream of potassium efflux in ventilator-induced lung injury. Biochem Pharmacol 2020; 177:113998. [PMID: 32353421 DOI: 10.1016/j.bcp.2020.113998] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Disordered immune regulation and persistent inflammatory damage are the key mechanisms of ventilator-induced lung injury (VILI). NLR family pyrin domain containing 3 (NLRP3) inflammasome activation causes VILI by mediating the formation of inflammatory mediators and infiltration of inflammatory cells, increasing pulmonary capillary membrane permeability, which leads to pulmonary edema and lung tissue damage. What mediates activation of NLRP3 inflammasome in VILI? In this study, we constructed an in vitro cyclic stretch (CS)-stimulated mouse lung epithelial (MLE-12) cell model that was transfected with NIMA-related kinase 7 (NEK7) small interfering RNA (siRNA) or scramble siRNA (sc siRNA) and pretreated with or without glibenclamide (glb). We also established a VILI mouse model, which was pretreated with glibenclamide or oridonin (Ori). Our goal was to investigate the regulatory effects of NEK7 on NLRP3 inflammasome activation and the anti-inflammatory effects of glibenclamide and oridonin on VILI. Mechanical stretch exaggerated the interaction between NEK7 and NLRP3, leading to assembly and activation of NLRP3 inflammasome downstream of potassium efflux. NEK7 depletion and treatment with glibenclamide or oridonin exerted anti-inflammatory effects that alleviated VILI by blocking the interaction between NEK7 and NLRP3, inhibiting NLRP3 inflammasome activation. NEK7 is a vital mediator of NLRP3 inflammasome activation, and glibenclamide or oridonin may be candidates for the development of new therapeutics against VILI driven by the interaction between NEK7 and NLRP3.
Collapse
Affiliation(s)
- Huan Liu
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Changping Gu
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Mengjie Liu
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Ge Liu
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Yuelan Wang
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China.
| |
Collapse
|
17
|
Liu G, Chen X, Wang Q, Yuan L. NEK7: a potential therapy target for NLRP3-related diseases. Biosci Trends 2020; 14:74-82. [PMID: 32295992 DOI: 10.5582/bst.2020.01029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
NLRP3 inflammasome plays an essential role in innate immunity, yet the activation mechanism of NLRP3 inflammasome is not clear. In human or animal models, inappropriate NLRP3 inflammasome activation is implicated in many NLRP3-related diseases, such as tumors, inflammatory diseases and autoimmune diseases. Until now, a great number of inhibitors have been used to disturb the related signaling pathways, such as IL-1β blockade, IL-18 blockade and caspase-1 inhibitors. Unfortunately, most of these inhibitors just disturb the signaling pathways after the activation of NLRP3 inflammasome. Inhibitors that directly regulate NLRP3 to abolish the inflammation response may be more effective. NEK7 is a multifunctional kinase affecting centrosome duplication, mitochondrial regulation, intracellular protein transport, DNA repair and mitotic spindle assembly. Researchers have made significant observations on the regulation of gene transcription or protein expression of the NLRP3 inflammasome signaling pathway by NEK7. Those signaling pathways include ROS signaling, potassium efflux, lysosomal destabilization, and NF-κB signaling. Furthermore, NEK7 has been proved to be involved in many NLRP3-related diseases in humans or in animal models. Inhibitors focused on NEK7 may regulate NLRP3 to abolish the inflammation response and NEK7 may be a potential therapeutic target for NLRP3-related diseases.
Collapse
Affiliation(s)
- Ganglei Liu
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueliang Chen
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianqian Wang
- Department of Oncology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Lianwen Yuan
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
19
|
Tempes A, Weslawski J, Brzozowska A, Jaworski J. Role of dynein-dynactin complex, kinesins, motor adaptors, and their phosphorylation in dendritogenesis. J Neurochem 2020; 155:10-28. [PMID: 32196676 DOI: 10.1111/jnc.15010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
One of the characteristic features of different classes of neurons that is vital for their proper functioning within neuronal networks is the shape of their dendritic arbors. To properly develop dendritic trees, neurons need to accurately control the intracellular transport of various cellular cargo (e.g., mRNA, proteins, and organelles). Microtubules and motor proteins (e.g., dynein and kinesins) that move along microtubule tracks play an essential role in cargo sorting and transport to the most distal ends of neurons. Equally important are motor adaptors, which may affect motor activity and specify cargo that is transported by the motor. Such transport undergoes very dynamic fine-tuning in response to changes in the extracellular environment and synaptic transmission. Such regulation is achieved by the phosphorylation of motors, motor adaptors, and cargo, among other mechanisms. This review focuses on the contribution of the dynein-dynactin complex, kinesins, their adaptors, and the phosphorylation of these proteins in the formation of dendritic trees by maturing neurons. We primarily review the effects of the motor activity of these proteins in dendrites on dendritogenesis. We also discuss less anticipated mechanisms that contribute to dendrite growth, such as dynein-driven axonal transport and non-motor functions of kinesins.
