1
|
Ma H, Zhao Y, He X, Wang Q, Zhang Y, Xing X, Wu X, Quan G, Bao S. Dihydrolipoamide acetyltransferase is a key factor mediating adhesion and invasion of host cells by Mycoplasma synoviae. Vet Microbiol 2024; 299:110297. [PMID: 39561529 DOI: 10.1016/j.vetmic.2024.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024]
Abstract
Mycoplasma synoviae is a significant avian pathogen responsible for chronic respiratory diseases, arthritis, and infectious synovitis in chickens and turkeys. These infections result in substantial economic losses to the global poultry industry. Dihydrolipoamide acetyltransferase (E2) is a multifunctional protein that plays an indispensable role in energy metabolism and redox balance and is also a key virulence factor of various pathogens. In this study, we used the avian pathogen M. synoviae as a model to identify the role of the E2 protein in the colonization and invasion of host cells. First, we prepared the polyclonal antibody of recombinant E2 (rE2) protein and found that the rE2 antibody had a strong complement-activating ability. E2 was found to be distributed in the cytoplasm and cell membrane of M. synoviae by immunoelectron microscopy. E2 localized on the cell membrane is a key factor in the adhesion of M. synoviae and has good immunogenicity. Enzyme-linked immunosorbent assay showed that the binding of rE2 to membrane proteins of chicken embryo fibroblasts (DF-1) was dose-dependent, and antiserum effectively inhibited this binding ability. Furthermore, E2 interacted with various components of the host extracellular matrix (ECM) and promoted the conversion of plasminogen to plasmin through terephthalic acid (tPA). In addition, E2 can enhance the ability of M. synoviae to invade DF-1 cells, which was significantly reduced after treatment with anti-E2 serum. These results indicate that E2 is an adhesion- and invasion-related protein and may be involved in the pathogenesis of M. synoviae, which provides new ideas for studying the pathogenesis of M. synoviae and preparing subunit vaccines.
Collapse
Affiliation(s)
- Haiyun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Yunhai Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Xiaoxiao He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Qing Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Yuting Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Xiaochun Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Guomei Quan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Jiang J, Lin Y, Zhang J, Liu W, Hu Q, Huang L, Che Y. Investigating the immunological activity of the Hsp70-P113 fusion protein for Mycoplasma ovipneumoniae detection: a groundbreaking study. BMC Vet Res 2024; 20:421. [PMID: 39304865 PMCID: PMC11414289 DOI: 10.1186/s12917-024-04274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Mycoplasmal pneumonia of sheep and goats (MPSG) is an important infectious disease that threatens sheep and goat production worldwide, and Mycoplasma ovipneumoniae (Movi) is one of the major aetiological agents causing MPSG. The aim of this study was to investigate the immunological activity of the Hsp70‒P113 fusion protein derived from Movi and to develop a serological assay for the detection of Movi. METHODS This study involved codon optimization of the dominant antigenic regions of Movi heat shock protein 70 (Hsp70) and adhesin P113. Afterwards, the optimized sequences were inserted into the prokaryotic expression vector pET-30a( +) through tandem linking with the aid of a linker. Once a positive recombinant plasmid (pET-30a-rHsp70-P113) was successfully generated, the expression conditions were further refined. The resulting double gene fusion target protein (rHsp70‒P113) was subsequently purified using ProteinIso® Ni-NTA resin, and the reactivity of the protein was confirmed via SDS‒PAGE and Western blot analysis. An indirect enzyme-linked immunosorbent assay (i-ELISA) technique was developed to detect Movi utilizing the fusion protein as the coating antigen. The specificity, sensitivity, and reproducibility of all methods were assessed after each reaction parameter was optimized. RESULTS The resulting rHsp70-P113 protein had a molecular weight of approximately 51 kDa and was predominantly expressed in the supernatant. Western blot analysis demonstrated its favourable reactivity. The optimal parameters for the i-ELISA technique were as follows: the rHsp70-P113 protein was encapsulated at a concentration of 5 μg/mL; the serum was diluted