1
|
Molina A, Prakash M. Droplet tilings in precessive fields: hysteresis, elastic defects, and annealing. SOFT MATTER 2024; 20:6730-6741. [PMID: 38922641 DOI: 10.1039/d4sm00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Two-component Marangoni contracted droplets can be arranged into arbitrary two-dimensional tiling patterns where they display rich dynamics due to vapor-mediated long-range interactions. Recent work has characterized the centered hexagonal honeycomb lattice, showing it to be a highly frustrated system with many metastable states and relaxation occurring over multiple timescales [Molina et al., Proc. Natl. Acad. Sci. U. S. A., 2021, 118, e2020014118]. Here, we study this system under the influence of a rotating gravitational field. High amplitudes are able to completely disrupt droplet-droplet interactions, making it possible to identify a transition between field-dominated and interaction-dominated regimes. The system displays complex hysteresis behavior, the details of which are connected to the emergence of linear mesoscale structures. These mesoscale features display an elasticity that is governed by the balance between gravity and long-range vapor-mediated attractions. We find that disorder plays an important role in determining the dynamics of these features. Finally, we demonstrate annealing the system by progressively reducing the field amplitude, a process that reduces configurational energy compared to a rapid quench. The ability to manipulate vapor-mediated interactions in deliberately designed droplet tilings provides a novel platform for table-top explorations of multi-body interactions.
Collapse
Affiliation(s)
- Anton Molina
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA.
| | - Manu Prakash
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA.
| |
Collapse
|
2
|
Zhang X, Chioar IA, Fitez G, Hurben A, Saccone M, Bingham NS, Ramberger J, Leighton C, Nisoli C, Schiffer P. Artificial Magnetic Tripod Ice. PHYSICAL REVIEW LETTERS 2023; 131:126701. [PMID: 37802961 DOI: 10.1103/physrevlett.131.126701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
We study the collective behavior of interacting arrays of nanomagnetic tripods. These objects have six discrete moment states, in contrast to the usual two states of an Ising-like moment. Our experimental data demonstrate that triangular lattice arrays form a "tripod ice" that exhibits charge ordering among the effective vertex magnetic charges, in direct analogy to artificial kagome spin ice. The results indicate that the interacting tripods have effective moments that act as emergent local variables, with strong connections to the well-studied Potts and clock models. In addition, the tripod moments display a tendency toward a nearest neighbor alignment in our thermalized samples that separates this system from kagome spin ice. Our results open a path toward the study of the collective behavior of nonbinary moments that is unavailable in other physical systems.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Ioan-Augustin Chioar
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Grant Fitez
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Anthony Hurben
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Michael Saccone
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Nicholas S Bingham
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Justin Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Peter Schiffer
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
3
|
Saccone M, Caravelli F, Hofhuis K, Dhuey S, Scholl A, Nisoli C, Farhan A. Real-space observation of ergodicity transitions in artificial spin ice. Nat Commun 2023; 14:5674. [PMID: 37704596 PMCID: PMC10499874 DOI: 10.1038/s41467-023-41235-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Ever since its introduction by Ludwig Boltzmann, the ergodic hypothesis became a cornerstone analytical concept of equilibrium thermodynamics and complex dynamic processes. Examples of its relevance range from modeling decision-making processes in brain science to economic predictions. In condensed matter physics, ergodicity remains a concept largely investigated via theoretical and computational models. Here, we demonstrate the direct real-space observation of ergodicity transitions in a vertex-frustrated artificial spin ice. Using synchrotron-based photoemission electron microscopy we record thermally-driven moment fluctuations as a function of temperature, allowing us to directly observe transitions between ergodicity-breaking dynamics to system freezing, standing in contrast to simple trends observed for the temperature-dependent vertex populations, all while the entropy features arise as a function of temperature. These results highlight how a geometrically frustrated system, with thermodynamics strictly adhering to local ice-rule constraints, runs back-and-forth through periods of ergodicity-breaking dynamics. Ergodicity breaking and the emergence of memory is important for emergent computation, particularly in physical reservoir computing. Our work serves as further evidence of how fundamental laws of thermodynamics can be experimentally explored via real-space imaging.
