1
|
Perosa G, Wätzel J, Garzella D, Allaria E, Bonanomi M, Danailov MB, Brynes A, Callegari C, De Ninno G, Demidovich A, Di Fraia M, Di Mitri S, Giannessi L, Manfredda M, Novinec L, Pal N, Penco G, Plekan O, Prince KC, Simoncig A, Spampinati S, Spezzani C, Zangrando M, Berakdar J, Feifel R, Squibb RJ, Coffee R, Hemsing E, Roussel E, Sansone G, McNeil BWJ, Ribič PR. Femtosecond Polarization Shaping of Free-Electron Laser Pulses. PHYSICAL REVIEW LETTERS 2023; 131:045001. [PMID: 37566861 DOI: 10.1103/physrevlett.131.045001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 08/13/2023]
Abstract
We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter.
Collapse
Affiliation(s)
- Giovanni Perosa
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- Department of Physics, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Jonas Wätzel
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - David Garzella
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Enrico Allaria
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Matteo Bonanomi
- Politecnico di Milano, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, 20133 Milano, Italy
| | | | | | - Carlo Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Giovanni De Ninno
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- Laboratory of Quantum Optics, University of Nova Gorica, 5001 Nova Gorica, Slovenia
| | | | - Michele Di Fraia
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Basovizza, Italy
| | - Simone Di Mitri
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- Department of Physics, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Luca Giannessi
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- ENEA C.R. Frascati, 00044 Frascati (Roma), Italy
| | | | - Luka Novinec
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Nitish Pal
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Giuseppe Penco
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | | | - Carlo Spezzani
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Basovizza, Italy
| | - Jamal Berakdar
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, 41133 Gothenburg, Sweden
| | - Richard J Squibb
- Department of Physics, University of Gothenburg, 41133 Gothenburg, Sweden
| | - Ryan Coffee
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Erik Hemsing
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Eléonore Roussel
- Université de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Giuseppe Sansone
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Brian W J McNeil
- University of Strathclyde (SUPA), Glasgow G4 0NG, United Kingdom
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
- ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | | |
Collapse
|
2
|
Keefer D, Cavaletto SM, Rouxel JR, Garavelli M, Yong H, Mukamel S. Ultrafast X-Ray Probes of Elementary Molecular Events. Annu Rev Phys Chem 2023; 74:73-97. [PMID: 37093660 DOI: 10.1146/annurev-physchem-062322-051532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Elementary events that determine photochemical outcomes and molecular functionalities happen on the femtosecond and subfemtosecond timescales. Among the most ubiquitous events are the nonadiabatic dynamics taking place at conical intersections. These facilitate ultrafast, nonradiative transitions between electronic states in molecules that can outcompete slower relaxation mechanisms such as fluorescence. The rise of ultrafast X-ray sources, which provide intense light pulses with ever-shorter durations and larger observation bandwidths, has fundamentally revolutionized our spectroscopic capabilities to detect conical intersections. Recent theoretical studies have demonstrated an entirely new signature emerging once a molecule traverses a conical intersection, giving detailed insights into the coupled nuclear and electronic motions that underlie, facilitate, and ultimately determine the ultrafast molecular dynamics. Following a summary of current sources and experiments, we survey these techniques and provide a unified overview of their capabilities. We discuss their potential to dramatically increase our understanding of ultrafast photochemistry.
Collapse
Affiliation(s)
- Daniel Keefer
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Stefano M Cavaletto
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
- Current affiliation: Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, IOGS, Laboratoire Hubert Curien, UMR CNRS 5516, Saint-Etienne, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | - Haiwang Yong
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| |
Collapse
|
3
|
Franciosi A, Kiskinova M. Elettra-Sincrotrone Trieste: present and future. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:79. [PMID: 36712550 PMCID: PMC9872737 DOI: 10.1140/epjp/s13360-023-03654-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
We present an overview of the Elettra-Sincrotrone Trieste research center, which hosts synchrotron and free-electron laser light sources. We review the current status, provide examples of recent achievements in basic and applied research and discuss the upgrade programs of the facility.