Collapse
Affiliation(s)
- Aleksandra Tempes
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jan Weslawski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Brzozowska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
20
|
Abstract
Assaying microtubule nucleation is essential to understand the organization of microtubule networks in any cell type. In this chapter we describe methods for measuring nucleation activity at centrosomes and at mitotic chromatin in cell lines, to study interphase and mitotic microtubule organization, and for measuring non-centrosomal nucleation in cultured primary neurons, to study microtubule organization in the absence of a microtubule organizing center. While a number of different approaches and variations thereof have been reported in the literature, here we aim to keep the methodology as simple as possible and thus accessible to most research laboratories.
Collapse
Affiliation(s)
- Artur Ezquerra
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
21
|
Kim CD, Kim ED, Liu L, Buckley RS, Parameswaran S, Kim S, Wojcik EJ. Small molecule allosteric uncoupling of microtubule depolymerase activity from motility in human Kinesin-5 during mitotic spindle assembly. Sci Rep 2019; 9:19900. [PMID: 31882607 PMCID: PMC6934681 DOI: 10.1038/s41598-019-56173-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/06/2019] [Indexed: 01/22/2023] Open
Abstract
Human Kinesin-5 (Eg5) has a large number of known allosteric inhibitors that disrupt its mitotic function. Small-molecule inhibitors of Eg5 are candidate anti-cancer agents and important probes for understanding the cellular function. Here we show that Eg5 is capable of more than one type of microtubule interaction, and these activities can be controlled by allosteric agents. While both monastrol and S-trityl-L-cysteine inhibit Eg5 motility, our data reveal an unexpected ability of these loop5 targeting inhibitors to differentially control a novel Eg5 microtubule depolymerizing activity. Remarkably, small molecule loop5 effectors are able to independently modulate discrete functional interactions between the motor and microtubule track. We establish that motility can be uncoupled from the microtubule depolymerase activity and argue that loop5-targeting inhibitors of Kinesin-5 should not all be considered functionally synonymous. Also, the depolymerizing activity of the motor does not contribute to the genesis of monopolar spindles during allosteric inhibition of motility, but instead reveals a new function. We propose that, in addition to its canonical role in participating in the construction of the three-dimensional mitotic spindle structure, Eg5 also plays a distinct role in regulating the dynamics of individual microtubules, and thereby impacts the density of the mitotic spindle.
Collapse
Affiliation(s)
- Catherine D Kim
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Elizabeth D Kim
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Rebecca S Buckley
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Sreeja Parameswaran
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Sunyoung Kim
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
22
|
Wang H, Xiao L, Wang H, Wang G. Involvement of chronic unpredictable mild stress-induced hippocampal LRP1 up-regulation in microtubule instability and depressive-like behavior in a depressive-like adult male rat model. Physiol Behav 2019; 215:112749. [PMID: 31770536 DOI: 10.1016/j.physbeh.2019.112749] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) and tau play an important role in developing Alzheimer's disease. This study aimed to explore the involvement of LRP1 in microtubule dynamic and depressive-like behavior in a depressive-like rat model. It also investigated whether fluoxetine blocked the change induced by chronic unpredictable mild stress (CUMS). Sprague-Dawley rats (200-250 g) were exposed to CUMS and fluoxetine for 4 weeks respectively. The body weight was determined, and behavior tests, including sucrose preference test, forced swimming test and open field test were performed. Western blot analysis was conducted to determine the protein levels of LRP1, tubulin, Acet-tub, Tyr-tub and PI3K/Akt/GSK-3β. Real-time quantitative polymerase chain reaction was used for mRNA expression levels of LRP1. Immunohistochemical staining was applied for LRP1 and immunofluorescence staining for the co-location of p-tau (404,262) and Acet-tub. The CUMS group presented a decreased body weight and depressive-like behavior, which was improved by fluoxetine. The protein and mRNA expression levels of LRP1 were elevated in the CUMS group. The levels of Acet-tub increased following CUMS, accompanied by elevated levels of p-tau (404,262). The binding of p-tau and Acet-tub significantly decreased in depressive-like rats, and fluoxetine attenuated microtubule instability. Finally, the inhibition of CUMS-induced PI3K/Akt activated GSK-3β, and fluoxetine reversed the change in the signaling pathway. Hence, LRP1 might impair the microtubule dynamics accompanied by depressive-like behavior via the PI3K/ Akt /GSK3β pathway in adult depressive-like rats, and hippocampal LRP1 might be involved in the development of depression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Psychiatry, Renmin hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
23
|
Del Castillo U, Norkett R, Gelfand VI. Unconventional Roles of Cytoskeletal Mitotic Machinery in Neurodevelopment. Trends Cell Biol 2019; 29:901-911. [PMID: 31597609 DOI: 10.1016/j.tcb.2019.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
At first look, cell division and neurite formation seem to be two different, essential biological processes. However, both processes require extensive reorganization of the cytoskeleton, and especially microtubules. Remarkably, in recent years, independent work from several groups has shown that multiple cytoskeletal components previously considered specific for the mitotic machinery play important roles in neurite initiation and extension. In this review article, we describe how several cytoplasmic and mitotic microtubule motors, components of mitotic kinetochores, and cortical actin participate in reorganization of the microtubule network required to form and maintain axons and dendrites. The emerging similarities between these two biological processes will certainly generate new insights into the mechanisms generating the unique morphology of neurons.
