1
|
Rocchi I, Ericson CF, Malter KE, Zargar S, Eisenstein F, Pilhofer M, Beyhan S, Shikuma NJ. A Bacterial Phage Tail-like Structure Kills Eukaryotic Cells by Injecting a Nuclease Effector. Cell Rep 2020; 28:295-301.e4. [PMID: 31291567 DOI: 10.1016/j.celrep.2019.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 11/28/2022] Open
Abstract
Many bacteria interact with target organisms using syringe-like structures called contractile injection systems (CISs). CISs structurally resemble headless bacteriophages and share evolutionarily related proteins such as the tail tube, sheath, and baseplate complex. In many cases, CISs mediate trans-kingdom interactions between bacteria and eukaryotes by delivering effectors to target cells. However, the specific effectors and their modes of action are often unknown. Here, we establish an ex vivo model to study an extracellular CIS (eCIS) called metamorphosis-associated contractile structures (MACs) that target eukaryotic cells. MACs kill two eukaryotic cell lines, fall armyworm Sf9 cells and J774A.1 murine macrophage cells, by translocating an effector termed Pne1. Before the identification of Pne1, no CIS effector exhibiting nuclease activity against eukaryotic cells had been described. Our results define a new mechanism of CIS-mediated bacteria-eukaryote interaction and are a step toward developing CISs as novel delivery systems for eukaryotic hosts.
Collapse
Affiliation(s)
- Iara Rocchi
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Charles F Ericson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Kyle E Malter
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Sahar Zargar
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Fabian Eisenstein
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Sinem Beyhan
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA.
| | - Nicholas J Shikuma
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Wettstadt S, Filloux A. Manipulating the type VI secretion system spike to shuttle passenger proteins. PLoS One 2020; 15:e0228941. [PMID: 32101557 PMCID: PMC7043769 DOI: 10.1371/journal.pone.0228941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic or prokaryotic target cells. Pseudomonas aeruginosa can load either one of its three T6SSs with a variety of toxic bullets using different but specific modes. The T6SS spike, which punctures the bacterial cell envelope allowing effector transport, consists of a torch-like VgrG trimer on which sits a PAAR protein sharpening the VgrG tip. VgrG itself sits on the Hcp tube and all elements, packed into a T6SS sheath, are propelled out of the cell and into target cells. On occasion, effectors are covalent extensions of VgrG, PAAR or Hcp proteins, which are then coined "evolved" components as opposed to canonical. Here, we show how various passenger domains could be fused to the C terminus of a canonical VgrG, VgrG1a from P. aeruginosa, and be sent into the bacterial culture supernatant. There is no restriction on the passenger type, although the efficacy may vary greatly, since we used either an unrelated T6SS protein, β-lactamase, a covalent extension of an "evolved" VgrG, VgrG2b, or a Hcp-dependent T6SS toxin, Tse2. Our data further highlights an exceptional modularity/flexibility for loading the T6SS nano-weapon. Refining the parameters to optimize delivery of passenger proteins of interest would have attractive medical and industrial applications. This may for example involve engineering the T6SS as a delivery system to shuttle toxins into either bacterial pathogens or tumour cells which would be an original approach in the fight against antimicrobial resistant bacteria or cancer.
Collapse
Affiliation(s)
- Sarah Wettstadt
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Wood TE, Howard SA, Wettstadt S, Filloux A. PAAR proteins act as the 'sorting hat' of the type VI secretion system. MICROBIOLOGY-SGM 2020; 165:1203-1218. [PMID: 31380737 PMCID: PMC7376260 DOI: 10.1099/mic.0.000842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria exist in polymicrobial environments and compete to prevail in a niche. The type VI secretion system (T6SS) is a nanomachine employed by Gram-negative bacteria to deliver effector proteins into target cells. Consequently, T6SS-positive bacteria produce a wealth of antibacterial effector proteins to promote their survival among a prokaryotic community. These toxins are loaded onto the VgrG–PAAR spike and Hcp tube of the T6SS apparatus and recent work has started to document the specificity of effectors for certain spike components. Pseudomonas aeruginosa encodes several PAAR proteins, whose roles have been poorly investigated. Here we describe a phospholipase family antibacterial effector immunity pair from Pseudomonas aeruginosa and demonstrate that a specific PAAR protein is necessary for the delivery of the effector and its cognate VgrG. Furthermore, the PAAR protein appears to restrict the delivery of other phospholipase effectors that utilise distinct VgrG proteins. We provide further evidence for competition for PAAR protein recruitment to the T6SS apparatus, which determines the identities of the delivered effectors.