Collapse
Affiliation(s)
- Alfonso Franciosi
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - Maya Kiskinova
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| |
Collapse
|
4
|
Malvestuto M, Caretta A, Bhardwaj R, Laterza S, Parmigiani F, Gessini A, Zamolo M, Galassi F, Sergo R, Cautero G, Danailov MB, Demidovic A, Sigalotti P, Lonza M, Borghes R, Contillo A, Simoncig A, Manfredda M, Raimondi L, Zangrando M. The MagneDyn beamline at the FERMI free electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:115109. [PMID: 36461546 DOI: 10.1063/5.0105261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The scope of this paper is to outline the main marks and performances of the MagneDyn beamline, which was designed and built to perform ultrafast magnetodynamic studies in solids. Open to users since 2019, MagneDyn operates with variable circular and linear polarized femtosecond pulses delivered by the externally laser-seeded FERMI free-electron laser (FEL). The very high degree of polarization, the high pulse-to-pulse stability, and the photon energy tunability in the 50-300 eV range allow performing advanced time-resolved magnetic dichroic experiments at the K-edge of light elements, e.g., carbon and at the M- and N-edge of the 3d-transition-metals and rare earth elements, respectively. To this end, two experimental end-stations are available. The first is equipped with an in situ dedicated electromagnet, a cryostat, and an extreme ultraviolet Wollaston-like polarimeter. The second, designed for carry-in user instruments, hosts also a spectrometer for pump-probe resonant x-ray emission and inelastic spectroscopy experiments with a sub-eV energy resolution. A Kirkpatrick-Baez active optics system provides a minimum focus of ∼20×20μm2 FWHM at the sample. A pump laser setup, synchronized with the FEL-laser seeding system, delivers sub-picosecond pulses with photon energies ranging from the mid-IR to near-UV for optical pump-FEL probe experiments with a minimal pump-probe jitter of few femtoseconds. The overall combination of these features renders MagneDyn a unique state-of-the-art tool for studying ultrafast magnetic and resonant emission phenomena in solids.
Collapse
Affiliation(s)
- Marco Malvestuto
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Antonio Caretta
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Richa Bhardwaj
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Simone Laterza
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Fulvio Parmigiani
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Alessandro Gessini
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Matteo Zamolo
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Fabio Galassi
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Rudi Sergo
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Giuseppe Cautero
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Miltcho B Danailov
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Alexander Demidovic
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Paolo Sigalotti
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Marco Lonza
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Roberto Borghes
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Adriano Contillo
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Alberto Simoncig
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Michele Manfredda
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Lorenzo Raimondi
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| |
Collapse
|
5
|
Kim YY, Khubbutdinov R, Carnis J, Kim S, Nam D, Nam I, Kim G, Shim CH, Yang H, Cho M, Min CK, Kim C, Kang HS, Vartanyants IA. Statistical analysis of hard X-ray radiation at the PAL-XFEL facility performed by Hanbury Brown and Twiss interferometry. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1465-1479. [PMID: 36345755 PMCID: PMC9641567 DOI: 10.1107/s1600577522008773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
A Hanbury Brown and Twiss interferometry experiment based on second-order correlations was performed at the PAL-XFEL facility. The statistical properties of the X-ray radiation were studied within this experiment. Measurements were performed at the NCI beamline at 10 keV photon energy under various operation conditions: self-amplified spontaneous emission (SASE), SASE with a monochromator, and self-seeding regimes at 120 pC, 180 pC and 200 pC electron bunch charge. Statistical analysis showed short average pulse duration from 6 fs to 9 fs depending on the operational conditions. A high spatial degree of coherence of about 70-80% was determined in the spatial domain for the SASE beams with the monochromator and self-seeding regime of operation. The obtained values describe the statistical properties of the beams generated at the PAL-XFEL facility.
