1
|
Martin S, Katainen R, Taira A, Välimäki N, Ristimäki A, Seppälä T, Renkonen-Sinisalo L, Lepistö A, Tahkola K, Mattila A, Koskensalo S, Mecklin JP, Rajamäki K, Palin K, Aaltonen LA. Lynch syndrome-associated and sporadic microsatellite unstable colorectal cancers: different patterns of clonal evolution yield highly similar tumours. Hum Mol Genet 2024; 33:1858-1872. [PMID: 39180486 PMCID: PMC11540923 DOI: 10.1093/hmg/ddae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Microsatellite unstable colorectal cancer (MSI-CRC) can arise through germline mutations in mismatch repair (MMR) genes in individuals with Lynch syndrome (LS), or sporadically through promoter methylation of the MMR gene MLH1. Despite the different origins of hereditary and sporadic MSI tumours, their genomic features have not been extensively compared. A prominent feature of MMR-deficient genomes is the occurrence of many indels in short repeat sequences, an understudied mutation type due to the technical challenges of variant calling in these regions. In this study, we performed whole genome sequencing and RNA-sequencing on 29 sporadic and 14 hereditary MSI-CRCs. We compared the tumour groups by analysing genome-wide mutation densities, microsatellite repeat indels, recurrent protein-coding variants, signatures of single base, doublet base, and indel mutations, and changes in gene expression. We show that the mutational landscapes of hereditary and sporadic MSI-CRCs, including mutational signatures and mutation densities genome-wide and in microsatellites, are highly similar. Only a low number of differentially expressed genes were found, enriched to interferon-γ regulated immune response pathways. Analysis of the variance in allelic fractions of somatic variants in each tumour group revealed higher clonal heterogeneity in sporadic MSI-CRCs. Our results suggest that the differing molecular origins of MMR deficiency in hereditary and sporadic MSI-CRCs do not result in substantial differences in the mutational landscapes of these tumours. The divergent patterns of clonal evolution between the tumour groups may have clinical implications, as high clonal heterogeneity has been associated with decreased tumour immunosurveillance and reduced responsiveness to immunotherapy.
Collapse
Affiliation(s)
- Samantha Martin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Riku Katainen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Aurora Taira
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Niko Välimäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Toni Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Haartmaninkatu 4, 00290 Helsinki, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital and TAYS Cancer Centre, Kuntokatu 2, 33520 Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Kalevantie 4, 33100 Tampere, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Anna Lepistö
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Kyösti Tahkola
- Faculty of Medicine and Health Technology, Tampere University, Kalevantie 4, 33100 Tampere, Finland
- Department of Surgery, Central Finland Health Care District, Keskussairaalantie 19, 40620 Jyväskylä, Finland
| | - Anne Mattila
- Department of Surgery, Central Finland Health Care District, Keskussairaalantie 19, 40620 Jyväskylä, Finland
| | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, Helsinki University Central Hospital, Stenbäckinkatu 9A, 00029 Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620 Jyväskylä, Finland
- Department of Sport and Health Sciences, University of Jyväskylä, Seminaarinkatu 15, 40014 Jyväskylä, Finland
| | - Kristiina Rajamäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Kimmo Palin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Nunes L, Li F, Wu M, Luo T, Hammarström K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Löfgren-Burström A, Zingmark C, Edin S, Larsson C, Mathot L, Osterman E, Osterlund E, Ljungström V, Neves I, Yacoub N, Guðnadóttir U, Birgisson H, Enblad M, Ponten F, Palmqvist R, Xu X, Uhlén M, Wu K, Glimelius B, Lin C, Sjöblom T. Prognostic genome and transcriptome signatures in colorectal cancers. Nature 2024; 633:137-146. [PMID: 39112715 PMCID: PMC11374687 DOI: 10.1038/s41586-024-07769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Collapse
Affiliation(s)
- Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fuqiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Meizhen Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Torell
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Osterman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicole Yacoub
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Guðnadóttir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xun Xu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kui Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Cong Lin
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Grimes K, Jeong H, Amoah A, Xu N, Niemann J, Raeder B, Hasenfeld P, Stober C, Rausch T, Benito E, Jann JC, Nowak D, Emini R, Hoenicka M, Liebold A, Ho A, Shuai S, Geiger H, Sanders AD, Korbel JO. Cell-type-specific consequences of mosaic structural variants in hematopoietic stem and progenitor cells. Nat Genet 2024; 56:1134-1146. [PMID: 38806714 PMCID: PMC11176070 DOI: 10.1038/s41588-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
The functional impact and cellular context of mosaic structural variants (mSVs) in normal tissues is understudied. Utilizing Strand-seq, we sequenced 1,133 single-cell genomes from 19 human donors of increasing age, and discovered the heterogeneous mSV landscapes of hematopoietic stem and progenitor cells. While mSVs are continuously acquired throughout life, expanded subclones in our cohort are confined to individuals >60. Cells already harboring mSVs are more likely to acquire additional somatic structural variants, including megabase-scale segmental aneuploidies. Capitalizing on comprehensive single-cell micrococcal nuclease digestion with sequencing reference data, we conducted high-resolution cell-typing for eight hematopoietic stem and progenitor cells. Clonally expanded mSVs disrupt normal cellular function by dysregulating diverse cellular pathways, and enriching for myeloid progenitors. Our findings underscore the contribution of mSVs to the cellular and molecular phenotypes associated with the aging hematopoietic system, and establish a foundation for deciphering the molecular links between mSVs, aging and disease susceptibility in normal tissues.
