1
|
Branzi L, Fitzsimmons L, Chunin I, Shvets I, Gun'ko YK. Unveiling Chirality in MoS 2 Nanosheets: A Breakthrough in Phase Engineering for Enhanced Chiroptical Properties. Angew Chem Int Ed Engl 2025; 64:e202420437. [PMID: 39777856 DOI: 10.1002/anie.202420437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
The development of new synthetic strategies to introduce and control chirality in inorganic nanostructures has been highly stimulated by the broad spectrum of potential applications of these exiting nanomaterials. Molybdenum disulfide is among the most investigated transition metal dichalcogenides due to its promising properties for applications that spread from optoelectronic to spintronic. Herein, we report a new two-step approach for the production of chiroptically active semiconductor 2H MoS2 nanosheets with chiral morphology based on the manipulation of their crystallographic structure. In the first step, metastable metallic 1T MoS2 nanosheets with chiral morphology were produced via hydrothermal synthesis. Then, thermal annealing was used to progressively tune the conversion of the metallic 1T phase into the thermodynamically stable semiconductor 2H phase while preserving the nanocrystals' chiral morphology. Our detailed study covers the evolution of the chiroptical properties of the material during the crystallographic phase transition, revealing critical insights into the formation of chiroptically active excitonic transitions. This study represents a unique approach to the production of high-quality chiral nanomaterials by exploiting phase engineering, and paves the way for the development of new synthetic methods to further expand the range and properties of chiral nanomaterials.
Collapse
Affiliation(s)
- Lorenzo Branzi
- Department School of Chemistry, CRANN and AMBER Research Centres, Institution Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Lucy Fitzsimmons
- Department School of Chemistry, CRANN and AMBER Research Centres, Institution Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Igor Chunin
- Department School of Physics, Institution Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Igor Shvets
- Department School of Physics, Institution Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Yurii K Gun'ko
- Department School of Chemistry, CRANN and AMBER Research Centres, Institution Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
2
|
Li M, Huang Y, Fan Z. A pH visual sensing platform based on dual-emission chiral carbon dots for discrimination of normal/cancer cells and monitoring food freshness. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125316. [PMID: 39490187 DOI: 10.1016/j.saa.2024.125316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Accurate detection of pH is important in pathological processes and food freshness. Developing sensors of sensitive response and visualization for pH is highly demanded. In this work, Chiral carbon dots (CCDs) was synthesized via one-pot hydrothermal process using o-phenylenediamine and L-Tryptophan, which displayed circular dichroism (CD) signals at 200-255 nm and 255-300 nm. The CCDs exhibited dual-emission peaks with blue and red emission bands when excited at 360 nm. The ratiometric signals of UV-vis absorption and fluorescence intensity of L-CDs were responsive over the pH range of 2.0-11.0 with significant color changes in solution. Fluorescence imaging of live cells displayed different signals related to pH in both the blue and red channels, allowing accurate measurement of the pH of the cellular environment. Furthermore, the pH test paper based on L-CDs enabled monitoring the freshness of shrimp and pork under 365 nm UV light. Therefore, L-CDs provided a multifunctional visual pH sensing platform for environmental monitoring and biosensing.
Collapse
Affiliation(s)
- Mengyao Li
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China; Department of Chemistry, Changzhi University, Changzhi 046011, People's Republic of China
| | - Yongfei Huang
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China.
| |
Collapse
|
3
|
Cui C, Ma H, Du J, Xie L, Chen A. Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials. SMALL METHODS 2025:e2401580. [PMID: 39865857 DOI: 10.1002/smtd.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials. Meanwhile, a variety of construction strategies of asymmetric structures, including template method, nanoemulsion assembly method, and self-assembly method, are described in detail. In addition, the contradictions between material synthesis and application are pointed out, such as the limitations of synthesis methods and morphology modulation means, as well as the trade-off between property improvement and production costs. Finally, the future development path of ACBMs is envisioned, emphasizing the importance of the close integration of theory and practice, and looking forward to promoting the research and development of a new generation of high-performance materials through the in-depth understanding of the design principles and action mechanisms of ACBMs.
Collapse
Affiliation(s)
- Chenqi Cui
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Haoxuan Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| |
Collapse
|
4
|
Luo S, Peng K, Li ZY, Liang W. Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:189. [PMID: 39940165 PMCID: PMC11820738 DOI: 10.3390/nano15030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Vortex dichroism in chiral metamaterials is of great significance to the study of photoelectric detection, optical communication, and the interaction between light and matter. Here we propose a compact chiral metamaterials structure composed of two elliptical SiO2 rods covered with a Au film on a substrate to achieve a significant vortex-dichroism effect. Such a structure has different responses to a Laguerre-Gaussian beam carrying opposite-orbital angular momentum, resulting in giant vortex dichroism. The influences of various structural parameters are analyzed, and the optimal parameters are obtained to realize a remarkable vortex dichroism of about 58.5%. The simplicity and giant VD effect of the proposed metamaterials make it a promising candidate for advancing chiral optical applications such as optical communication and sensing.
Collapse
Affiliation(s)
| | | | | | - Wenyao Liang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Bhattacharya A, Samanta D, Shaw M, Shaik MAS, Basu R, Mondal I, Pathak A. Sensitive Detection of Hg 2+ and l-Cysteine through Optical Asymmetry-Tuned Fluorescence Switch Off-On Behavior in N-Doped Chiral Carbon Dot. ACS APPLIED BIO MATERIALS 2025; 8:503-518. [PMID: 39666901 DOI: 10.1021/acsabm.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Blue-emissive nitrogen-doped chiral carbon dots (d-NCD230 and l-NCD230) exhibiting antipodal chiroptical activity, synthesized from the thermal pyrolysis of citric acid and d/l-aspartic acid in 1:2 molar ratios, have been explored as chirality-based fluorescent turn-off/on probes for the detection of Hg2+ and l-cysteine (l-Cys). Circular dichroism (CD) spectroscopy revealed that the chiroptical activity originates from a synergy among intrinsic chirality, chiral precursors on the NCD surface, and hybridization of lower energy levels within the embedded chiral chromophore. Quantitative analysis of optical asymmetry using the Kuhn asymmetry factor (g) at the CD signal of 312 nm showed a higher value for d-NCD230 (1.03 × 10-4) compared to l-NCD230 (1.13 × 10-5). Moreover, we have demonstrated chirality transfer and chiral inversion phenomena in d/l-NCDs by preparing carbon dots with different precursor ratios at different temperatures and probing them through CD spectroscopy. The NCDs exhibited selective fluorescence quenching in the presence of Hg2+, demonstrating linearity in the Stern-Volmer plot. Limits of detection (LODs) for Hg2+ were calculated to be 129 and 192 nM for d-NCD230 and l-NCD230, respectively, in the 0-150 μM concentration range. The quenching mechanism involves nonradiative electron transfer due to Hg2+ binding to oxygen-rich functional groups on the d/l-NCD230 surface. The slight variation in LOD values between d-NCD230 and l-NCD230 indicates the negligible effect of the chirality on Hg2+ sensing. Notably, the fluorescence intensity of d/l-NCD230 could be restored upon adding l-cysteine, with d-NCD230 showing a more pronounced enhancement than l-NCD230. This differential response is attributed to a preferential stereoselective interaction arising from the homochirality of d-NCD230/Hg2+ and l-cysteine. These findings demonstrate the potential of chiral nitrogen-doped carbon dots as sensitive and selective probes for Hg2+ and l-cysteine, with implications for environmental monitoring and biological sensing applications.
Collapse
Affiliation(s)
- Angana Bhattacharya
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
6
|
Sekiya R, Arimura S, Moriguchi H, Haino T. Chirality generation on carbon nanosheets by chemical modification. NANOSCALE 2025; 17:774-787. [PMID: 39585660 DOI: 10.1039/d4nr02952f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Chirality is an intriguing property of molecules, and an exciting area of study involves the generation of chirality in nanographenes (NGs), also known as graphene quantum dots. Unlike those synthesized through stepwise carbon-carbon bond formation by organic reactions (bottom-up method), NGs obtained by cutting parent carbons (top-down method) pose challenges in precisely regulating their three-dimensional structures by post-synthesis. This includes the incorporation of non-hexagonal rings and helicene-like structures in carbon frameworks. Currently, edge functionalization is the only method for generating chirality in NGs produced by the top-down method. While various chiral NGs have been synthesized through organic methods, examples of chemical modification remain rare due to limited structural information and the substantial size of NGs. However, these problems can be mitigated by disclosing the structures of NGs, particularly their edge structures. This mini-review focuses on recently published papers that have addressed the structural characterization of NGs and their chirality generation by edge modification. Comparing these NGs with those synthesized by organic synthesis will help to develop reasonable strategies for creating sophisticated chiral NGs. We hope this mini-review contributes to the advancement of NG-organic hybrid materials.