at a ratio of 1:50; the HRP-labelled donkey anti-goat IgG was diluted at a ratio of 1:6,000. The results of the cross-reactivity assays revealed that the i-ELISA was not cross-reactive with other goat-positive sera against Mycoplasma mycodies subsp. capri (Mmc), Mycoplasma capricolum subsp. capripneumoniae (Mccp), Mycoplasma arginini (Marg), orf virus (ORFV) or enzootic nasal tumour virus of goats (ENTV-2). The sensitivity of this method is high, with a maximum dilution of up to 1:640. The results of the intra- and inter-batch replication tests revealed that the coefficients of variation were both less than 10%, indicating excellent reproducibility. The analysis of 108 clinical serum samples via i-ELISA and indirect haemagglutination techniques yielded significant findings. Among these samples, 43 displayed positive results, whereas 65 presented negative results, resulting in a positivity rate of 39.8% for the i-ELISA method. In contrast, the indirect haemagglutination technique identified 20 positive samples and 88 negative samples, resulting in a positivity rate of 18.5%. Moreover, a comparison between the two methods revealed a conformity rate of 78.7%. CONCLUSION The results obtained in this study lay the groundwork for advancements in the use of an Movi antibody detection kit, epidemiological inquiry, and subunit vaccines.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Institute of Animal Husbandry & Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yusheng Lin
- Institute of Animal Husbandry & Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jingpeng Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Weiwei Liu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Institute of Animal Husbandry & Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Lina Huang
- Zhangzhou Longhai District Animal Disease Prevention and Control Centre, Zhangzhou, China
| | - Yongliang Che
- Institute of Animal Husbandry & Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China.
| |
Collapse
|
3
|
Akter A, Ananna NF, Ullah H, Islam S, Al Amin M, Kibria KMK, Mahmud S. Computational approach for identifying immunogenic epitopes and optimizing peptide vaccine through in-silico cloning against Mycoplasma genitalium. Heliyon 2024; 10:e28223. [PMID: 38596014 PMCID: PMC11002066 DOI: 10.1016/j.heliyon.2024.e28223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Mycoplasma genitalium is a pathogenic microorganism linked to a variety of severe health conditions including ovarian cancer, prostate cancer, HIV transmission, and sexually transmitted diseases. A more effective approach to address the challenges posed by this pathogen, given its high antibiotic resistance rates, could be the development of a peptide vaccine. In this study, we used experimentally validated 13 membrane proteins and their immunogenicity to identify suitable vaccine candidates. Thus, based on immunogenic properties and high conservation among other Mycoplasma genitalium sub-strains, the P110 surface protein is considered for further investigation. Later on, we identified T-cell epitopes and B-cell epitopes from the P110 protein to construct a multiepitope-based vaccine. As a result, the 'NIAPISFSFTPFTAA' T-cell epitope and 'KVKYESSGSNNISFDS' B-cell epitope have shown 99.53% and 87.50% population coverage along with 100% conservancy among the subspecies, and both epitopes were found to be non-allergenic. Furthermore, focusing on molecular docking analysis showed the lowest binding energy for MHC-I (-137.5 kcal/mol) and MHC-II (-183.3 kcal/mol), leading to a satisfactory binding strength between the T-cell epitopes and the MHC molecules. However, the constructed multiepitope vaccine (MEV) consisting of 54 amino acids demonstrates favorable characteristics for a vaccine candidate, including a theoretical pI of 4.25 with a scaled solubility of 0.812 and high antigenicity probabilities. Additionally, structural analyses reveal that the MEV displays substantial alpha helices and extended strands, vital for its immunogenicity. Molecular docking with the human Toll-like receptors TLR1/2 heterodimer shows strong binding affinity, reinforcing its potential to elicit an immune response. Our immune simulation analysis demonstrates immune memory development and robust immunity, while codon adaptation suggests optimal expression in E. coli using the pET-28a(+) vector. These findings collectively highlight the MEV's potential as a valuable vaccine candidate against M. genitalium.