Collapse
Affiliation(s)
- Karen Grimes
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hyobin Jeong
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Nuo Xu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Benjamin Raeder
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Hasenfeld
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Catherine Stober
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tobias Rausch
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Benito
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Ramiz Emini
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm, Germany
| | - Markus Hoenicka
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm, Germany
| | - Andreas Liebold
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm, Germany
| | - Anthony Ho
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Ashley D Sanders
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Jan O Korbel
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Hu Y, Liu L, Jiang Q, Fang W, Chen Y, Hong Y, Zhai X. CRISPR/Cas9: a powerful tool in colorectal cancer research. J Exp Clin Cancer Res 2023; 42:308. [PMID: 37993945 PMCID: PMC10664500 DOI: 10.1186/s13046-023-02901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant cancers worldwide and seriously threatens human health. The clustered regulatory interspaced short palindromic repeat/CRISPR-associate nuclease 9 (CRISPR/Cas9) system is an adaptive immune system of bacteria or archaea. Since its introduction, research into various aspects of treatment approaches for CRC has been accelerated, including investigation of the oncogenes, tumor suppressor genes (TSGs), drug resistance genes, target genes, mouse model construction, and especially in genome-wide library screening. Furthermore, the CRISPR/Cas9 system can be utilized for gene therapy for CRC, specifically involving in the molecular targeted drug delivery or targeted knockout in vivo. In this review, we elucidate the mechanism of the CRISPR/Cas9 system and its comprehensive applications in CRC. Additionally, we discussed the issue of off-target effects associated with CRISPR/Cas9, which serves to restrict its practical application. Future research on CRC should in-depth and systematically utilize the CRISPR/Cas9 system thereby achieving clinical practice.
Collapse
Affiliation(s)
- Yang Hu
- Department of Gastroenterology, The First People's Hospital of Jiande, Hangzhou, 311600, China
| | - Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qi Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Weiping Fang
- Department of Gastroenterology, The First People's Hospital of Jiande, Hangzhou, 311600, China
| | - Yazhu Chen
- West China Hospital of Sichuan University, Chengdu, 610044, China.
| | - Yuntian Hong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiang Zhai
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Pihlajamaa P, Kauko O, Sahu B, Kivioja T, Taipale J. A competitive precision CRISPR method to identify the fitness effects of transcription factor binding sites. Nat Biotechnol 2023; 41:197-203. [PMID: 36163549 PMCID: PMC9931575 DOI: 10.1038/s41587-022-01444-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/20/2022] [Indexed: 12/26/2022]
Abstract
Here we describe a competitive genome editing method that measures the effect of mutations on molecular functions, based on precision CRISPR editing using template libraries with either the original or altered sequence, and a sequence tag, enabling direct comparison between original and mutated cells. Using the example of the MYC oncogene, we identify important transcriptional targets and show that E-box mutations at MYC target gene promoters reduce cellular fitness.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Otto Kauko
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Teemu Kivioja
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jussi Taipale
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
6
|
Copy Number Variations as Determinants of Colorectal Tumor Progression in Liquid Biopsies. Int J Mol Sci 2023; 24:ijms24021738. [PMID: 36675253 PMCID: PMC9866722 DOI: 10.3390/ijms24021738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Over the years, increasing evidence has shown that copy number variations (CNVs) play an important role in the pathogenesis and prognosis of Colorectal Cancer (CRC). Colorectal adenomas are highly prevalent lesions, but only 5% of these adenomas ever progress to carcinoma. This review summarizes the different CNVs associated with adenoma-carcinoma CRC progression and with CRC staging. Characterization of CNVs in circulating free-RNA and in blood-derived exosomes augers well with the potential of using such assays for patient management and early detection of metastasis. To overcome the limitations related to tissue biopsies and tumor heterogeneity, using CNVs to characterize tumor-derived materials in biofluids provides less invasive sampling methods and a sample that collectively represents multiple tumor sites in heterogeneous samples. Liquid biopsies provide a source of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), tumor-derived exosomes (TDE), circulating free RNA, and non-coding RNA. This review provides an overview of the current diagnostic and predictive models from liquid biopsies.