Collapse
Affiliation(s)
- Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| | - Saki Arimura
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Haruka Moriguchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
7
|
Maria Vitagliano C, Camilli A, Georgian Moldoveanu V, Di Sabato A, Feroci M, Sturabotti E, Scognamiglio V, Leonelli F, Masi A, Vetica F. Selective Interaction of Chiral Carbon Dots with Nucleic Acids: A Promising Nanosensing Platform. Chemistry 2024; 30:e202402787. [PMID: 39269209 DOI: 10.1002/chem.202402787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Carbon dots (CDs) represent an emerging class of nanomaterials that combine outstanding photoluminescent properties with low toxicity and excellent biocompatibility. These unique features have garnered significant interest for potential applications in sensing as well as nanovectors for bioactive compounds. Within this context, the possibility of synthesizing chiral carbon dots (CCDs) has paved the way for a plethora of bioapplications in their interaction with chiral biomolecules. In this study we report the synthesis and characterization of CCDs with opposite chiralities and their selective interaction with nucleic acids. A systematic study on their interaction with different oligonucleotides (ODNs) using UV-vis, photoluminescence, and circular dichroism analyses highlighted how the chiral surface of the CCDs induces distinct spectroscopic responses in CCDs-ODN conjugates. These findings establish the foundation for innovative applications of CCDs as nanosensors and nanocarriers for nucleic acids. Additionally, the antioxidant properties of CCDs were investigated, highlighting their dual potential as both sensing and preservative nanomaterials for genetic material. Our results suggest significant implications for the development of chiral-specific diagnostic tools, drug delivery systems, and therapeutic agents. Furthermore, these properties open new avenues for the use of CCDs in antibiotic residue detection, fluorescence imaging, and photodynamic therapy.
Collapse
Affiliation(s)
- Chiara Maria Vitagliano
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Camilli
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | | | - Antonio Di Sabato
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161, Rome, Italy
| | - Elisa Sturabotti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00015, Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Annalisa Masi
- Institute of Crystallography, National Research Council, 00015, Montelibretti, Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
8
|
Laneri F, Parisi C, Natile MM, Sortino S. Electronic interaction-enhanced NO photorelease and photothermal conversion in N-doped carbon dot nanoconjugates. J Mater Chem B 2024; 12:11817-11825. [PMID: 39435589 DOI: 10.1039/d4tb01264j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A nitric oxide (NO) photodonor (1) capable of releasing two NO molecules through a stepwise mechanism has been covalently grafted to blue-emitting N-doped carbon dots (NCDs). The resulting water-soluble nanoconjugate (NCDs-1), ca. 10 nm in diameter, exhibits a new absorption band not present in the simple physical mixture of the two components and is attributable to strong electronic interactions between them in the ground state. Blue light excitation of NCDs-1 leads to NO photogeneration with an efficiency almost one order of magnitude higher than that observed for 1 alone, probably due to a photoinduced electron transfer between the NCDs and the grafted 1. Photoexcitation of the nanoconjugate also results in effective photothermal conversion, which is negligible in the naked NCDs. Furthermore, in contrast to 1, the nanoconjugate liberates NO also under excitation with green light. Finally, the typical blue fluorescence of the NCDs is quenched in NCDs-1 but restored upon the photouncaging of the second NO molecule, providing readable and real-time information about the amount of NO photogenerated.
Collapse
Affiliation(s)
- Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, Catania, I-95125, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, Catania, I-95125, Italy.
| | - Marta Maria Natile
- ICMATE-CNR Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, Department of Chemical Science, University of Padova, 35131 Padova, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, Catania, I-95125, Italy.
| |
Collapse
|
9
|
Waghmare S, Sayyad US, Chatterjee A, Mondal S. Modulation of the Chirality and Dynamics of Self-Assembled Nanocellulose-Chiral C-Dot Film for Chiral Sensing Applications. J Phys Chem Lett 2024; 15:11275-11281. [PMID: 39495275 DOI: 10.1021/acs.jpclett.4c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The detection and sensing of chirality using chiral biomaterials are growing areas of research in advanced bioelectronics. As a result, chiral-controlled biomaterials are crucial for advancing current technologies in chiral sensing applications within biosystems. A chiral carbon dot (C-dot) modulated self-assembled emissive cellulose nanocrystal (CNC) film is developed where the chirality of the CNC film can be tempered between left-handed and right-handed chirality after being doped with chiral L/D-C-dots in CNCs (C-dot-CNC film), transferring the chirality from C-dots to CNCs. The interaction between C-dots, CNCs, and carrier dynamics is investigated using a variety of steady-state and time-resolved PL spectroscopy techniques. The chiral C-dot enhanced the protonic conductivity across the CNC via the formation of hydrogen bonds with its surface functional groups and water molecules. Further, the chiral CNC-C-dots photoelectrodes demonstrate an excellent ability to distinguish between left-handed and right-handed small molecules. These findings on the underlying mechanism of spin selectivity between chiral CNC-C-dot and chiral ligand hold promise for the development of efficient chiral-sensing electronic devices.
Collapse
Affiliation(s)
- Sapna Waghmare
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Umarfaruk S Sayyad
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Arunavo Chatterjee
- Indian Institute of Science Education and Research, Kolkata 741246, India
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
10
|
Othman HO, Anwer ET, Ali DS, Hassan RO, Mahmood EE, Ahmed RA, Muhammad RF, Smaoui S. Recent advances in carbon quantum dots for gene delivery: A comprehensive review. J Cell Physiol 2024; 239:e31236. [PMID: 38454776 DOI: 10.1002/jcp.31236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Gene therapy is a revolutionary technology in healthcare that provides novel therapeutic options and has immense potential in addressing genetic illnesses, malignancies, and viral infections. Nevertheless, other obstacles still need to be addressed regarding safety, ethical implications, and technological enhancement. Nanotechnology and gene therapy fields have shown significant promise in transforming medical treatments by improving accuracy, effectiveness, and personalization. This review assesses the possible uses of gene therapy, its obstacles, and future research areas, specifically emphasizing the creative combination of gene therapy and nanotechnology. Nanotechnology is essential for gene delivery as it allows for the development of nano-scale carriers, such as carbon quantum dots (CQDs), which may effectively transport therapeutic genes into specific cells. CQDs exhibit distinctive physicochemical characteristics such as small size, excellent stability, and minimal toxicity, which render them highly favorable for gene therapy applications. The objective of this study is to review and describe the current advancements in the utilization of CQDs for gene delivery. Additionally, it intends to assess existing research, explore novel applications, and identify future opportunities and obstacles. This study offers a thorough summary of the current state and future possibilities of using CQDs for gene delivery. Combining recent research findings highlights the potential of CQDs to revolutionize gene therapy and its delivery methods.
Collapse
Affiliation(s)
- Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Tariq Anwer
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Diyar Salahuddin Ali
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
| | - Rebwar Omar Hassan
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Radiological Imaging Technology, College of Health Technology, Cihan University-Erbil, Iraq
| | - Elnaz Ehsan Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Rayan Abubakir Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | | | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
11
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
12
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
13
|
Chopra A, Kumari Y, Singh AP, Sharma Y. A review on green synthesis, biological applications of carbon dots in the field of drug delivery, biosensors, and bioimaging. LUMINESCENCE 2024; 39:e4870. [PMID: 39155541 DOI: 10.1002/bio.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the beginning of nanoscience and nanotechnology, carbon dots (CDs) have been the foundational idea and have dominated the growth of the nano-field. CDs are an intriguing platform for utilization in biology, technology, catalysis, and other fields thanks to their numerous distinctive structural, physicochemical, and photochemical characteristics. Since several carbon dots have already been created, they have been assessed based on their synthesis process, and luminescence characteristics. Due to their biocompatibility, less toxic effects, and most significantly their fluorescent features in contrast to other carbon nanostructures, CDs have several benefits. This review focuses on the most recent advancements in the characterization, applications, and synthesis techniques used for CDs made from natural sources. It will also direct scientists in the creation of a synthesis technique for adjustable carbon dots that is more practical, effective, and environmentally benign. With low toxicity and low cost, CDs are meeting the new era's requirements for more selectivity and sensitivity in the detection and sensing of various things, such as biomaterial sensing, enzymes, chemical contamination, and temperature sensing. Its variety of properties, such as optical properties, chemiluminescence, and morphological analysis, make it a good option to use in bioimaging, drug delivery, biosensors, and cancer diagnosis.