Collapse
Affiliation(s)
- Asma Akter
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Natasha Farhin Ananna
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Hedayet Ullah
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Sirajul Islam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| |
Collapse
|
4
|
Sprankel L, Scheffer MP, Manger S, Ermel UH, Frangakis AS. Cryo-electron tomography reveals the binding and release states of the major adhesion complex from Mycoplasma genitalium. PLoS Pathog 2023; 19:e1011761. [PMID: 37939157 PMCID: PMC10659161 DOI: 10.1371/journal.ppat.1011761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
The nap particle is an immunogenic surface adhesion complex from Mycoplasma genitalium. It is essential for motility and responsible for binding sialylated oligosaccharides on the surface of the host cell. The nap particle is composed of two P140-P110 heterodimers, the structure of which was recently solved. However, the interpretation of the mechanism by which the mycoplasma cells orchestrate adhesion remained challenging. Here, we provide cryo-electron tomography structures at ~11 Å resolution, which allow for the distinction between the bound and released state of the nap particle, displaying the in vivo conformational states. Fitting of the atomically resolved structures reveals that bound sialylated oligosaccharides are stabilized by both P110 and P140. Movement of the stalk domains allows for the transfer of conformational changes from the interior of the cell to the binding pocket, thus having the capability of an active release process. It is likely that the same mechanism can be transferred to other Mycoplasma species that belong to the pneumoniae cluster.
Collapse
Affiliation(s)
- Lasse Sprankel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Margot P. Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Sina Manger
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Utz H. Ermel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Achilleas S. Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Lan S, Li Z, Hao H, Liu S, Huang Z, Bai Y, Li Y, Yan X, Gao P, Chen S, Chu Y. A genome-wide transposon mutagenesis screening identifies LppB as a key factor associated with Mycoplasma bovis colonization and invasion into host cells. FASEB J 2023; 37:e23176. [PMID: 37665592 DOI: 10.1096/fj.202300678r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Mycoplasma spp., the smallest self-replicating and genome-reduced organisms, have raised a great concern in both the medical and veterinary fields due to their pathogenicity. The molecular determinants of these wall-less bacterium efficiently use their limited genes to ensure successful infection of the host remain unclear. In the present study, we used the ruminant pathogen Mycoplasma bovis as a model to identify the key factors for colonization and invasion into host cells. We constructed a nonredundant fluorescent transposon mutant library of M. bovis using a modified transposon plasmid, and identified 34 novel adhesion-related genes based on a high-throughput screening approach. Among them, the ΔLppB mutant exhibited the most apparent decrease in adhesion to embryonic bovine lung (EBL) cells. The surface-localized lipoprotein LppB, which is highly conserved in Mycoplasma species, was then confirmed as a key factor for M. bovis adhesion with great immunogenicity. LppB interacted with various components (fibronectin, vitronectin, collagen IV, and laminin) of host extracellular matrix (ECM) and promoted plasminogen activation through tPA to degrade ECM. The 439-502 amino acid region of LppB is a critical domain, and F465 and Y493 are important residues for the plasminogen activation activity. We further revealed LppB as a key factor facilitating internalization through clathrin- and lipid raft-mediated endocytosis, which helps the Mycoplasma invade the host cells. Our study indicates that LppB plays a key role in Mycoplasma infection and is a potential new therapeutic and vaccine target for Mycoplasma species.