Collapse
Affiliation(s)
- Michael Saccone
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Francesco Caravelli
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Kevin Hofhuis
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Scott Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Cristiano Nisoli
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Alan Farhan
- Department of Physics, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
4
|
Chen C, Bornet G, Bintz M, Emperauger G, Leclerc L, Liu VS, Scholl P, Barredo D, Hauschild J, Chatterjee S, Schuler M, Läuchli AM, Zaletel MP, Lahaye T, Yao NY, Browaeys A. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 2023; 616:691-695. [PMID: 36848931 DOI: 10.1038/s41586-023-05859-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Spontaneous symmetry breaking underlies much of our classification of phases of matter and their associated transitions1-3. The nature of the underlying symmetry being broken determines many of the qualitative properties of the phase; this is illustrated by the case of discrete versus continuous symmetry breaking. Indeed, in contrast to the discrete case, the breaking of a continuous symmetry leads to the emergence of gapless Goldstone modes controlling, for instance, the thermodynamic stability of the ordered phase4,5. Here, we realize a two-dimensional dipolar XY model that shows a continuous spin-rotational symmetry using a programmable Rydberg quantum simulator. We demonstrate the adiabatic preparation of correlated low-temperature states of both the XY ferromagnet and the XY antiferromagnet. In the ferromagnetic case, we characterize the presence of a long-range XY order, a feature prohibited in the absence of long-range dipolar interaction. Our exploration of the many-body physics of XY interactions complements recent works using the Rydberg-blockade mechanism to realize Ising-type interactions showing discrete spin rotation symmetry6-9.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France
| | - Guillaume Bornet
- Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France
| | - Marcus Bintz
- Department of Physics, University of California, Berkeley, CA, USA
| | - Gabriel Emperauger
- Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France
| | - Lucas Leclerc
- Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France
- PASQAL SAS, Massy, France
| | - Vincent S Liu
- Department of Physics, University of California, Berkeley, CA, USA
| | - Pascal Scholl
- Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France
- California Institute of Technology, Pasadena, CA, USA
| | - Daniel Barredo
- Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo (UO), El Entrego, Spain
| | - Johannes Hauschild
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Physics, Technical University of Munich, Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| | | | - Michael Schuler
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria
| | - Andreas M Läuchli
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria
- Laboratory for Theoretical and Computational Physics, Paul Scherrer Institute, Villigen, Switzerland
- Institute of Physics, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thierry Lahaye
- Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France
| | - Norman Y Yao
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Antoine Browaeys
- Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France.
| |
Collapse
|
5
|
Zhou Y, Xu Q. Supercritical CO 2-induced anti-nanoconfinement effect to obtain novel 2D structures. Phys Chem Chem Phys 2023; 25:3607-3616. [PMID: 36254862 DOI: 10.1039/d2cp03565k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Space confined reactions have emerged as a viable strategy for achieving important and fascinating properties in functional materials. Various scaffolds have been reported so far for confinement and it gives rise to the phenomenon of nanoconfinement, where the energetics and kinetics of catalytic reactions can be modulated upon confining the catalysts in a particular site. Although various systems have been reported so far for confinement, emphasis has been placed on the concept of space confinement, and the changes in the confined space itself are neglected. Strikingly, this critical issue would be touched on and revealed by supercritical CO2 (SC CO2) that is used in confined geometries. Herein, we define the structural changes of confined spaces induced by SC CO2 as an anti-nanoconfinement effect, which can bring about a series of variations together with electronic band and structural transformation. Moreover, progress in the design and applications of the anti-nanoconfinement effect is traced, and there is a discussion of emerging issues that have yet to be explored to achieve a future direction to develop more novel two-dimensional (2D) structures.