Collapse
Affiliation(s)
- Arshdeep Chopra
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yogindra Kumari
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yash Sharma
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| |
Collapse
|
14
|
Zhang L, Xiao J, Xu X, Li K, Li D, Li J. Functionalized Chiral Materials for Use in Chiral Sensors. Crit Rev Anal Chem 2024:1-20. [PMID: 39012839 DOI: 10.1080/10408347.2024.2376233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chirality represents a fundamental attribute within living systems and is a pervasive phenomenon in the natural world. The identification and analysis of chiral materials within natural environments and biological systems hold paramount importance in clinical, chemical, and biological sciences. Within chiral analysis, there is a burgeoning focus on developing chiral sensors exhibiting exceptional selectivity, sensitivity, and stability, marking it as a forefront area of research. In the past decade (2013-2023), approximately 1990 papers concerning the application of various chiral materials in chiral sensors have been published. Biological materials and nanomaterials have important applications in the development of chiral sensors, which accounting for 26.67% and 45.24% of the material-related applications in these sensors, respectively; moreover, the development of chiral nanomaterials is closely related to the development of portable and stable chiral sensors. Natural chiral materials, utilized as selective recognition units, are combined with carriers characterized by good physical and chemical properties through functionalization to form various functional chiral materials, which improve the recognition efficiency of chiral sensors. In this article, from the perspective of biological materials, polymer materials, nanomaterials, and other functional chiral materials, the applications of chiral sensors are summarized and the research prospects of chiral sensors are discussed.
Collapse
Affiliation(s)
- Lianming Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jiaxi Xiao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xuemei Xu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Kaiting Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Dan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
15
|
Zhang Z, Wang D, Yan X, Yan Y, Lin L, Ren Y, Chen Y, Feng L. Efficient chiral hydrogel template based on supramolecular self-assembly driven by chiral carbon dots for circularly polarized luminescence. J Colloid Interface Sci 2024; 674:576-586. [PMID: 38945025 DOI: 10.1016/j.jcis.2024.06.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Since the chiral emission of excited states is observed on carbon dots (CDs), exploration towards the design and synthesis of chiral CDs nanomaterials with circularly polarized luminescence (CPL) properties has been at a brisk pace. In this regard, the "host and guest" co-assembly strategy based on the combination of CDs and chiral templates has been of unique interest recently for its convenient operation, multicolor tunable CPL, and wide application of prepared CDs-composited materials in optoelectronic devices and information encryption. However, the existing chiral templates that match perfectly with chiral CDs exhibiting optical activity both in ground and excited states are rather scarce. In this work, we synthesize the chiral CDs that could induce the spontaneous supramolecular self-assembly of N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to form chiral hydrogels with helical nanostructure. The co-assembled hydrogels show powerful chiral template function, which not only enable chiral CDs with a luminescence dissymmetry factor (glum) up to 10-2, but also have universal chiral transfer to inserted dye molecules, realizing full-color CPL and Förster resonance energy transfer (FRET) CPL as well as the distinction between left and right circularly polarized light. This CPL-active template based on chiral CDs enriches the design scenario of chiral functionalized nanomaterials.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Xuetao Yan
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yifang Yan
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yuze Ren
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yingying Chen
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
16
|
Sarà M, Giofrè SV, Abate S, Trapani M, Verduci R, D’Angelo G, Castriciano MA, Romeo A, Neri G, Monsù Scolaro L. Absorption and Fluorescence Emission Investigations on Supramolecular Assemblies of Tetrakis-(4-sulfonatophenyl)porphyrin and Graphene Quantum Dots. Molecules 2024; 29:2015. [PMID: 38731505 PMCID: PMC11085775 DOI: 10.3390/molecules29092015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The one-pot synthesis of N-doped graphene quantum dots (GQDs), capped with a positively charged polyamine (trien), has been realized through a microwave-assisted pyrolysis on solid L-glutamic acid and trien in equimolar amounts. The resulting positively charged nanoparticles are strongly emissive in aqueous solutions and are stable for months. The interaction with the anionic tetrakis(4-sulphonatophenyl)porphyrin (TPPS4) has been investigated at neutral and mild acidic pH using a combination of UV/vis absorption spectroscopy together with static and time-resolved fluorescence emission. At pH = 7, the experimental evidence points to the formation of a supramolecular adduct mainly stabilized by electrostatic interactions. The fluorescence emission of the porphyrin is substantially quenched while GQDs remain still emissive. On decreasing the pH, protonation of TPPS4 leads to formation of porphyrin J-aggregates through the intermediacy of the charged quantum dots.
Collapse
Affiliation(s)
- Mariachiara Sarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Salvatore Abate
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Mariachiara Trapani
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| | - Rosaria Verduci
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.V.); (G.D.)
| | - Giovanna D’Angelo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.V.); (G.D.)
| | - Maria Angela Castriciano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Andrea Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| | - Giovanni Neri
- Dipartimento di Ingegneria, University of Messina, Contrada di Dio, 98158 Messina, Italy;
| | - Luigi Monsù Scolaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| |
Collapse
|
17
|
Zhang M, Zhang Y, Du X, Ma Y, Huang H, Liao F, Fan X, Wang J, Lin H, Shao M, Liu Y, Li Y, Kang Z. Enantioselective and Band-Gap Modulation in Photocatalysis of Metal-Free Chiral Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19379-19390. [PMID: 38568698 DOI: 10.1021/acsami.4c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Photodriven chiral catalysis is the combination of photocatalysis and chiral catalysis and is considered one of the cleanest and most efficient methods for the synthesis of chiral compounds or drugs. Furthermore, due to the potential metal contamination associated with most metal-based catalysts, metal-free chiral photocatalysts are ideal candidates. In this work, we demonstrate that metal-free chiral carbon dots (CDs) exhibit size-dependent enantioselective photocatalytic activity. Using serine as the raw material, chiral CDs with well-defined structures and average sizes of 2.22, 3.01, 3.70, 4.77, and 7.21 nm were synthesized using the electrochemical method. These chiral CDs possess size-dependent band gaps and exhibit photoresponsive enantioselective catalytic activity toward the oxidation of dihydroxyphenylalanine (DOPA). Under light-assisted conditions, chiral CDs (L72, 500 μg/mL) exhibit high selectivity (selectivity factor: 2.07) and maintain a certain level of catalytic activity (1.34 μM/min) even at a low temperature of 5 °C. The high catalytic activity of the chiral CDs arises from their photoelectrons reducing O2 to generate O2-, as the active oxygen species for DOPA oxidation. The high enantioselectivity of the chiral CDs is attributed to their differential adsorption capabilities toward DOPA enantiomers. This study provides a new approach for designing metal-free chiral photocatalysts with high enantioselectivity.
Collapse
Affiliation(s)
- Mengling Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao 999078, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yan Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xin Du
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Fan Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xing Fan
- Research Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Jianhua Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao 999078, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao 999078, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Li H, Cui Y, Tao M, Sun S, Yan X, Xiao Y. Discriminatory fluorescence and FRET in the chiral-perovskite/RhB system. Phys Chem Chem Phys 2024; 26:10515-10519. [PMID: 38526518 DOI: 10.1039/d3cp05277j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Förster resonance energy transfer (FRET) holds a significant position in various natural and artificial systems, especially within donor-acceptor systems encompassing chiral components. Despite extensive investigations, a clear understanding of the effects of chirality and FRET on discriminatory fluorescence remains elusive. Here, chiral perovskite nanowires (CPNWs) and achiral rhodamine B (RhB) are employed to examine the FRET and discriminatory fluorescence behavior in a donor-acceptor system involving a chiral nanostructure. A notable FRET from the CPNWs to RhB is observed, along with circular dichroism (CD) and circularly polarized luminescence (CPL) activities in RhB. Although the FRET interaction remains consistent over time, a notable inversion in the polarity preference of the CD and CPL of RhB is observed. This reveals that the discriminatory fluorescence of the acceptor arises from the electromagnetic influence of the chiral donor. These findings elucidate that "chirality", as a property related to spatial orientation, cannot accompany the transfer of energy (which is a scalar) from chiral nanostructures to achiral molecules, which helps advance the understanding of the discriminatory fluorescence in the donor-acceptor system with a chiral nanostructure.