Collapse
Affiliation(s)
- Young Yong Kim
- Photon Science, Deutsche Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ruslan Khubbutdinov
- Photon Science, Deutsche Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jerome Carnis
- Photon Science, Deutsche Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang 37673, Republic of Korea
| | - Inhyuk Nam
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyujin Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chi Hyun Shim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Haeryong Yang
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myunghoon Cho
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chang-Ki Min
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Changbum Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Heung-Sik Kang
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ivan A. Vartanyants
- Photon Science, Deutsche Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
6
|
|
7
|
Sparapassi G, Cavaletto SM, Tollerud J, Montanaro A, Glerean F, Marciniak A, Giusti F, Mukamel S, Fausti D. Transient measurement of phononic states with covariance-based stochastic spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2022; 11:44. [PMID: 35228519 PMCID: PMC8885707 DOI: 10.1038/s41377-022-00727-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 05/09/2023]
Abstract
We present a novel approach to transient Raman spectroscopy, which combines stochastic probe pulses and a covariance-based detection to measure stimulated Raman signals in alpha-quartz. A coherent broadband pump is used to simultaneously impulsively excite a range of different phonon modes, and the phase, amplitude, and energy of each mode are independently recovered as a function of the pump-probe delay by a noisy-probe and covariance-based analysis. Our experimental results and the associated theoretical description demonstrate the feasibility of 2D-Raman experiments based on the stochastic-probe schemes, with new capabilities not available in equivalent mean-value-based 2D-Raman techniques. This work unlocks the gate for nonlinear spectroscopies to capitalize on the information hidden within the noise and overlooked by a mean-value analysis.
Collapse
Affiliation(s)
- Giorgia Sparapassi
- Physics Department, University of Trieste, Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Stefano M Cavaletto
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, CA, USA
| | - Jonathan Tollerud
- Optical Sciences Centre, Swinburne University, Melbourne, Australia.
| | - Angela Montanaro
- Physics Department, University of Trieste, Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Filippo Glerean
- Physics Department, University of Trieste, Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Alexandre Marciniak
- Physics Department, University of Trieste, Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Fancesca Giusti
- Physics Department, University of Trieste, Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, CA, USA
| | - Daniele Fausti
- Physics Department, University of Trieste, Trieste, Italy.
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.
| |
Collapse
|
8
|
Benatti F, Olivares S, Perosa G, Bajoni D, Di Mitri S, Floreanini R, Ratti L, Parmigiani F. Quantum state features of the FEL radiation from the occupation number statistics. OPTICS EXPRESS 2021; 29:40374-40396. [PMID: 34809380 DOI: 10.1364/oe.440198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The coherence of free-electron laser (FEL) radiation has so far been accessed mainly through first and second order correlation functions. Instead, we propose to reconstruct the energy state occupation number distribution of FEL radiation, avoiding the photo-counting drawbacks with high intensities, by means of maximum likelihood techniques based on the statistics of no-click events. Though the ultimate goal regards the FEL radiation statistical features, the interest of the proposal also resides in its applicability to any process of harmonic generation from a coherent light pulse, ushering in the study of the preservation of quantum features in general non-linear optical processes.
Collapse
|
9
|
Khubbutdinov R, Gerasimova N, Mercurio G, Assalauova D, Carnis J, Gelisio L, Le Guyader L, Ignatenko A, Kim YY, Van Kuiken BE, Kurta RP, Lapkin D, Teichmann M, Yaroslavtsev A, Gorobtsov O, Menushenkov AP, Scholz M, Scherz A, Vartanyants IA. High spatial coherence and short pulse duration revealed by the Hanbury Brown and Twiss interferometry at the European XFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:044305. [PMID: 34476285 PMCID: PMC8384452 DOI: 10.1063/4.0000127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Second-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft x-ray Self-Amplified Spontaneous Emission (SASE3) undulator beamline at a photon energy of 1.2 keV in the Self-Amplified Spontaneous Emission (SASE) mode. Two high-power regimes of the SASE3 undulator settings, i.e., linear and quadratic undulator tapering at saturation, were studied in detail and compared with the linear gain regime. The statistical analysis showed an exceptionally high degree of spatial coherence up to 90% for the linear undulator tapering. Analysis of the measured data in spectral and spatial domains provided an average pulse duration of about 10 fs in our measurements. The obtained results will be valuable for the experiments requiring and exploiting short pulse duration and utilizing high coherence properties of the EuXFEL.