Collapse
Affiliation(s)
- Urko Del Castillo
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Rosalind Norkett
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Chen Y, Meng J, Bi F, Li H, Chang C, Ji C, Liu W. EK7 Regulates NLRP3 Inflammasome Activation and Neuroinflammation Post-traumatic Brain Injury. Front Mol Neurosci 2019; 12:202. [PMID: 31555089 PMCID: PMC6727020 DOI: 10.3389/fnmol.2019.00202] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
As one of the most common causes of mortality and disability, traumatic brain injury (TBI) is a huge psychological and economic burden to patients, families, and societies worldwide. Neuroinflammation reduction may be a favorable option to alleviate secondary brain injuries and ameliorate the outcome of TBI. The nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome, has been shown to be involved in TBI. NIMA-related kinase 7 (NEK7) has been verified as an essential mediator of NLRP3 inflammasome activation that is recruited upstream of the formation of inflammasomes in response to NLRP3 activators. However, the underlying mechanism by which NEK7 operates post-TBI remains undefined. In this study, we performed both in vivo and in vitro experiments. Using an in vivo mouse TBI model, mice were administered an intracerebroventricular injection of NEK7-shRNA virus. For the in vitro analysis, primary cortical neurons with NEK7-shRNA were stimulated with lipopolysaccharide (LPS)/ATP or potassium (K+). We evaluated the effects of NEK7 knock-down on neurological deficits, NLRP3 inflammasomes, caspase-1 activation, and neuronal injury. During the 0–168 h post-TBI period in vivo, NEK7 and NLRP3 inflammasome activation increased in what appeared to be a time-dependent manner. As well as pyroptosis-related markers, caspase-1 activation (p20) and interleukin-1β (IL-1β) activation (p17) were up-regulated. NEK7 down-regulation attenuated neurological deficits, NLRP3 inflammasomes, caspase-1 activation, and neuronal injury. The same phenomena were observed during the in vitro experiments. Furthermore, NEK7 knock-down suppressed NLRP3 inflammasome activation and pyroptosis, which were triggered by K+ efflux, and the LPS + ATP-triggered NEK7–NLRP3 complex was reversed in primary cortical neurons placed in 50 mM K+ medium. Collectively, the data demonstrated that NEK7, as a modulator, regulates NLRP3 inflammasomes and downstream neuroinflammation in response to K+ efflux, through NEK7–NLRP3 assembly, pro-caspase-1 recruitment, caspase-1 activation, and pyroptosis in nerve injuries, post-TBI. NEK7 may be a potential therapeutic target for attenuating neuroinflammation and nerve injury post-TBI.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jiao Meng
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Fangfang Bi
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Hua Li
- Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Cuicui Chang
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Chen Ji
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Wei Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
25
|
Tang F, Pan MH, Wan X, Lu Y, Zhang Y, Sun SC. Kif18a regulates Sirt2-mediated tubulin acetylation for spindle organization during mouse oocyte meiosis. Cell Div 2018; 13:9. [PMID: 30459823 PMCID: PMC6234775 DOI: 10.1186/s13008-018-0042-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background During oocyte meiosis, the cytoskeleton dynamics, especially spindle organization, are critical for chromosome congression and segregation. However, the roles of the kinesin superfamily in this process are still largely unknown. Results In the present study, Kif18a, a member of the kinesin-8 family, regulated spindle organization through its effects on tubulin acetylation in mouse oocyte meiosis. Our results showed that Kif18a is expressed and mainly localized in the spindle region. Knock down of Kif18a caused the failure of first polar body extrusion, dramatically affecting spindle organization and resulting in severe chromosome misalignment. Further analysis showed that the disruption of Kif18a caused an increase in acetylated tubulin level, which might be the reason for the spindle organization defects after Kif18a knock down in oocyte meiosis, and the decreased expression of deacetylase Sirt2 was found after Kif18a knock down. Moreover, microinjections of tubulin K40R mRNA, which could induce tubulin deacetylation, protected the oocytes from the effects of Kif18a downregulation, resulting in normal spindle morphology in Kif18a-knock down oocytes. Conclusions Taken together, our results showed that Kif18a affected Sirt2-mediated tubulin acetylation level for spindle organization during mouse oocyte meiosis. Our results not only revealed the critical effect of Kif18a on microtubule stability, but also extended our understanding of kinesin activity in meiosis.
Collapse
Affiliation(s)
- Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|