Collapse
Affiliation(s)
- Hongxu Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Cui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Min Tao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuo Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- School of Science, Tianjin University, Tianjin 300350, China
| | - Xinyao Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
19
|
Zhang Y, Zhang M, Ma Y, Du X, Li W, Hu T, Liu Y, Huang H, Kang Z. Enhanced the intrinsic oxidase-like activity of chiral carbon dots via manganese doping for selective catalytic oxidation. J Colloid Interface Sci 2024; 659:687-696. [PMID: 38211486 DOI: 10.1016/j.jcis.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
It is highly desirable to design and construct chemical catalysts with high activity and specificity as the alternatives of natural enzymes for industrial application. Chiral carbon dots (CDs), possessing both the intrinsic enzyme-like activity and specific recognition ability, are one of good candidates for enzyme-like catalysts. However, their catalytic activity is far from that of natural enzymes and needs to be enhanced. In this work, the modulation of the chiral structure and catalytic activity of chiral CDs with intrinsic oxidase-like activity was implemented by manganese (Mn) doping. Under the light condition, chiral CDs (l-Ser-CDs and d-Ser-CDs) derived from chiral serine (Ser) show weak catalytic activity and low selectivity toward the oxidation of L type of dopamine (l-DOPA), whereas the Mn functionalized chiral CDs (l-Mn-CDs or d-Mn-CDs) exhibit 6.9 times higher in catalytic activity and 2.9 times in selectivity ratio (SR) than Ser-CDs. Mn-CDs involve two-path catalytic process, in which the photogenerated electrons could reduce O2 to O2- as the active species and the holes would oxidize DOPA directly. Moreover, doping of Mn enables the CDs to generate more O2-. Besides, l-Mn-CDs have higher catalytic activity than that of d-Mn-CDs (+54.2 %), and the chiral Mn-CDs have stronger selective adsorption capacity towards chiral DOPA than Ser-CDs. Our work provides a new method for designing and preparing novel chiral artificial enzymes.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xin Du
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wenwen Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tao Hu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao
| |
Collapse
|
20
|
Li S, Wang F, Xing X, Yue X, Sun S, Lin H, Xu C. Activation-Induced Senescent Cell Death based on Chiral CoHAu Nanoassemblies with Enantioselective Cascade-Catalytic Ability. Adv Healthc Mater 2024; 13:e2303476. [PMID: 38161211 DOI: 10.1002/adhm.202303476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Chirality is common in nature, which determines the high enantioselectivity of living systems. Selecting suitable chiral configurations is of great meaning for nanostructures to function better in biological systems. In this study, chiral Co3O4-H2TPPS-Au (CoHAu) nanoassemblies are constructed to accelerate the production ∙OH by consuming D-glucose (D-Glu, widely spread in nature) based on their outstanding enantioselective cascade-catalytic abilities. In particular, D-CoHAu nanoassemblies are more effective in the catalytic conversion of D-Glu than L-CoHAu nanoassemblies. This phenomenon is due to the stronger binding affinity of D-CoHAu nanoassemblies indicated by the lower Km value. Moreover, D-CoHAu nanoassemblies display excellent consumption-ability of D-Glu and production of ∙OH in living cells, which can eliminate senescent cells effectively based on their intracellular enantioselective cascade-catalysis. This research establishes the foundation for bio-mimicking nanostructures with unique functionalities to regulate abnormal biological activities better.
Collapse
Affiliation(s)
- Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xinhe Xing
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaoyong Yue
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
21
|
Bianco A, Bonchio M, Bonifazi D, Da Ros T, Maggini M, Mateo-Alonso A, Tecilla P. Celebrating Maurizio Prato's Passion, Talent and Imagination. Chemistry 2024; 30:e202400127. [PMID: 38446047 DOI: 10.1002/chem.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/07/2024]
Abstract
This Editorial introduces a Special Collection of papers dedicated to Maurizio Prato, featuring prominent examples of his team's efforts to integrate complex frontier research with pioneering achievements in the field of carbon nanostructures and molecular nanoscience.
Collapse
Affiliation(s)
- Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Strasse 38, 1090, Wien, Austria
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU Avenida de, Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
22
|
Li S, Pei H, He S, Liang H, Guo R, Liu N, Mo Z. Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications. Chem Asian J 2023; 18:e202300770. [PMID: 37819766 DOI: 10.1002/asia.202300770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Chiral carbon dots (CCDs) can be widely used in various fields such as chiral recognition, chiral catalysis and biomedicine because of their unique optical properties, low toxicity and good biocompatibility. In addition, CCDs with circularly polarized luminescence (CPL) can be synthesized, thus broadening the prospects of CCDs applications. Since the research on CCDs is still in its infancy, this paper reviews the chiral origin, formation mechanism, chiral evolution, synthesis and emerging applications of CCDs, with a special focus on CCDs with CPL activity. It is hoped that it will provide some reference to solve the current problems faced by CCDs. Finally, the opportunities and challenges of the current research on CCDs are described, and their future development trends have also been prospected.
Collapse
Affiliation(s)
- Shijing Li
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hao Liang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
23
|
Di Filippo D, Sunstrum FN, Khan JU, Welsh AW. Non-Invasive Glucose Sensing Technologies and Products: A Comprehensive Review for Researchers and Clinicians. SENSORS (BASEL, SWITZERLAND) 2023; 23:9130. [PMID: 38005523 PMCID: PMC10674292 DOI: 10.3390/s23229130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Diabetes Mellitus incidence and its negative outcomes have dramatically increased worldwide and are expected to further increase in the future due to a combination of environmental and social factors. Several methods of measuring glucose concentration in various body compartments have been described in the literature over the years. Continuous advances in technology open the road to novel measuring methods and innovative measurement sites. The aim of this comprehensive review is to report all the methods and products for non-invasive glucose measurement described in the literature over the past five years that have been tested on both human subjects/samples and tissue models. A literature review was performed in the MDPI database, with 243 articles reviewed and 124 included in a narrative summary. Different comparisons of techniques focused on the mechanism of action, measurement site, and machine learning application, outlining the main advantages and disadvantages described/expected so far. This review represents a comprehensive guide for clinicians and industrial designers to sum the most recent results in non-invasive glucose sensing techniques' research and production to aid the progress in this promising field.
Collapse
Affiliation(s)
- Daria Di Filippo
- Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Frédérique N. Sunstrum
- Product Design, School of Design, Faculty of Design, Architecture and Built Environment, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jawairia U. Khan
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Alec W. Welsh
- Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- Department of Maternal-Fetal Medicine, Royal Hospital for Women, Randwick, NSW 2031, Australia
| |
Collapse
|
24
|
Cai J, Liu AA, Shi XH, Fu H, Zhao W, Xu L, Kuang H, Xu C, Pang DW. Enhancing Circularly Polarized Luminescence in Quantum Dots through Chiral Coordination-Mediated Growth at the Liquid/Liquid Interface. J Am Chem Soc 2023; 145:24375-24385. [PMID: 37883809 DOI: 10.1021/jacs.3c09448] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Here, we develop a novel methodology for synthesizing chiral CdSe@ZnS quantum dots (QDs) with enhanced circularly polarized luminescence (CPL) by incorporating l-/d-histidine (l-/d-His) ligands during ZnS shell growth at the water/oil interface. The resulting chiral QDs exhibit exceptional absolute photoluminescence quantum yield of up to 67.2%, surpassing the reported limits of 40.0% for chiral inorganic QDs, along with absorption dissymmetry factor (|gabs|) and luminescence dissymmetry factor (|glum|) values of 10-2, exceeding the range of 10-5-10-3 and 10-4-10-2, respectively. Detailed investigations of the synthetic pathway reveal that the interface, as a binary synthetic environment, facilitates the coordinated ligand exchange and shell growth mediated by chiral His-Zn2+ coordination complexes, leading to a maximum fluorescent brightness and chiroptical activities. The growth process, regulated by the His-Zn2+ coordination complex, not only reduces trap states on the CdSe surface, thereby enhancing the fluorescence intensity, but also significantly promotes the orbital hybridization between QDs and chiral ligands, effectively overcoming the shielding effect of the wide bandgap shell and imparting pronounced chirality. The proposed growth pathway elucidates the origin of chirality and provides insights into the regulation of the CPL intensity in chiral QDs. Furthermore, the application of CPL QDs in multilevel anticounterfeiting systems overcomes the limitations of replication in achiral fluorescence materials and enhances the system's resistance to counterfeiting, thus opening new opportunities for chiral QDs in optical anticounterfeiting and intelligent information encryption.
Collapse
Affiliation(s)
- Jiarong Cai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Zhao W, Chen M, Wang X, Han W, Li R, Shi X, Liu J, Teng C, Deng S, Yuan L. Multidimensional tunable graphene chiral metasurface based on coherent control. OPTICS LETTERS 2023; 48:5153-5156. [PMID: 37773408 DOI: 10.1364/ol.500735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
The deep application of chiral metasurfaces requires higher flexibility. Herein, we propose a multidimensional tunable chiral graphene metasurface, which uses coherent control to obtain more than 0.8 circular conversion dichroism (CCD) at 2.4 THz as a transmission structure. Its operating frequency can be changed in the 1.3-2.4 THz range, while the amplitude has almost perfect modulation depth in the range of 0-0.8. The mechanism of differential absorption was analyzed through numerical simulation. The device designed is easy to obtain reverse CCD, which is used for unit layout and proves its advantages in near-field imaging. Our work has broadened the path for the development of chiral metasurfaces towards higher degrees of freedom.