Collapse
Affiliation(s)
| | | | | | - Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Jerome Carnis
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Luca Gelisio
- Center for Free-Electron Laser Science, DESY, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | | | - Alexandr Ignatenko
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | | | | | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | | | | | - Oleg Gorobtsov
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, USA
| | - Alexey P. Menushenkov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Matthias Scholz
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | | | | |
Collapse
|
10
|
Advanced Scheme to Generate MHz, Fully Coherent FEL Pulses at nm Wavelength. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current FEL development efforts aim at improving the control of coherence at high repetition rate while keeping the wavelength tunability. Seeding schemes, like HGHG and EEHG, allow for the generation of fully coherent FEL pulses, but the powerful external seed laser required limits the repetition rate that can be achieved. In turn, this impacts the average brightness and the amount of statistics that experiments can do. In order to solve this issue, here we take a unique approach and discuss the use of one or more optical cavities to seed the electron bunches accelerated in a superconducting linac to modulate their energy. Like standard seeding schemes, the cavity is followed by a dispersive section, which manipulates the longitudinal phase space of the electron bunches, inducing longitudinal density modulations with high harmonic content that undergo the FEL process in an amplifier placed downstream. We will discuss technical requirements for implementing these setups and their operation range based on numerical simulations.
Collapse
|
11
|
Cavaletto SM, Keefer D, Rouxel JR, Aleotti F, Segatta F, Garavelli M, Mukamel S. Unveiling the spatial distribution of molecular coherences at conical intersections by covariance X-ray diffraction signals. Proc Natl Acad Sci U S A 2021; 118:e2105046118. [PMID: 34050030 PMCID: PMC8179141 DOI: 10.1073/pnas.2105046118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The outcomes and timescales of molecular nonadiabatic dynamics are decisively impacted by the quantum coherences generated at localized molecular regions. In time-resolved X-ray diffraction imaging, these coherences create distinct signatures via inelastic photon scattering, but they are buried under much stronger background elastic features. Here, we exploit the rich dynamical information encoded in the inelastic patterns, which we reveal by frequency-dispersed covariance ultrafast powder X-ray diffraction of stochastic X-ray free-electron laser pulses. This is demonstrated for the photoisomerization of azobenzene involving the passage through a conical intersection, where the nuclear wave packet branches and explores different quantum pathways. Snapshots of the coherence dynamics are obtained at high frequency shifts, not accessible with conventional diffraction measurements. These provide access to the timing and to the confined spatial distribution of the valence electrons directly involved in the conical intersection passage. This study can be extended to full three-dimensional imaging of conical intersections with ultrafast X-ray and electron diffraction.
Collapse
Affiliation(s)
- Stefano M Cavaletto
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physics & Astronomy, University of California, Irvine, CA 92697
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physics & Astronomy, University of California, Irvine, CA 92697
| | - Jérémy R Rouxel
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physics & Astronomy, University of California, Irvine, CA 92697
- University Lyon, UJM-Saint-Étienne, CNRS, Graduate School Optics Institute, Laboratoire Hubert Curien UMR 5516, Saint-Étienne 42023, France
| | - Flavia Aleotti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
| | - Francesco Segatta
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA 92697;
- Department of Physics & Astronomy, University of California, Irvine, CA 92697
| |
Collapse
|
12
|
Hemsing E, Halavanau A, Zhang Z. Enhanced Self-Seeding with Ultrashort Electron Beams. PHYSICAL REVIEW LETTERS 2020; 125:044801. [PMID: 32794789 DOI: 10.1103/physrevlett.125.044801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
We describe a new method to produce intensity stable, highly coherent, narrow-band x-ray pulses in self-seeded free electron (FEL) lasers. The approach uses an ultrashort electron beam to generate a single spike FEL pulse with a wide coherent bandwidth. The self-seeding monochromator then notches out a narrow spectral region of this pulse to be amplified by a long portion of electron beam to full saturation. In contrast to typical self-seeding where monochromatization of noisy self-amplified spontaneous emission pulses leads to either large intensity fluctuations or multiple frequencies, we show that this method produces a stable, coherent FEL output pulse with statistical properties similar to a fully coherent optical laser.