Collapse
|
7
|
Barfield R, Qu C, Steinfelder RS, Zeng C, Harrison TA, Brezina S, Buchanan DD, Campbell PT, Casey G, Gallinger S, Giannakis M, Gruber SB, Gsur A, Hsu L, Huyghe JR, Moreno V, Newcomb PA, Ogino S, Phipps AI, Slattery ML, Thibodeau SN, Trinh QM, Toland AE, Hudson TJ, Sun W, Zaidi SH, Peters U. Association between germline variants and somatic mutations in colorectal cancer. Sci Rep 2022; 12:10207. [PMID: 35715570 PMCID: PMC9205954 DOI: 10.1038/s41598-022-14408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with evidence of distinct tumor types that develop through different somatically altered pathways. To better understand the impact of the host genome on somatically mutated genes and pathways, we assessed associations of germline variations with somatic events via two complementary approaches. We first analyzed the association between individual germline genetic variants and the presence of non-silent somatic mutations in genes in 1375 CRC cases with genome-wide SNPs data and a tumor sequencing panel targeting 205 genes. In the second analysis, we tested if germline variants located within previously identified regions of somatic allelic imbalance were associated with overall CRC risk using summary statistics from a recent large scale GWAS (n≃125 k CRC cases and controls). The first analysis revealed that a variant (rs78963230) located within a CNA region associated with TLR3 was also associated with a non-silent mutation within gene FBXW7. In the secondary analysis, the variant rs2302274 located in CDX1/PDGFRB frequently gained/lost in colorectal tumors was associated with overall CRC risk (OR = 0.96, p = 7.50e-7). In summary, we demonstrate that an integrative analysis of somatic and germline variation can lead to new insights about CRC.
Collapse
Affiliation(s)
- Richard Barfield
- grid.26009.3d0000 0004 1936 7961Department of Biostatistics and Bioinformatics, Duke University, 11028A Hock Plaza, 2424 Erwin Road Suite 1106, Durham, NC 27705 USA
| | - Conghui Qu
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Robert S. Steinfelder
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Chenjie Zeng
- grid.280128.10000 0001 2233 9230National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Tabitha A. Harrison
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Stefanie Brezina
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Daniel D. Buchanan
- grid.1008.90000 0001 2179 088XColorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XUniversity of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010 Australia ,grid.416153.40000 0004 0624 1200Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC Australia
| | - Peter T. Campbell
- grid.251993.50000000121791997Department of Epidemiology and Population Science, Albert Einstein College of Medicine, Bronx, NY USA
| | - Graham Casey
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Steven Gallinger
- grid.250674.20000 0004 0626 6184Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON Canada
| | - Marios Giannakis
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA ,grid.66859.340000 0004 0546 1623The Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Stephen B. Gruber
- grid.42505.360000 0001 2156 6853Department of Medical Oncology and Therapeuytic, University of Southern California, Los Angeles, CA USA
| | - Andrea Gsur
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Li Hsu
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Jeroen R. Huyghe
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Victor Moreno
- grid.418701.b0000 0001 2097 8389Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.466571.70000 0004 1756 6246CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain ,grid.418284.30000 0004 0427 2257ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A. Newcomb
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657School of Public Health, University of Washington, Seattle, WA USA
| | - Shuji Ogino
- grid.66859.340000 0004 0546 1623The Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XProgram in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Amanda I. Phipps
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Ave N, Mail Stop M4-B402, Seattle, WA 98109 USA
| | - Martha L. Slattery
- grid.223827.e0000 0001 2193 0096Department of Internal Medicine, University of Utah, Salt Lake City, UT USA
| | - Stephen N. Thibodeau
- grid.66875.3a0000 0004 0459 167XDivision of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Quang M. Trinh
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Amanda E. Toland
- grid.261331.40000 0001 2285 7943Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA
| | - Thomas J. Hudson
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Wei Sun
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA ,grid.410711.20000 0001 1034 1720Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA
| | - Syed H. Zaidi
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Ulrike Peters
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Ave N, Mail Stop M4-B402, Seattle, WA 98109 USA
| |
Collapse
|
8
|
Tan ES, Knepper TC, Wang X, Permuth JB, Wang L, Fleming JB, Xie H. Copy Number Alterations as Novel Biomarkers and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2022; 14:2223. [PMID: 35565354 PMCID: PMC9101426 DOI: 10.3390/cancers14092223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
In colorectal cancer, somatic mutations have played an important role as prognostic and predictive biomarkers, with some also functioning as therapeutic targets. Another genetic aberration that has shown significance in colorectal cancer is copy number alterations (CNAs). CNAs occur when a change to the DNA structure propagates gain/amplification or loss/deletion in sections of DNA, which can often lead to changes in protein expression. Multiple techniques have been developed to detect CNAs, including comparative genomic hybridization with microarray, low pass whole genome sequencing, and digital droplet PCR. In this review, we summarize key findings in the literature regarding the role of CNAs in the pathogenesis of colorectal cancer, from adenoma to carcinoma to distant metastasis, and discuss the roles of CNAs as prognostic and predictive biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaine S. Tan