Collapse
|
26
|
Wang Y, Liu Y, Hao X, Zhou X, Peng H, Shen Z, Smalyukh II, Xie X, Yang B. Supramolecular Liquid Crystal Carbon Dots for Solvent-Free Direct Ink Writing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303680. [PMID: 37381765 DOI: 10.1002/adma.202303680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Recent years have witnessed the major advances of nanolights with extensive exploration of nano-luminescent materials like carbon dots (CDs). However, solvent-free processing of these materials remains a formidable challenge, impeding endeavors to develop advanced manufacturing techniques. Herein, in response to this challenge, liquid crystallization is demonstrated as a versatile and robust approach by deliberately anchoring flexible alkyl chains on the CDs surface. Alkyl chain grafting on the CDs surface is observed to substantially depress the common aggregation-caused quenching effect, and results in a shift of self-assembly structure from the crystalline phase to smectic liquid crystalline phase. The liquid-crystalline phase-transition temperature is ready to adjust by varying the alkyl chain length, endowing low-temperature (<50 °C) melt-processing capabilities. Consequently, the first case of direct ink writing (DIW) with liquid crystal (LC) carbon dots is demonstrated, giving rise to highly emissive objects with blue, green and red fluorescence, respectively. Another unexpected finding is that DIW with the LC inks dramatically outperforms DIW with isotropic inks, further highlighting the significance of the LC processing. The approach reported herein not only exhibits a fundamental advance by imparting LC functions to CDs, but also promises technological utility in DIW-based advanced manufacturing.
Collapse
Affiliation(s)
- Yixuan Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xingtian Hao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xingping Zhou
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| | - Haiyan Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ivan I Smalyukh
- Department of Physics and Material Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Xiaolin Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, China
| |
Collapse
|
27
|
Jansen SAH, Su H, Schnitzer T, Vantomme G, Meijer EW. Temperature Directs the Majority-Rules Principle in Supramolecular Copolymers Driven by Triazine-Benzene Interactions. Chemistry 2023; 29:e202301726. [PMID: 37403882 DOI: 10.1002/chem.202301726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
Supramolecular copolymers have typically been studied in the extreme cases, such as self-sorting or highly mixed copolymer systems, while the intermediate systems have been less understood. We have reported the temperature-dependent microstructure in copolymers of triazine- and benzene-derivatives based on charge-transfer interactions with a highly alternating microstructure at low temperatures. Here, we investigate the temperature-dependent copolymerization further and increase the complexity by combining triazine- and benzene-derivatives with opposite preferred helicities. In this case, intercalation of the benzene-derivative into the triazine-derivative assemblies causes a helical inversion. The inversion of the net helicity was rationalized by comparing the mismatch penalties of the individual monomers, which indicated that the benzene-derivative dictates the helical screw-sense of the supramolecular copolymers. Surprisingly, this was not reflected in further investigations of slightly modified triazine- and benzene-derivatives, thus highlighting that the outcome is a subtle balance between structural features, where small differences can be amplified due to the competitive nature of the interactions. Overall, these findings suggest that the temperature-dependent microstructure of triazine- and benzene-based supramolecular copolymers determines the copolymer helicity of the presented system in a similar way as the mixed majority-rules phenomenon.
Collapse
Affiliation(s)
- Stef A H Jansen
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Hao Su
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tobias Schnitzer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
28
|
Basu S, Perić Bakulić M, Sanader Maršić Ž, Bonačić-Koutecký V, Amdursky N. Excitation-Dependent Fluorescence with Excitation-Selective Circularly Polarized Luminescence from Hierarchically Organized Atomic Nanoclusters. ACS NANO 2023; 17:16644-16655. [PMID: 37638669 DOI: 10.1021/acsnano.3c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nanometer-scaled objects are known to have dimension-related properties, but sometimes the assembly of such objects can lead to the emergence of other properties. Here, we show the assembly of atomically precise gold nanoclusters into large fibrillar structures that are featuring excitation-dependent luminescence with an excitation-selective circularly polarized luminescence (CPL), even though all components are achiral. The origin of CPL in the assembly of atomic clusters has been attributed to the hierarchical organization of atomic clusters into fibrillar structures, mediated via a hydrogen bonding interaction with a surfactant. We follow the assembly process both experimentally and computationally showing the advance in the structural formation along with its chiroptical electronic properties, i.e., circular dichroism (CD) and CPL. Our study here can assist in the rational design of materials featuring chiroptical properties, thus leading to a controlled CPL activity.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Martina Perić Bakulić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
29
|
Yin K, Zhang J, Xing P, Li H. Chiral Polymer Dots Show Unexpected Versatility of Highly Ordered Self-Assembly into Chiroptical Liquid Crystals, Ultra-Thin Films, and Long-Ribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302668. [PMID: 37150858 DOI: 10.1002/smll.202302668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/16/2023] [Indexed: 05/09/2023]
Abstract
Compared to the organic counterparts, chiral self-assembly of nanomaterials shows persistency to kinetic factors such as solvent environments, and consequently, dynamic modulation of self-assembly and functions remains major challenge. Here, it is shown that alkylated, chiral polymer dots (c-PDs) give highly ordered self-assemblies with amplified chirality adaptive to solvent environments, and one-to-many hierarchical aggregation can be realized. The c-PDs tended to self-assemble into nanohelices with cubic packing in the solid state, which, thanks to the thermo-responsiveness, transformed into thermic liquid crystals upon heating. Cotton effects and circularly polarized luminescence evidenced the chirality transfer from central chirality to supramolecular chirality. At the air-water interface, the c-PDs are self-assembled into monolayers, which further stack into multiple layers with chirality transfer and highly ordered packing. In addition, undergoing a good/poor solvent exchange, the c-PDs afforded ultra-long microribbons up to a length scale of millimeters, which are constituted by the bilayer lamellar stacking. The versatile chiral self-assembly modalities with long-range ordered packing arrays of carbonized c-PDs via solvent strategy are realized. This feature is comparable to the organic species, although the c-PDs have no atomic precise structures. This work would surely expand the applications of quantum dot ordered self-assembly with adaptiveness to kinetic factors.
Collapse
Affiliation(s)
- Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Honguang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
30
|
Somasundaran SM, Kompella SVK, Mohan T M N, Das S, Abdul Vahid A, Vijayan V, Balasubramanian S, Thomas KG. Structurally Induced Chirality of an Achiral Chromophore on Self-Assembled Nanofibers: A Twist Makes It Chiral. ACS NANO 2023. [PMID: 37220308 DOI: 10.1021/acsnano.3c03892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The surface domains of self-assembled amphiphiles are well-organized and can perform many physical, chemical, and biological functions. Here, we present the significance of chiral surface domains of these self-assemblies in transferring chirality to achiral chromophores. These aspects are probed using l- and d-isomers of alkyl alanine amphiphiles which self-assemble in water as nanofibers, possessing a negative surface charge. When bound on these nanofibers, positively charged cyanine dyes (CY524 and CY600), each having two quinoline rings bridged by conjugated double bonds, show contrasting chiroptical features. Interestingly, CY600 displays a bisignated circular dichroic (CD) signal with mirror-image symmetry, while CY524 is CD silent. Molecular dynamics simulations reveal that the model cylindrical micelles (CM) derived from the two isomers exhibit surface chirality and the chromophores are buried as monomers in mirror-imaged pockets on their surfaces. The monomeric nature of template-bound chromophores and their binding reversibility are established by concentration- and temperature-dependent spectroscopies and calorimetry. On the CM, CY524 displays two equally populated conformers with opposite sense, whereas CY600 is present as two pairs of twisted conformers in each of which one is in excess, due to differences in weak dye-amphiphile hydrogen bonding interactions. Infrared and NMR spectroscopies support these findings. Reduction of electronic conjugation caused by the twist establishes the two quinoline rings as independent entities. On-resonance coupling between the transition dipoles of these units generates bisignated CD signals with mirror-image symmetry. The results presented herein provide insight on the little-known structurally induced chirality of achiral chromophores through transfer of chiral surface information.