Collapse
Affiliation(s)
- Yannan Zhou
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China. .,Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
6
|
Bluschke M, Basak R, Barbour A, Warner AN, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A. Imaging mesoscopic antiferromagnetic spin textures in the dilute limit from single-geometry resonant coherent x-ray diffraction. SCIENCE ADVANCES 2022; 8:eabn6882. [PMID: 35857841 PMCID: PMC9299548 DOI: 10.1126/sciadv.abn6882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The detection and manipulation of antiferromagnetic domains and topological antiferromagnetic textures are of central interest to solid-state physics. A fundamental step is identifying tools to probe the mesoscopic texture of an antiferromagnetic order parameter. In this work, we demonstrate that Bragg coherent diffractive imaging can be extended to study the mesoscopic texture of an antiferromagnetic order parameter using resonant magnetic x-ray scattering. We study the onset of the antiferromagnet transition in PrNiO3, focusing on a temperature regime in which the antiferromagnetic domains are dilute in the beam spot and the coherent diffraction pattern modulating the antiferromagnetic peak is greatly simplified. We demonstrate that it is possible to extract the arrangements and sizes of these domains from single diffraction patterns and show that the approach could be extended to a time-structured light source to study the motion of dilute domains or the motion of topological defects in an antiferromagnetic spin texture.
Collapse
Affiliation(s)
- Martin Bluschke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Rourav Basak
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Andi Barbour
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ashley N Warner
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrin Fürsich
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Stuart Wilkins
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Lee
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, Concordia College, Moorhead, MN 56562, USA
| | - Georg Christiani
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Gennady Logvenov
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Matteo Minola
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Claudio Mazzoli
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Eva Benckiser
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Alex Frano
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Zhang X, Duzgun A, Lao Y, Subzwari S, Bingham NS, Sklenar J, Saglam H, Ramberger J, Batley JT, Watts JD, Bromley D, Chopdekar RV, O'Brien L, Leighton C, Nisoli C, Schiffer P. String Phase in an Artificial Spin Ice. Nat Commun 2021; 12:6514. [PMID: 34764259 PMCID: PMC8585881 DOI: 10.1038/s41467-021-26734-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022] Open
Abstract
One-dimensional strings of local excitations are a fascinating feature of the physical behavior of strongly correlated topological quantum matter. Here we study strings of local excitations in a classical system of interacting nanomagnets, the Santa Fe Ice geometry of artificial spin ice. We measured the moment configuration of the nanomagnets, both after annealing near the ferromagnetic Curie point and in a thermally dynamic state. While the Santa Fe Ice lattice structure is complex, we demonstrate that its disordered magnetic state is naturally described within a framework of emergent strings. We show experimentally that the string length follows a simple Boltzmann distribution with an energy scale that is associated with the system's magnetic interactions and is consistent with theoretical predictions. The results demonstrate that string descriptions and associated topological characteristics are not unique to quantum models but can also provide a simplifying description of complex classical systems with non-trivial frustration.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayhan Duzgun
- Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yuyang Lao
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shayaan Subzwari
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Nicholas S Bingham
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Joseph Sklenar
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48201, USA
| | - Hilal Saglam
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Justin Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph T Batley
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Justin D Watts
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Bromley
- Department of Physics, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Liam O'Brien
- Department of Physics, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Peter Schiffer
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
8
|
Structural Disorder and Collective Behavior of Two-Dimensional Magnetic Nanostructures. NANOMATERIALS 2021; 11:nano11061392. [PMID: 34070306 PMCID: PMC8225155 DOI: 10.3390/nano11061392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Structural disorder has been shown to be responsible for profound changes of the interaction-energy landscapes and collective dynamics of two-dimensional (2D) magnetic nanostructures. Weakly-disordered 2D ensembles have a few particularly stable magnetic configurations with large basins of attraction from which the higher-energy metastable configurations are separated by only small downward barriers. In contrast, strongly-disordered ensembles have rough energy landscapes with a large number of low-energy local minima separated by relatively large energy barriers. Consequently, the former show good-structure-seeker behavior with an unhindered relaxation dynamics that is funnelled towards the global minimum, whereas the latter show a time evolution involving multiple time scales and trapping which is reminiscent of glasses. Although these general trends have been clearly established, a detailed assessment of the extent of these effects in specific nanostructure realizations remains elusive. The present study quantifies the disorder-induced changes in the interaction-energy landscape of two-dimensional dipole-coupled magnetic nanoparticles as a function of the magnetic configuration of the ensembles. Representative examples of weakly-disordered square-lattice arrangements, showing good structure-seeker behavior, and of strongly-disordered arrangements, showing spin-glass-like behavior, are considered. The topology of the kinetic networks of metastable magnetic configurations is analyzed. The consequences of disorder on the morphology of the interaction-energy landscapes are revealed by contrasting the corresponding disconnectivity graphs. The correlations between the characteristics of the energy landscapes and the Markovian dynamics of the various magnetic nanostructures are quantified by calculating the field-free relaxation time evolution after either magnetic saturation or thermal quenching and by comparing them with the corresponding averages over a large number of structural arrangements. Common trends and system-specific features are identified and discussed.