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Todd C. Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jennifer B. Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12901 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jason B. Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Hao Xie
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| |
Collapse
|
9
|
Golas MM, Gunawan B, Cakir M, Cameron S, Enders C, Liersch T, Füzesi L, Sander B. Evolutionary patterns of chromosomal instability and mismatch repair deficiency in proximal and distal colorectal cancer. Colorectal Dis 2022; 24:157-176. [PMID: 34623739 DOI: 10.1111/codi.15946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/04/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
AIM Colorectal carcinomas (CRCs) progress through heterogeneous pathways. The aim of this study was to analyse whether or not the cytogenetic evolution of CRC is linked to tumour site, level of chromosomal imbalance and metastasis. METHOD A set of therapy-naïve pT3 CRCs comprising 26 proximal and 49 distal pT3 CRCs was studied by combining immunohistochemistry of mismatch repair (MMR) proteins, microsatellite analyses and molecular karyotyping as well as clinical parameters. RESULTS A MMR deficient/microsatellite-unstable (dMMR/MSI-H) status was associated with location of the primary tumour proximal to the splenic flexure, and dMMR/MSI-H tumours presented with significantly lower levels of chromosomal imbalances compared with MMR proficient/microsatellite-stable (pMMR/MSS) tumours. Oncogenetic tree modelling suggested two evolutionary clusters characterized by dMMR/MSI-H and chromosomal instability (CIN), respectively, for both proximal and distal CRCs. In CIN cases, +13q, -18q and +20q were predicted as preferentially early events, and -1p, -4 -and -5q as late events. Separate oncogenetic tree models of proximal and distal cases indicated similar early events independent of tumour site. However, in cases with high CIN defined by more than 10 copy number aberrations, loss of 17p occurred earlier in cytogenetic evolution than in cases showing low to moderate CIN. Differences in the oncogenetic trees were observed for CRCs with lymph node and distant metastasis. Loss of 8p was modelled as an early event in node-positive CRC, while +7p and +8q comprised early events in CRC with distant metastasis. CONCLUSION CRCs characterized by CIN follow multiple, interconnected genetic pathways in line with the basic 'Vogelgram' concept proposed for the progression of CRC that places the accumulation of genetic changes at centre of tumour evolution. However, the timing of specific genetic events may favour metastatic potential.
Collapse
Affiliation(s)
- Mariola Monika Golas
- Department of Hematology and Medical Oncology, Comprehensive Cancer Center Augsburg, University Medical Center Augsburg, Augsburg, Germany
| | - Bastian Gunawan
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Meliha Cakir
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Cameron
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christina Enders
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Liersch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Laszlo Füzesi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology and Molecular Diagnostics, University Medical Center Augsburg, Augsburg, Germany
| | - Bjoern Sander
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Sveen A, Johannessen B, Eilertsen IA, Røsok BI, Gulla M, Eide PW, Bruun J, Kryeziu K, Meza-Zepeda LA, Myklebost O, Bjørnbeth BA, Skotheim RI, Nesbakken A, Lothe RA. The expressed mutational landscape of microsatellite stable colorectal cancers. Genome Med 2021; 13:142. [PMID: 34470667 PMCID: PMC8411524 DOI: 10.1186/s13073-021-00955-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/17/2021] [Indexed: 12/09/2022] Open
Abstract
Background Colorectal cancer is the 2nd leading cause of cancer-related deaths with few patients benefiting from biomarker-guided therapy. Mutation expression is essential for accurate interpretation of mutations as biomarkers, but surprisingly, little has been done to analyze somatic cancer mutations on the expression level. We report a large-scale analysis of allele-specific mutation expression. Methods Whole-exome and total RNA sequencing was performed on 137 samples from 121 microsatellite stable colorectal cancers, including multiregional samples of primary and metastatic tumors from 4 patients. Data were integrated with allele-specific resolution. Results were validated in an independent set of 241 colon cancers. Therapeutic associations were explored by pharmacogenomic profiling of 15 cell lines or patient-derived organoids. Results The median proportion of expressed mutations per tumor was 34%. Cancer-critical mutations had the highest expression frequency (gene-wise mean of 58%), independent of frequent allelic imbalance. Systematic deviation from the general pattern of expression levels according to allelic frequencies was detected, including preferential expression of mutated alleles dependent on the mutation type and target gene. Translational relevance was suggested by correlations of KRAS/NRAS or TP53 mutation expression levels with downstream oncogenic signatures (p < 0.03), overall survival among patients with stage II and III cancer (KRAS/NRAS: hazard ratio 6.1, p = 0.0070), and targeted drug sensitivity. The latter was demonstrated for EGFR and MDM2 inhibition in pre-clinical models. Conclusions Only a subset of mutations in microsatellite stable colorectal cancers were expressed, and the “expressed mutation dose” may provide an opportunity for more fine-tuned biomarker interpretations. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00955-2.