Collapse
Affiliation(s)
- Sanoop Mambully Somasundaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Srinath V K Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Nila Mohan T M
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
31
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
32
|
Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. J Colloid Interface Sci 2023; 634:44-53. [PMID: 36528970 DOI: 10.1016/j.jcis.2022.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Carbon dots (CDs), as one kind of zero-dimensional carbon-based nanomaterials, show great potential in combating emerging infectious diseases and antimicrobial infections. CDs with outstanding optical properties and benign biocompatibility have been reported as excellent antibacterial agents. However, few reports were focused on the relationship between the CDs' size and their antibacterial activity. Herein, the desired CDs (VCDs) were fabricated by a one-step electrochemical oxidation method using l-ascorbic acid as raw material, and four types of VCDs with different sizes were obtained by adjusting the reaction times. The effectiveness of antibacterial activity demonstrates the VCDs display size-dependent antibacterial activity, where the VCDs-2 (average size: 2.92 nm) exhibit superior antibacterial activity to others, attributing to the synergy of the absorption capacity of bacteria to VCDs and the ROS stimulated by VCDs. The VCDs-2 could more easily penetrate bacterial cells, stimulate the production of ROS, damage the cell walls of E. coli, and inhibit the growth and reproduction of bacteria. This work helps to understand the effect of CDs' size on antibacterial properties, and provides a direction for the design of novel antimicrobials with drug resistance.
Collapse
|
33
|
Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. J Colloid Interface Sci 2023; 634:221-230. [PMID: 36535160 DOI: 10.1016/j.jcis.2022.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
A steric hindrance strategy was used to prepare intramolecular hydrogen bond-controlled thermosensitive fluorescent carbon dots (CDs) via the solvothermal treatment of o-phenylenediamine respectively with three dihydroxybenzene isomers. The CDs obtained from different isomers have very similar morphology, surfaces, and photophysical properties but exhibited different thermal sensitivities. Meanwhile, the orange-emitting CDs (p-CDs) obtained from o-phenylenediamine and p-hydroquinone exhibited an optimal thermal sensitivity of 1.1%/°C. Comprehensive experimental characterizations and theoretical calculations revealed that even a small difference in substituent locations in the phenyl ring of the precursors can considerably affect the formation of intramolecular hydrogen bonds and that the CDs with strong intramolecular hydrogen bonds exhibited poor thermosensitivity. The p-CDs were incorporated with reference CDs (B-CDs) that exhibited heating-quenching blue emission through electrostatic self-assembly to construct a dual-emission probe (p-CDs/B-CDs), which exhibited a thermal sensitivity of 2.0%/°C. Test strips based on the p-CDs/B-CDs were prepared to measure temperature fluctuations based on sensitive and instant fluorescence color evolution. Further, this fluorescent colorimetry was successfully applied to a test strip-integrated wearable wristband to measure the body temperature. This study establishes an inherent relationship between precursors and the resulting intramolecular hydrogen bonds for precisely tuning the thermal sensitivity of CDs. It also offers a visual quantitative strategy for the early warning of abnormal body temperatures.
Collapse
|
34
|
Yin K, Feng N, Godbert N, Xing P, Li H. Self-Assembly of Cholesteryl Carbon Dots with Circularly Polarized Luminescence in Solution and Solvent-Free Phases. J Phys Chem Lett 2023; 14:1088-1095. [PMID: 36700617 DOI: 10.1021/acs.jpclett.2c03829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Incorporating carbon dots (CDs) into chiral self-assemblies will endow the system with intriguing optoelectronic, catalytic, and chiroptical activities. Utilization of chiral substituents to rationally manipulate chiral self-assembly of the CDs, however, remains a major challenge. In this work, cholesteryl monoprotected ethylene diamine was used as a precursor to synthesize CDs with a cholesteryl periphery. The rigid, apolar, and chiral cholesteryl facilitates the polarity-sensitive self-assembly of CDs in organic solvents, showing circularly polarized luminescence (CPL) with dissymmetry g-factor at 10-3 grade. Temperature-variable characterizations suggested the formation of thermotropic liquid crystals within a wide temperature range driven by the interdigitation of cholesteryl segments, which further anchor the graphitic CD cores into tetragonal and cubic arrays. Self-assembly in a solvent-free state arouses sufficient chirality transfer and boosted the g-factors to 10-2 order of magnitude. This work unveils multiple and chiral self-assembly of CDs controlled by the cholesteryl substituents, exhibiting variable architectures and tunable CPL.
Collapse
Affiliation(s)
- Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Nicolas Godbert
- Laboratorio di Materiali Molecolari Inorganici, Centro di Eccellenza CEMIF.CAL, LASCAMM CR-INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende (CS) 87036, Italy
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
35
|
Porphyrin Functionalized Carbon Quantum Dots for Enhanced Electrochemiluminescence and Sensitive Detection of Cu 2. Molecules 2023; 28:molecules28031459. [PMID: 36771121 PMCID: PMC9919192 DOI: 10.3390/molecules28031459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Porphyrin (TMPyP) functionalized carbon quantum dots (CQDs-TMPyP), a novel and efficient carbon nanocomposite material, were developed as a novel luminescent material, which could be very useful for the sensitive detection of copper ions in the Cu2+ quenching luminescence of functionalized carbon quantum dots. Therefore, we constructed a sensitive "signal off" ECL biosensor for the detection of Cu2+. This sensor can sensitively respond to copper ions in the range of 10 nM to 10 μM, and the detection limit is 2.78 nM. At the same time, it has good selectivity and stability and a benign response in complex systems. With excellent properties, this proposed ECL biosensor provides an efficient and ultrasensitive method for Cu2+ detection.
Collapse
|
36
|
Ru Y, Zhang B, Yong X, Sui L, Yu J, Song H, Lu S. Full-Color Circularly Polarized Luminescence of CsPbX 3 Nanocrystals Triggered by Chiral Carbon Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207265. [PMID: 36408928 DOI: 10.1002/adma.202207265] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Chiral carbon dots (Ch-CDs) trigger the full-color circularly polarized luminescence (CPL) of CsPbX3 nanocrystals (NCs). Ch-CDs-CsPbBr3 NCs are successfully synthesized via simple ligand-assisted coprecipitation of Ch-CDs and metal halides precursors at room temperature. Ch-CDs-CsPbBr3 retains emission characteristics of the CsPbBr3 with near-unity photoluminescence quantum yield, and meanwhile has special CPL, with a maximum luminescence dissymmetric factor (glum ) of -3.1 × 10-3 , which is induced by Ch-CDs. This is the first report of chiral perovskite which is induced by other chiral nanomaterials. By anion exchange, CPL can cover almost the entire visible light band. Surprisingly, the chiral signal of Ch-CDs-CsPbBr3 NCs is in-versed under excitation state, which can be induced by the charge transfers between Ch-CDs and perovskite NCs. The combination of perovskites and Ch-CDs pave away for the design of new chiral perovskite on multifunctional applications.
Collapse
Affiliation(s)
- Yi Ru
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Baowei Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Xue Yong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Laizhi Sui
- State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jingkun Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Haoqiang Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
37
|
Rocco D, Moldoveanu VG, Feroci M, Bortolami M, Vetica F. Electrochemical Synthesis of Carbon Quantum Dots. ChemElectroChem 2023; 10:e202201104. [PMID: 37502311 PMCID: PMC10369859 DOI: 10.1002/celc.202201104] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Carbon quantum dots (CDs) are "small" carbon nanostructures with excellent photoluminescence properties, together with low-toxicity, high biocompatibility, excellent dispersibility in water as well as organic solvents. Due to their characteristics, CDs have been studied for a plethora of applications as biosensors, luminescent probes for photodynamic and photothermal therapy, fluorescent inks and many more. Moreover, the possibility to obtain carbon dots from biomasses and/or organic waste has strongly promoted the interest in this class of carbon-based nanoparticles, having a promising impact in the view of circular economy and sustainable processes. Within this context, electrochemistry proved to be a green, practical, and efficient method for the synthesis of high-quality CDs, with the possibility to fine-tune their characteristics by changing operational parameters. This review outlines the principal and most recent advances in the electrochemical synthesis of CDs, focusing on the electrochemical set-up optimization.
Collapse
Affiliation(s)
- Daniele Rocco
- Department of Mechanic and Aerospace EngineeringSapienza University of Romevia Eudossiana Roma, 180084RomeItaly
| | | | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI)Sapienza University of Romevia Castro Laurenziano, 700161RomeItaly
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI)Sapienza University of Romevia Castro Laurenziano, 700161RomeItaly
| | - Fabrizio Vetica
- Department of ChemistrySapienza University of Romepiazzale Aldo Moro, 500185RomeItaly
| |
Collapse
|
38
|
Bak SY, Coquerel G, Kim WS, Park BJ. Solution Volume Effects on Spontaneous Chiral Symmetry Breaking of Sodium Chlorate Crystals. J Phys Chem Lett 2023; 14:785-790. [PMID: 36652610 DOI: 10.1021/acs.jpclett.2c03873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report spontaneous chiral symmetry breaking in the evaporative crystallization of sodium chlorate by controlling the solution volume. We determine the critical volume, below which complete chiral symmetry breaking spontaneously occurs. This can be explained with regard to the rare probability of the simultaneous formation of multiple nuclei in a small volume, depletion attributed to the rapid consumption of surrounding sodium chlorate molecules upon crystal growth, and secondary nucleation. This study offers an important methodology for studying the chiral symmetry breaking behaviors in various chiral nanomaterials and organic molecules.