Collapse
|
9
|
Tyulkina IV, Goldobin DS, Klimenko LS, Poperechny IS, Raikher YL. Collective in-plane magnetization in a two-dimensional XY macrospin system within the framework of generalized Ott-Antonsen theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190259. [PMID: 32279627 PMCID: PMC7202769 DOI: 10.1098/rsta.2019.0259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The problem of magnetic transitions between the low-temperature (macrospin ordered) phases in two-dimensional XY arrays is addressed. The system is modelled as a plane structure of identical single-domain particles arranged in a square lattice and coupled by the magnetic dipole-dipole interaction; all the particles possess a strong easy-plane magnetic anisotropy. The basic state of the system in the considered temperature range is an antiferromagnetic (AF) stripe structure, where the macrospins (particle magnetic moments) are still involved in thermofluctuational motion: the superparamagnetic blocking Tb temperature is lower than that (Taf) of the AF transition. The description is based on the stochastic equations governing the dynamics of individual magnetic moments, where the interparticle interaction is added in the mean-field approximation. With the technique of a generalized Ott-Antonsen theory, the dynamics equations for the order parameters (including the macroscopic magnetization and the AF order parameter) and the partition function of the system are rigorously obtained and analysed. We show that inside the temperature interval of existence of the AF phase, a static external field tilted to the plane of the array is able to induce first-order phase transitions from AF to ferromagnetic state; the phase diagrams displaying stable and metastable regions of the system are presented. This article is part of the theme issue 'Patterns in soft and biological matters'.
Collapse
Affiliation(s)
- Irina V. Tyulkina
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
| | - Denis S. Goldobin
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
- Department of Theoretical Physics, Perm State University, Bukirev Street 15, Perm 614990, Russia
| | - Lyudmila S. Klimenko
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
- Department of Theoretical Physics, Perm State University, Bukirev Street 15, Perm 614990, Russia
| | - Igor S. Poperechny
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
| | - Yuriy L. Raikher
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
- e-mail:
| |
Collapse
|
10
|
Streubel R, Kent N, Dhuey S, Scholl A, Kevan S, Fischer P. Spatial and Temporal Correlations of XY Macro Spins. NANO LETTERS 2018; 18:7428-7434. [PMID: 30248262 DOI: 10.1021/acs.nanolett.8b01789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We use nano disk arrays with square and honeycomb symmetry to investigate magnetic phases and spin correlations of XY dipolar systems at the micro scale. Utilizing magnetization sensitive X-ray photoemission electron microscopy, we probe magnetic ground states and the "order-by-disorder" phenomenon predicted 30 years ago. We observe the antiferromagnetic striped ground state in square lattices, and 6-fold symmetric structures, including trigonal vortex lattices and disordered floating vortices, in the honeycomb lattice. The spin frustration in the honeycomb lattice causes a phase transition from a long-range ordered locked phase over a floating phase with quasi long-range order and indications of a Berezinskii-Thouless-Kosterlitz-like character, to the thermally excited paramagnetic state. Absent spatial correlation and quasi periodic switching of isolated vortices in the quasi long-range ordered phase suggest a degeneracy of the vortex circulation.
Collapse
Affiliation(s)
- Robert Streubel
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley California 94720 , United States
| | - Noah Kent
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley California 94720 , United States
- Physics Department , UC Santa Cruz , Santa Cruz California 95064 , United States
| | - Scott Dhuey
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley California 94720 , United States
| | - Andreas Scholl
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley California 94720 , United States
| | - Steve Kevan
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley California 94720 , United States
- Department of Physics , University of Oregon , Eugene , Oregon 97401 , United States
| | - Peter Fischer
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley California 94720 , United States
- Physics Department , UC Santa Cruz , Santa Cruz California 95064 , United States
| |
Collapse
|