Collapse
Affiliation(s)
- Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, NO-0318, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Ina A Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, NO-0318, Oslo, Norway
| | - Bård I Røsok
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4950, NO-0424, Oslo, Norway
| | - Marie Gulla
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Peter W Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Kushtrim Kryeziu
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Department of Clinical Science, University of Bergen, P.O. Box 7804, NO-5020, Bergen, Norway
| | - Bjørn A Bjørnbeth
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4950, NO-0424, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1032 Blindern, NO-0315, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, NO-0318, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4950, NO-0424, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway. .,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, NO-0318, Oslo, Norway.
| |
Collapse
|
11
|
Sahu B, Pihlajamaa P, Zhang K, Palin K, Ahonen S, Cervera A, Ristimäki A, Aaltonen LA, Hautaniemi S, Taipale J. Human cell transformation by combined lineage conversion and oncogene expression. Oncogene 2021; 40:5533-5547. [PMID: 34302118 PMCID: PMC8429043 DOI: 10.1038/s41388-021-01940-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the most complex genetic disease known, with mutations implicated in more than 250 genes. However, it is still elusive which specific mutations found in human patients lead to tumorigenesis. Here we show that a combination of oncogenes that is characteristic of liver cancer (CTNNB1, TERT, MYC) induces senescence in human fibroblasts and primary hepatocytes. However, reprogramming fibroblasts to a liver progenitor fate, induced hepatocytes (iHeps), makes them sensitive to transformation by the same oncogenes. The transformed iHeps are highly proliferative, tumorigenic in nude mice, and bear gene expression signatures of liver cancer. These results show that tumorigenesis is triggered by a combination of three elements: the set of driver mutations, the cellular lineage, and the state of differentiation of the cells along the lineage. Our results provide direct support for the role of cell identity as a key determinant in transformation and establish a paradigm for studying the dynamic role of oncogenic drivers in human tumorigenesis.
Collapse
Affiliation(s)
- Biswajyoti Sahu
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Päivi Pihlajamaa
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Saija Ahonen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Cervera
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB and HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Taipale
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
13
|
Rajamäki K, Taira A, Katainen R, Välimäki N, Kuosmanen A, Plaketti RM, Seppälä TT, Ahtiainen M, Wirta EV, Vartiainen E, Sulo P, Ravantti J, Lehtipuro S, Granberg KJ, Nykter M, Tanskanen T, Ristimäki A, Koskensalo S, Renkonen-Sinisalo L, Lepistö A, Böhm J, Taipale J, Mecklin JP, Aavikko M, Palin K, Aaltonen LA. Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease-Associated Colorectal Cancer. Gastroenterology 2021; 161:592-607. [PMID: 33930428 DOI: 10.1053/j.gastro.2021.04.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. METHODS Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue samples of tumor and corresponding normal tissues from 31 patients with IBD-CRC. RESULTS Transcriptome-based tumor subtyping revealed the complete absence of canonical epithelial tumor subtype associated with WNT signaling in IBD-CRCs, dominated instead by mesenchymal stroma-rich subtype. Negative WNT regulators AXIN2 and RNF43 were strongly down-regulated in IBD-CRCs and chromosomal gains at HNF4A, a negative regulator of WNT-induced epithelial-mesenchymal transition (EMT), were less frequent compared to sCRCs. Enrichment of hypomethylation at HNF4α binding sites was detected solely in sCRC genomes. PIGR and OSMR involved in mucosal immunity were dysregulated via epigenetic modifications in IBD-CRCs. Genome-wide analysis showed significant enrichment of noncoding mutations to 5'untranslated region of TP53 in IBD-CRCs. As reported previously, somatic mutations in APC and KRAS were less frequent in IBD-CRCs compared to sCRCs. CONCLUSIONS Distinct mechanisms of WNT pathway dysregulation skew IBD-CRCs toward mesenchymal tumor subtype, which may affect prognosis and treatment options. Increased OSMR signaling may favor the establishment of mesenchymal tumors in patients with IBD.