Collapse
Affiliation(s)
- Su Yeon Bak
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi-do17104, South Korea
| | - Gerard Coquerel
- SMS Laboratory EA3233, University of Rouen Normandy, F-76821Mont Saint Aignan Cedex, France
| | - Woo-Sik Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi-do17104, South Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi-do17104, South Korea
| |
Collapse
|
39
|
Maniappan S, Reddy KL, Kumar J. Transmitting biomolecular chirality into carbon nanodots: a facile approach to acquire chiral light emission at the nanoscale. Chem Sci 2023; 14:491-498. [PMID: 36741532 PMCID: PMC9847681 DOI: 10.1039/d2sc05794h] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
Since the observation of chirality at the nanoscale, research focused towards the design and synthesis of optically active nanomaterials has been at a brisk pace. In this regard, carbon based zero dimensional nanomaterials have attracted vast attention due to their rich optical properties, abundance of raw materials, minimal environmental hazardousness, good solubility, and ease of surface modification. However, efforts focused towards the synthesis of chiral carbon nanodots exhibiting optical activity both in their ground and excited states are rather scarce. Herein, we report a facile synthetic approach for the preparation of three sets of intrinsically chiral carbon nanodots that exhibit intense circularly polarized luminescence. Synthesis under optimized conditions using l- and d-isomers of the chiral precursors led to the formation of carbon nanodots that displayed mirror image circular dichroism and circularly polarized luminescence signals revealing their ground and excited state chirality. The experimental results are supportive of the reported core-shell model comprising an achiral carbon core that is enclosed within an amorphous shell contributing to the chiral luminescence. The luminescence anisotropy and wavelength could be tuned by varying the experimental conditions such as temperature and pH. The chiral emissive properties of the nanoparticles could be demonstrated in free-standing polymeric films revealing their potential to be used as chiral light emitting agents in optical devices, data storage and security tags. Being the first observation of intrinsic circularly polarized luminescence from a range of carbon nanodots, both in the solution and solid state, we envisage that the work will open new avenues for the investigation of excited stated chirality at the nanoscale.
Collapse
Affiliation(s)
- Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) TirupatiTirupati – 517507India
| | - Kumbam Lingeshwar Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) TirupatiTirupati – 517507India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) TirupatiTirupati – 517507India
| |
Collapse
|
40
|
Yang S, Li Y, Chen L, Wang H, Shang L, He P, Dong H, Wang G, Ding G. Fabrication of Carbon-Based Quantum Dots via a "Bottom-Up" Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205957. [PMID: 36610043 DOI: 10.1002/smll.202205957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The discovery of carbon-based quantum dots (CQDs) has allowed opportunities for fluorescence bioimaging, tumor diagnosis and treatment, and photo-/electro-catalysis. Nevertheless, in the existing reviews related to the "bottom-up" approaches, attention is mainly paid to the applications of CQDs but not the formation mechanism of CQDs, which mainly derived from the high complexities during the synthesis of CQDs. Among the various synthetic methods, using small molecules as "building blocks", the development of a "bottom-up" approach has promoted the structural design, modulation of the photoluminescence properties, and control of the interfacial properties of CQDs. On the other hand, many works have demonstrated the "building blocks"-dependent properties of CQDs. In this review, from one of the most important variables, the relationships among intrinsic properties of "building blocks" and photoluminescence properties of CQDs are summarized. The topology, chirality, and free radical process are selected as descriptors for the intrinsic properties of "building blocks". This review focuses on the induction and summary of recent research results from the "bottom-up" process. Moreover, several empirical rules pertaining thereto are also proposed.
Collapse
Affiliation(s)
- Siwei Yang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongqiang Li
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Wang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuyang Shang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Guqiao Ding
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
41
|
Yan X, Zhao H, Zhang K, Zhang Z, Chen Y, Feng L. Chiral Carbon Dots: Synthesis and Applications in Circularly Polarized Luminescence, Biosensing and Biology. Chempluschem 2023; 88:e202200428. [PMID: 36680303 DOI: 10.1002/cplu.202200428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Chiral carbon dots (CDs) are a novel luminescent zero-dimensional carbon-based nanomaterial with chirality. They not only have the advantages of good biocompatibility, multi-color-emission, easy functionalization, but also exhibits highly symmetrical chiral optical characteristics, which broadens their applicability to enantioselectivity of some chiral amino acids like cysteine and lysine, asymmetric catalysis as well as biomedicine in gene expression and antibiosis. In addition, the exploration of the excited state chirality of CDs has developed its excellent circularly polarized luminescence (CPL) properties, opening up a new application scenario like recognition of chiral light sources and anti-counterfeit printing with information encryption. This review mainly focuses on the mature synthesis approaches of chiral CDs, including chiral ligand method and supramolecular self-assembly method, then we consider emerging applications of chiral CDs in CPL, biosensing and biological effect. Finally, we concluded with a perspective on the potential challenges and future opportunities of such fascinating chiral CDs.
Collapse
Affiliation(s)
- Xuetao Yan
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Huijuan Zhao
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Ke Zhang
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Zhiwei Zhang
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Yingying Chen
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Lingyan Feng
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| |
Collapse
|
42
|
Guo F, Li Q, Zhang X, Liu Y, Jiang J, Cheng S, Yu S, Zhang X, Liu F, Li Y, Rose G, Zhang H. Applications of Carbon Dots for the Treatment of Alzheimer's Disease. Int J Nanomedicine 2022; 17:6621-6638. [PMID: 36582459 PMCID: PMC9793737 DOI: 10.2147/ijn.s388030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022] Open
Abstract
There are currently approximately 50 million victims of Alzheimer's disease (AD) worldwide. The exact cause of the disease is unknown at this time, but amyloid plaques and neurofibrillary tangles in the brain are hallmarks of the disease. Current drug treatments for AD may slow the progression of the disease and improve the quality of life of patients, but they are often only minimally effective and are not cures. A major obstacle to developing and delivering more effective drug therapies is the presence of the blood-brain barrier (BBB), which prevents many compounds with therapeutic potential from reaching the central nervous system. Nanotechnology may provide a solution to this problem. Among the medical nanomaterials currently being studied, carbon dots (CDs) have attracted widespread attention because of their ability to cross the BBB, non-toxicity, and potential for drug/gene delivery.
Collapse
Affiliation(s)
- Feng Guo
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Qingman Li
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xiaolin Zhang
- Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou, 571127, People’s Republic of China
| | - Yiheng Liu
- Haikou Hospital Affiliated to Central South University Xiangya School of Medicine, Haikou, 570208, People’s Republic of China
| | - Jie Jiang
- Scientific Experiment Center of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Shuanghuai Cheng
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Si Yu
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xingfang Zhang
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China,The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, People’s Republic of China
| | - Fangfang Liu
- Laboratory Department, Nanping First Hospital Affiliated to Fujian Medical University, Fujian, 353006, People’s Republic of China
| | - Yiying Li
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Gregory Rose
- Departments of Anatomy and Physiology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA,Correspondence: Gregory Rose, Departments of Anatomy and Physiology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA, Tel +1 618-303-6503, Email
| | - Haiying Zhang
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China,Haiying Zhang, Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China, Tel +86 13907533247, Email
| |
Collapse
|
43
|
Visheratina A, Hesami L, Wilson AK, Baalbaki N, Noginova N, Noginov MA, Kotov NA. Hydrothermal synthesis of chiral carbon dots. Chirality 2022; 34:1503-1514. [PMID: 36300866 PMCID: PMC9828721 DOI: 10.1002/chir.23509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/12/2023]
Abstract
Nanocolloids that are cumulatively referred to as nanocarbons, attracted significant attention during the last decade because of facile synthesis methods, water solubility, tunable photoluminescence, easy surface modification, and high biocompatibility. Among the latest development in this reserach area are chiral nanocarbons exemplified by chiral carbon dots (CDots). They are expected to have applications in sensing, catalysis, imaging, and nanomedicine. However, the current methods of CDots synthesis show often contradictory chemical/optical properties and structural information that required a systematic study with careful structural evaluation. Here, we investigate and optimize chiroptical activity and photoluminescence of L- and D-CDots obtained by hydrothermal carbonization of L- and D-cysteine, respectively. Nuclear magnetic resonance spectroscopy demonstrates that they are formed via gradual dehydrogenation and condensation reactions of the starting amino acid leading to particles with a wide spectrum of functional groups including aromatic cycles. We found that the chiroptical activity of CDots has an inverse correlation with the synthesis duration and temperature, whereas the photoluminescence intensity has a direct one, which is associated with degree of carbonization. Also, our studies show that the hydrothermal synthesis of cysteine in the presence of boric acid leads to the formation of CDots rather than boron nitride nanoparticles as was previously proposed in several reports. These results can be used to design chiral carbon-based nanoparticles with optimal chemical, chiroptical, and photoluminescent properties.