Collapse
Affiliation(s)
- Erik Hemsing
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Zhen Zhang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
13
|
Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening. Nat Chem 2020; 12:795-800. [PMID: 32690894 DOI: 10.1038/s41557-020-0507-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/11/2020] [Indexed: 11/08/2022]
Abstract
Photoinduced isomerization reactions lie at the heart of many chemical processes in nature. The mechanisms of such reactions are determined by a delicate interplay of coupled electronic and nuclear dynamics occurring on the femtosecond scale, followed by the slower redistribution of energy into different vibrational degrees of freedom. Here we apply time-resolved photoelectron spectroscopy with a seeded extreme ultraviolet free-electron laser to trace the ultrafast ring opening of gas-phase thiophenone molecules following ultraviolet photoexcitation. When combined with ab initio electronic structure and molecular dynamics calculations of the excited- and ground-state molecules, the results provide insights into both the electronic and nuclear dynamics of this fundamental class of reactions. The initial ring opening and non-adiabatic coupling to the electronic ground state are shown to be driven by ballistic S-C bond extension and to be complete within 350 fs. Theory and experiment also enable visualization of the rich ground-state dynamics that involve the formation of, and interconversion between, ring-opened isomers and the cyclic structure, as well as fragmentation over much longer timescales.
Collapse
|
14
|
Abstract
Oscillators are at the heart of optical lasers, providing stable, transform-limited pulses. Until now, laser oscillators have been available only in the infrared to visible and near-ultraviolet (UV) spectral region. In this paper, we present a study of an oscillator operating in the 5- to 12-keV photon-energy range. We show that, using the [Formula: see text] line of transition metal compounds as the gain medium, an X-ray free-electron laser as a periodic pump, and a Bragg crystal optical cavity, it is possible to build X-ray oscillators producing intense, fully coherent, transform-limited pulses. As an example, we consider the case of a copper nitrate gain medium generating ∼ 5 × [Formula: see text] photons per pulse with 37-fs pulse length and 48-meV spectral resolution at 8-keV photon energy. Our theoretical study and simulation of this system show that, because of the very large gain per pass, the oscillator saturates and reaches full coherence in four to six optical-cavity transits. We discuss the feasibility and design of the X-ray optical cavity and other parts of the oscillator needed for its realization, opening the way to extend X-ray-based research beyond current capabilities.
Collapse
|
15
|
Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M. Recent advances in ultrafast X-ray sources. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180384. [PMID: 30929633 DOI: 10.1098/rsta.2018.0384] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Over more than a century, X-rays have transformed our understanding of the fundamental structure of matter and have been an indispensable tool for chemistry, physics, biology, materials science and related fields. Recent advances in ultrafast X-ray sources operating in the femtosecond to attosecond regimes have opened an important new frontier in X-ray science. These advances now enable: (i) sensitive probing of structural dynamics in matter on the fundamental timescales of atomic motion, (ii) element-specific probing of electronic structure and charge dynamics on fundamental timescales of electronic motion, and (iii) powerful new approaches for unravelling the coupling between electronic and atomic structural dynamics that underpin the properties and function of matter. Most notable is the recent realization of X-ray free-electron lasers (XFELs) with numerous new XFEL facilities in operation or under development worldwide. Advances in XFELs are complemented by advances in synchrotron-based and table-top laser-plasma X-ray sources now operating in the femtosecond regime, and laser-based high-order harmonic XUV sources operating in the attosecond regime. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Robert Schoenlein
- 1 SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, CA 94025 , USA
| | - Thomas Elsaesser
- 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin , Germany
| | - Karsten Holldack
- 3 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15, 12489 Berlin , Germany
| | - Zhirong Huang
- 1 SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, CA 94025 , USA
| | - Henry Kapteyn
- 4 Department of Physics and JILA, University of Colorado , Boulder, CO 80309-0440 , USA
| | - Margaret Murnane
- 4 Department of Physics and JILA, University of Colorado , Boulder, CO 80309-0440 , USA
| | - Michael Woerner
- 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin , Germany
| |
Collapse
|