Collapse
Affiliation(s)
- Kristiina Rajamäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anna Kuosmanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Roosa-Maria Plaketti
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Surgery, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; Department of Surgical Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Maarit Ahtiainen
- Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | - Erkki-Ville Wirta
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Emilia Vartiainen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Sulo
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Janne Ravantti
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Suvi Lehtipuro
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Tomas Tanskanen
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Selja Koskensalo
- Department of Gastrointestinal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | - Jussi Taipale
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jukka-Pekka Mecklin
- Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland
| | - Mervi Aavikko
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Kotoula V, Papadopoulou K, Tikas I, Fostira F, Vrettou E, Chrisafi S, Fountzilas E, Koliou GA, Apostolou P, Papazisis K, Zaramboukas T, Asimaki-Vlachopoulou A, Miliaras S, Ananiadis A, Poulios C, Natsiopoulos I, Tsiftsoglou A, Demiri E, Fountzilas G. Follow-up of tissue genomics in BRCA1/2 carriers who underwent prophylactic surgeries. Breast Cancer 2021; 28:1367-1382. [PMID: 34304347 DOI: 10.1007/s12282-021-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE The genomic status of non-malignant tissues from carriers of pathogenic germline BRCA1/2 (gBRCA1/2) variants may reveal information towards individualized prophylaxis. We performed spatiotemporal tissue genotype comparisons in a real-life cohort of gBRCA1/2 carriers of Greek origin, who underwent multiple risk-reducing/prophylactic surgeries at various time points. METHODS Fifty-three women (median age 36 years) within cancer families were observed for up to 37.5 years; 43 were cancer carriers and 10 were healthy carriers. Histology review and genotyping were performed for 187 paraffin tissues (average: 3.5 per carrier) including 46 carcinomas (40 breast) and 141 non-malignant breast and gynecological samples. RESULTS High allelic imbalance (AI) and somatic pathogenic TP53 variants were present in cancer carriers only (p values < 0.0001). High AI was associated with gBRCA1/2 indels (p < 0.0001) and gBRCA2 alterations (p = 0.0109). Somatic (pathogenic) variants were infrequently shared between non-malignant tissues and matched carcinomas. Aberrations of gBRCA1 variant heterozygosity were noticed in tissues from cancer carriers only (13/43, 30.2%). These pertained to classic LOH (neoplastic lesions in 9/43 carriers, 20.9%) and under-representation of the germline variants (5 samples, 4 non-malignant, all in the breast). Both aberrations coexisted in matched samples in one case. Over time, germline variant heterozygosity prevailed in non-malignant tissues; intra-carrier genomic alterations were aggravated (21.1%), ameliorated (26.3%) or remained stable. CONCLUSION This real-life case study supports the need to address tissue genotypes from prophylactic surgeries in combination with polygenic scores towards personalized prophylaxis. To this end, knowing the traditionally classified pathogenic potential of a gBRCA1/2 variant may not be enough.
Collapse
Affiliation(s)
- Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, University Campus, bld. 17b, 54124, Thessaloníki, Greece. .,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloníki, Greece.
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Ioannis Tikas
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, University Campus, bld. 17b, 54124, Thessaloníki, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research NCSR Demokritos, Athens, Greece
| | - Eleni Vrettou
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, University Campus, bld. 17b, 54124, Thessaloníki, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Elena Fountzilas
- Second Department of Medical Oncology, Euromedica General Clinic of Thessaloniki, Thessaloníki, Greece.,European University of Cyprus, Nicosia, Cyprus
| | | | - Paraskevi Apostolou
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research NCSR Demokritos, Athens, Greece
| | - Konstantinos Papazisis
- Department of Medical Oncology, Interbalkan European Medical Center, Thessaloníki, Greece
| | - Thomas Zaramboukas
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, University Campus, bld. 17b, 54124, Thessaloníki, Greece
| | | | - Spyros Miliaras
- First Department of Surgery, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloníki, Greece
| | | | - Christos Poulios
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, University Campus, bld. 17b, 54124, Thessaloníki, Greece
| | - Ioannis Natsiopoulos
- Department of Breast Surgery, Interbalkan European Medical Center, Thessaloníki, Greece
| | - Aris Tsiftsoglou
- Department of Surgery, St. Luke's Hospital, Thessaloníki, Greece
| | - Efterpi Demiri
- Department of Plastic Surgery, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloníki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloníki, Greece.,Aristotle University of Thessaloniki, Thessaloníki, Greece.,German Oncology Center, Limassol, Cyprus
| |
Collapse
|
15
|
Niu G, Bak A, Nusselt M, Zhang Y, Pausch H, Flisikowska T, Schnieke AE, Flisikowski K. Allelic Expression Imbalance Analysis Identified YAP1 Amplification in p53- Dependent Osteosarcoma. Cancers (Basel) 2021; 13:cancers13061364. [PMID: 33803512 PMCID: PMC8002920 DOI: 10.3390/cancers13061364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Osteosarcoma (OS) is a highly heterogenous cancer, making the identification of genetic driving factors difficult. Genetic factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. We previously generated pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and allelic expression imbalance analysis identified an amplification of YAP1 involved in p53- dependent OS progression. The inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. This study confirms the importance of p53/YAP1 network in cancer. Abstract Osteosarcoma (OS) is a primary bone malignancy that mainly occurs during adolescent growth, suggesting that bone growth plays an important role in the aetiology of the disease. Genetic factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. Identifying driver mutations for OS has been challenging due to the complexity of bone growth-related pathways and the extensive intra-tumoral heterogeneity of this cancer. We previously generated pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and allele expression imbalance (AEI) analysis of OS and matched healthy control samples revealed a highly significant AEI (p = 2.14 × 10−39) for SNPs in the BIRC3-YAP1 locus on pig chromosome 9. Analysis of copy number variation showed that YAP1 amplification is associated with the AEI and the progression of OS. Accordingly, the inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. Increased p16 mRNA expression correlated with lower methylation of its promoter. Altogether, our study provides molecular evidence for the role of YAP1 amplification in the progression of p53-dependent OS.