Collapse
Affiliation(s)
| | - Leila Hesami
- Center for Materials ResearchNorfolk State UniversityNorfolkVirginiaUSA
| | | | - Nicole Baalbaki
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Natalia Noginova
- Center for Materials ResearchNorfolk State UniversityNorfolkVirginiaUSA
| | | | | |
Collapse
|
44
|
Kumaranchira Ramankutty K, Buergi T. Analytical separation techniques: toward achieving atomic precision in nanomaterials science. NANOSCALE 2022; 14:16415-16426. [PMID: 36326280 PMCID: PMC9671142 DOI: 10.1039/d2nr04595h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The size- and shape-dependence of the properties are the most characteristic features of nanoscale matter. In many types of nanomaterials, there is a size regime wherein every atom counts. In order to fully realize the idea of 'maneuvering things atom by atom' envisioned by Richard Feynman, synthesis and separation of nanoscale matter with atomic precision are essential. It is therefore not surprising that analytical separation techniques have contributed tremendously toward understanding the size- as well as shape-dependent properties of nanomaterials. Fascinating properties of nanomaterials would not have been explored without the use of these techniques. Here we discuss the pivotal role of analytical separation techniques in the progress of nanomaterials science. We begin with a brief overview of some of the key analytical separation techniques that are of tremendous importance in nanomaterials research. Then we describe how each of these techniques has contributed to the advancements in nanomaterials science taking some of the nanosystems as examples. We discuss the limitations and challenges of these techniques and future perspectives.
Collapse
Affiliation(s)
| | - Thomas Buergi
- Department of Physical Chemistry, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
45
|
Corti V, Bartolomei B, Mamone M, Gentile G, Prato M, Filippini G. Amine-Rich Carbon Dots as Novel Nano-Aminocatalytic Platforms in Organic Synthesis. European J Org Chem 2022; 2022:e202200879. [PMID: 36632560 PMCID: PMC9826489 DOI: 10.1002/ejoc.202200879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/06/2022] [Indexed: 01/14/2023]
Abstract
The development of novel and effective metal-free catalytic systems, which can drive value-added organic transformations in environmentally benign solvents (for instance, water), is highly desirable. Moreover, these new catalysts need to be harmless, easy-to-prepare, and potentially recyclable. In this context, amine-rich carbon dots (CDs) have recently emerged as promising nano-catalytic platforms. These nitrogen-doped nanoparticles, which show dimensions smaller than 10 nm, generally consist of carbon cores that are surrounded by shells containing numerous amino groups. In recent years, organic chemists have used these surface amines to guide the design of several synthetic methodologies under mild operative conditions. This Concept highlights the recent advances in the synthesis of amine-rich carbon dots and their applications in organic catalysis, including forward-looking opportunities within this research field.
Collapse
Affiliation(s)
- Vasco Corti
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Beatrice Bartolomei
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Martina Mamone
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramón 19420014Donostia San SebastiánSpain
- Basque Fdn SciIkerbasque48013BilbaoSpain
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| |
Collapse
|
46
|
Zhang M, Zhang W, Fan X, Ma Y, Huang H, Wang X, Liu Y, Lin H, Li Y, Tian H, Shao M, Kang Z. Chiral Carbon Dots Derived from Serine with Well-Defined Structure and Enantioselective Catalytic Activity. NANO LETTERS 2022; 22:7203-7211. [PMID: 36000894 DOI: 10.1021/acs.nanolett.2c02674] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (C-Dots), with unique properties from tunable photoluminescence to biocompatibility, show wide applications in biotechnology, optoelectronic device and catalysis. Chiral C-Dots are expected to have strongly chirality-dependent biological and catalytic properties. For chiral C-Dots, a clear structure and quantitative structure-property relationship need to be clarified. Here, chiral C-Dots were fabricated by electrooxidation polymerization from serine enantiomers. The oxidized serine has a reversed chiral configuration to serine, which leads to the chiral C-Dots possessing inverse handedness compared with their raw materials. Electron circular dichroism spectrum, together with other diverse characterization techniques and theoretical calculations, confirmed that these chiral C-Dots (2-7 nm) have a well-defined primary structure of polycyclic dipeptide and possess a spatial structure with a c-axis of hexagonal symmetry and two cyclic dipeptides as the spatial structural unit. These chiral C-Dots also show enantioselective catalytic activity on DOPA enantiomers oxidation.
Collapse
Affiliation(s)
- Mengling Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Wanru Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiting Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
47
|
Synthesis of Carbon Nanodots from Sugarcane Syrup, and Their Incorporation into a Hydrogel-Based Composite to Fabricate Innovative Fluorescent Microstructured Polymer Optical Fibers. Gels 2022; 8:gels8090553. [PMID: 36135265 PMCID: PMC9498784 DOI: 10.3390/gels8090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Carbon nanodots (CNDs) are interesting materials due to their intrinsic fluorescence, electron-transfer properties, and low toxicity. Here, we report a sustainable, cheap, and scalable methodology to obtain CNDs from sugarcane syrup using a domestic microwave oven. The CNDs were characterized by infrared spectroscopy, dynamic light scattering, atomic force microscopy, absorption, and emission spectroscopies. The CNDs have 3 nm in diameter with low polydispersity and are fluorescent. A fluorescent hydrogel–CNDs composite was obtained using gelatin polypeptide as the polymeric matrix. The new hydrogel–CNDs composite was incorporated in the cavities of a double-clad optical fiber using an innovative approach that resulted in a microstructured polymer optical fiber with intrinsic fluorescence. This work shows a promising alternative for the fabrication of fluorescent materials since the CNDs synthesis is sustainable and environmentally friendly. These CNDs might substitute the rare-earth and other heavy metals of high cost and toxicity, which are usually incorporated in double-clad fibers for applications on lasers, amplifiers, and spectroscopy.
Collapse
|
48
|
Villari V, Gaeta M, D’Urso A, Micali N. Porphyrin/carbon nanodot supramolecular complexes and their optical properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Bortolami M, Bogles II, Bombelli C, Pandolfi F, Feroci M, Vetica F. Electrochemical Bottom-Up Synthesis of Chiral Carbon Dots from L-Proline and Their Application as Nano-Organocatalysts in a Stereoselective Aldol Reaction. Molecules 2022; 27:molecules27165150. [PMID: 36014401 PMCID: PMC9414281 DOI: 10.3390/molecules27165150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Chirality is undoubtedly a fundamental property of nature since the different interactions of optically active molecules in a chiral environment are essential for numerous applications. Thus, in the field of asymmetric synthesis, the search for efficient, sustainable, cost-effective and recyclable chiral catalysts is still the main challenge in organic chemistry. The field of carbon dots (CDs) has experienced tremendous development in the last 15 years, including their applications as achiral catalysts. Thus, understanding the implications of chirality in CDs chemistry could be of utmost importance to achieving sustainable and biocompatible chiral nanocatalysts. An efficient and cost-effective electrochemical synthetic methodology for the synthesis of L-Proline-based chiral carbon dots (CCDs) and EtOH-derived L-Proline-based chiral carbon dots (CCDs) is herein reported. The electrochemical set-up and reaction conditions have been thoroughly optimised and their effects on CCDs size, photoluminescence, as well as catalytic activity have been investigated. The obtained CCDs have been successfully employed to catalyze an asymmetric aldol reaction, showing excellent results in terms of yield, diastereo- and enantioselectivity. Moreover, the sustainable nature of the CCDs was demonstrated by recycling the catalysts for up to 3 cycles without any loss of reactivity or stereoselectivity.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
| | - Ingrid Izabela Bogles
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
| | - Cecilia Bombelli
- CNR—Institute for Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy
| | - Fabiana Pandolfi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
- CNR—Institute for Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
- Correspondence: (M.F.); (F.V.)
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
- Correspondence: (M.F.); (F.V.)
| |
Collapse
|
50
|
Novel ultraporous polyimide-based hollow carbon nanofiber mat: Its polymer-blend electrospinning preparation strategy and efficient dynamic adsorption for ciprofloxacin removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|