Collapse
Affiliation(s)
- Thomas E Wood
- Present address: Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Present address: Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA, USA.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Sophie A Howard
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Sarah Wettstadt
- Present address: Department of Environmental Protection, Estación Experimental de Zaidín - Consejo Superior de Investigaciones Científicas, Granada, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| |
Collapse
|
4
|
He YU, Wang S, Yin X, Sun F, He B, Liu X. Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains To Identify Potential Virulence Factors. J Food Prot 2020; 83:155-162. [PMID: 31860395 DOI: 10.4315/0362-028x.jfp-19-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that causes gastroenteritis, septicemia, and serious wound infections due to the actions of virulence-associated proteins. We compared the extracellular proteins of nonvirulent JHY20 and virulent ATCC 33847 V. parahaemolyticus reference strains. Eighteen extracellular proteins were identified from secretory profiles, and 11 (68.75%) of the 16 proteins in ATCC 33847 are associated with virulence and/or protection against adverse conditions: trigger factor, chaperone SurA, aspartate-semialdehyde dehydrogenase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, glutamate 5-kinase, alanine dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, outer membrane protein OmpV, ribosome-associated inhibitor A, chaperone protein Skp, and universal stress protein. Two nontoxic-related proteins, amino acid ABC transporter substrate-binding protein and an uncharacterized protein, were identified in JHY20. The results provide a theoretical basis for supporting safety risk assessment of aquatic foods, illuminate the pathogenic mechanisms of V. parahaemolyticus, and assist the identification of novel vaccine candidates for foodborne pathogens.
Collapse
Affiliation(s)
- Y U He
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | - Shuai Wang
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | | | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai 201300, People's Republic of China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Shandong 277100, People's Republic of China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
5
|
Wu CQ, Zhang T, Zhang W, Shi M, Tu F, Yu A, Li M, Yang M. Two DsbA Proteins Are Important for Vibrio parahaemolyticus Pathogenesis. Front Microbiol 2019; 10:1103. [PMID: 31156607 PMCID: PMC6531988 DOI: 10.3389/fmicb.2019.01103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
Bacterial pathogens maintain disulfide bonds for protein stability and functions that are required for pathogenesis. Vibrio parahaemolyticus is a Gram-negative pathogen that causes food-borne gastroenteritis and is also an important opportunistic pathogen of aquatic animals. Two genes encoding the disulfide bond formation protein A, DsbA, are predicted to be encoded in the V. parahaemolyticus genome. DsbA plays an important role in Vibrio cholerae virulence but its role in V. parahaemolyticus is largely unknown. In this study, the activities and functions of the two V. parahaemolyticus DsbA proteins were characterized. The DsbAs affected virulence factor expression at the post-translational level. The protein levels of adhesion factor VpadF (VP1767) and the thermostable direct hemolysin (TDH) were significantly reduced in the dsbA deletion mutants. V. parahaemolyticus lacking dsbA also showed reduced attachment to Caco-2 cells, decreased β-hemolytic activity, and less toxicity to both zebrafish and HeLa cells. Our findings demonstrate that DsbAs contribute to V. parahaemolyticus pathogenesis.
Collapse
Affiliation(s)
- Chun-Qin Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China.,Department of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Ting Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Mengting Shi
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Fei Tu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Ai Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Manman Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Metzger LC, Matthey N, Stoudmann C, Collas EJ, Blokesch M. Ecological implications of gene regulation by TfoX and TfoY among diverse Vibrio species. Environ Microbiol 2019; 21:2231-2247. [PMID: 30761714 PMCID: PMC6618264 DOI: 10.1111/1462-2920.14562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/16/2019] [Accepted: 02/10/2019] [Indexed: 01/26/2023]
Abstract
Bacteria of the genus Vibrio are common members of aquatic environments where they compete with other prokaryotes and defend themselves against grazing predators. A macromolecular protein complex called the type VI secretion system (T6SS) is used for both purposes. Previous research showed that the sole T6SS of the human pathogen V. cholerae is induced by extracellular (chitin) or intracellular (low c‐di‐GMP levels) cues and that these cues lead to distinctive signalling pathways for which the proteins TfoX and TfoY serve as master regulators. In this study, we tested whether the TfoX‐ and TfoY‐mediated regulation of T6SS, concomitantly with natural competence or motility, was conserved in non‐cholera Vibrio species, and if so, how these regulators affected the production of individual T6SSs in double‐armed vibrios. We show that, alongside representative competence genes, TfoX regulates at least one T6SS in all tested Vibrio species. TfoY, on the other hand, fostered motility in all vibrios but had a more versatile T6SS response in that it did not foster T6SS‐mediated killing in all tested vibrios. Collectively, our data provide evidence that the TfoX‐ and TfoY‐mediated signalling pathways are mostly conserved in diverse Vibrio species and important for signal‐specific T6SS induction.
Collapse
Affiliation(s)
- Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Esther J Collas
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|