Collapse
Affiliation(s)
- Guanglin Niu
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Agnieszka Bak
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Melanie Nusselt
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Yue Zhang
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Hubert Pausch
- Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland;
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Angelika E. Schnieke
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
- Correspondence:
| |
Collapse
|
16
|
Kondelin J, Martin S, Katainen R, Renkonen-Sinisalo L, Lepistö A, Koskensalo S, Böhm J, Mecklin JP, Cajuso T, Hänninen UA, Välimäki N, Ravantti J, Rajamäki K, Palin K, Aaltonen LA. No evidence of EMAST in whole genome sequencing data from 248 colorectal cancers. Genes Chromosomes Cancer 2021; 60:463-473. [PMID: 33527622 DOI: 10.1002/gcc.22941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Microsatellite instability (MSI) is caused by defective DNA mismatch repair (MMR), and manifests as accumulation of small insertions and deletions (indels) in short tandem repeats of the genome. Another form of repeat instability, elevated microsatellite alterations at selected tetranucleotide repeats (EMAST), has been suggested to occur in 50% to 60% of colorectal cancer (CRC), of which approximately one quarter are accounted for by MSI. Unlike for MSI, the criteria for defining EMAST is not consensual. EMAST CRCs have been suggested to form a distinct subset of CRCs that has been linked to a higher tumor stage, chronic inflammation, and poor prognosis. EMAST CRCs not exhibiting MSI have been proposed to show instability of di- and trinucleotide repeats in addition to tetranucleotide repeats, but lack instability of mononucleotide repeats. However, previous studies on EMAST have been based on targeted analysis of small sets of marker repeats, often in relatively few samples. To gain insight into tetranucleotide instability on a genome-wide level, we utilized whole genome sequencing data from 227 microsatellite stable (MSS) CRCs, 18 MSI CRCs, 3 POLE-mutated CRCs, and their corresponding normal samples. As expected, we observed tetranucleotide instability in all MSI CRCs, accompanied by instability of mono-, di-, and trinucleotide repeats. Among MSS CRCs, some tumors displayed more microsatellite mutations than others as a continuum, and no distinct subset of tumors with the previously proposed molecular characters of EMAST could be observed. Our results suggest that tetranucleotide repeat mutations in non-MSI CRCs represent stochastic mutation events rather than define a distinct CRC subclass.
Collapse
Affiliation(s)
- Johanna Kondelin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Samantha Martin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, Helsinki University Central Hospital, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Jyväskylä Central Hospital, Jyväskylä, Finland.,Department Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tatiana Cajuso
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Ulrika A Hänninen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Janne Ravantti
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kristiina Rajamäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Zhang X, Sjöblom T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010057. [PMID: 33450833 PMCID: PMC7828287 DOI: 10.3390/ph14010057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common genetic event in the development of cancer. In certain tumor types, LOH can affect more than 20% of the genome, entailing loss of allelic variation in thousands of genes. This reduction of heterozygosity creates genetic differences between tumor and normal cells, providing opportunities for development of novel cancer therapies. Here, we review and summarize (1) mutations associated with LOH on chromosomes which have been shown to be promising biomarkers of cancer risk or the prediction of clinical outcomes in certain types of tumors; (2) loci undergoing LOH that can be targeted for development of novel anticancer drugs as well as (3) LOH in tumors provides up-and-coming possibilities to understand the underlying mechanisms of cancer evolution and to discover novel cancer vulnerabilities which are worth a further investigation in the near future.
Collapse
|
18
|
Defining eligible patients for allele-selective chemotherapies targeting NAT2 in colorectal cancer. Sci Rep 2020; 10:22436. [PMID: 33384440 PMCID: PMC7775439 DOI: 10.1038/s41598-020-80288-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Therapies targeting somatic bystander genetic events represent a new avenue for cancer treatment. We recently identified a subset of colorectal cancer (CRC) patients who are heterozygous for a wild-type and a low activity allele (NAT2*6) but lack the wild-type allele in their tumors due to loss of heterozygosity (LOH) at 8p22. These tumors were sensitive to treatment with a cytotoxic substrate of NAT2 (6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine, APA), and pointed to NAT2 loss being a therapeutically exploitable vulnerability of CRC tumors. To better estimate the total number of treatable CRC patients, we here determined whether tumor cells retaining also other NAT2 low activity variants after LOH respond to APA treatment. The prevalent low activity alleles NAT2*5 and NAT2*14, but not NAT2*7, were found to be low metabolizers with high sensitivity to APA. By analysis of two different CRC patient cohorts, we detected heterozygosity for NAT2 alleles targetable by APA, along with allelic imbalances pointing to LOH, in ~ 24% of tumors. Finally, to haplotype the NAT2 locus in tumor and patient-matched normal samples in a clinical setting, we develop and demonstrate a long-read sequencing based assay. In total, > 79.000 CRC patients per year fulfil genetic criteria for high sensitivity to a NAT2 LOH therapy and their eligibility can be assessed by clinical sequencing.
Collapse
|
19
|
Cajuso T, Sulo P, Tanskanen T, Katainen R, Taira A, Hänninen UA, Kondelin J, Forsström L, Välimäki N, Aavikko M, Kaasinen E, Ristimäki A, Koskensalo S, Lepistö A, Renkonen-Sinisalo L, Seppälä T, Kuopio T, Böhm J, Mecklin JP, Kilpivaara O, Pitkänen E, Palin K, Aaltonen LA. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat Commun 2019; 10:4022. [PMID: 31492840 PMCID: PMC6731219 DOI: 10.1038/s41467-019-11770-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Genomic instability pathways in colorectal cancer (CRC) have been extensively studied, but the role of retrotransposition in colorectal carcinogenesis remains poorly understood. Although retrotransposons are usually repressed, they become active in several human cancers, in particular those of the gastrointestinal tract. Here we characterize retrotransposon insertions in 202 colorectal tumor whole genomes and investigate their associations with molecular and clinical characteristics. We find highly variable retrotransposon activity among tumors and identify recurrent insertions in 15 known cancer genes. In approximately 1% of the cases we identify insertions in APC, likely to be tumor-initiating events. Insertions are positively associated with the CpG island methylator phenotype and the genomic fraction of allelic imbalance. Clinically, high number of insertions is independently associated with poor disease-specific survival. Retrotransposons are usually dormant in healthy tissue, but become activated during malignancy. Here, in colorectal cancer, Cajuso et al. show that retrotransposon activity associates with clinical features of the disease.
Collapse
Affiliation(s)
- Tatiana Cajuso
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Päivi Sulo
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Tomas Tanskanen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Riku Katainen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Aurora Taira
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Ulrika A Hänninen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Johanna Kondelin
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Linda Forsström
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Mervi Aavikko
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Eevi Kaasinen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, (Haartmaninkatu 3), FI-00290, Helsinki, Finland
| | - Selja Koskensalo
- Department of Gastrointestinal Surgery, Helsinki University Hospital, University of Helsinki, (Haartmaninkatu 4), FI-00290, Helsinki, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Hospital, University of Helsinki, (Haartmaninkatu 4), FI-00290, Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal Surgery, Helsinki University Hospital, University of Helsinki, (Haartmaninkatu 4), FI-00290, Helsinki, Finland
| | - Toni Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Hospital, University of Helsinki, (Haartmaninkatu 4), FI-00290, Helsinki, Finland
| | - Teijo Kuopio
- Biological and Environmental Science, University of Jyväskylä, PO Box 35, (Seminaarinkatu 15), FI-40014, Jyväskylä, Finland.,Department of Pathology, Central Finland Health Care District, (Keskussairaalantie 19), FI-40620 Jyväskylä, Finland
| | - Jan Böhm
- Department of Pathology, Central Finland Health Care District, (Keskussairaalantie 19), FI-40620 Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Surgery, Jyväskylä Central Hospital, (Keskussairaalantie 19), FI-40620, Jyväskylä, Finland.,Department of Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, (Seminaarinkatu 15), FI-40014, Jyväskylä, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Esa Pitkänen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland. .,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.
| |
Collapse
|
20
|
Affiliation(s)
- Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|