Collapse
Affiliation(s)
- Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhicheng Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yutong Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yanzhao Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
6
|
Nakane D. Rheotaxis in Mycoplasma gliding. Microbiol Immunol 2023; 67:389-395. [PMID: 37430383 DOI: 10.1111/1348-0421.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, Tokyo, Japan
| |
Collapse
|
7
|
Kenri T, Yamazaki T, Ohya H, Jinnai M, Oda Y, Asai S, Sato R, Ishiguro N, Oishi T, Horino A, Fujii H, Hashimoto T, Nakajima H, Shibayama K. Genotyping of Mycoplasma pneumoniae strains isolated in Japan during 2019 and 2020: spread of p1 gene type 2c and 2j variant strains. Front Microbiol 2023; 14:1202357. [PMID: 37405159 PMCID: PMC10316025 DOI: 10.3389/fmicb.2023.1202357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
We characterized 118 Mycoplasma pneumoniae strains isolated from three areas of Japan (Saitama, Kanagawa, and Osaka) during the period of 2019 and 2020. Genotyping of the p1 gene in these strains revealed that 29 of them were type 1 lineage (29/118, 24.6%), while 89 were type 2 lineage (89/118, 75.4%), thereby indicating that type 2 lineage was dominant in this period. The most prevalent variant of type 2 lineage was type 2c (57/89, 64%), while the second-most was type 2j, a novel variant identified in this study (30/89, 33.7%). Type 2j p1 is similar to type 2 g p1, but cannot be distinguished from reference type 2 (classical type 2) using the standard polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) with HaeIII digestion. Thus, we used MboI digestion in the PCR-RFLP analysis and re-examined the data from previous genotyping studies as well. This revealed that most strains reported as classical type 2 after 2010 in our studies were actually type 2j. The revised genotyping data showed that the type 2c and 2j strains have been spreading in recent years and were the most prevalent variants in Japan during the time-period of 2019 and 2020. We also analyzed the macrolide-resistance (MR) mutations in the 118 strains. MR mutations in the 23S rRNA gene were detected in 29 of these strains (29/118, 24.6%). The MR rate of type 1 lineage (14/29, 48.3%) was still higher than that of type 2 lineage (15/89, 16.9%); however, the MR rate of type 1 lineage was lower than that found in previous reports published in the 2010s, while that of type 2 lineage strains was slightly higher. Thus, there is a need for continuous surveillance of the p1 genotype and MR rate of M. pneumoniae clinical strains, to better understand the epidemiology and variant evolution of this pathogen, although M. pneumoniae pneumonia cases have decreased significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Hitomi Ohya
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Michio Jinnai
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | - Rikako Sato
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuhisa Ishiguro
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomohiro Oishi
- Department of Clinical Infectious Diseases, Kawasaki Medical School, Okayama, Japan
| | - Atsuko Horino
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Hiroshi Nakajima
- Okayama Prefectural Institute for Environmental Science and Public Health, Okayama, Japan
| | - Keigo Shibayama
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Yu J, Zhou Y, Luo H, Su X, Gan T, Wang J, Ye Z, Deng Z, He J. Mycoplasma genitalium infection in the female reproductive system: Diseases and treatment. Front Microbiol 2023; 14:1098276. [PMID: 36896431 PMCID: PMC9989269 DOI: 10.3389/fmicb.2023.1098276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Mycoplasma genitalium is a newly emerged sexually transmitted disease pathogen and an independent risk factor for female cervicitis and pelvic inflammatory disease. The clinical symptoms caused by M. genitalium infection are mild and easily ignored. If left untreated, M. genitalium can grow along the reproductive tract and cause salpingitis, leading to infertility and ectopic pregnancy. Additionally, M. genitalium infection in late pregnancy can increase the incidence of preterm birth. M. genitalium infections are often accompanied by co-infection with other sexually transmitted pathogens (Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis) and viral infections (Human Papilloma Virus and Human Immunodeficiency Virus). A recent study suggested that M. genitalium plays a role in tumor development in the female reproductive system. However, few studies endorsed this finding. In recent years, M. genitalium has evolved into a new "superbug" due to the emergence of macrolide-and fluoroquinolone-resistant strains leading to frequent therapy failures. This review summarizes the pathogenic characteristics of M. genitalium and the female reproductive diseases caused by M. genitalium (cervicitis, pelvic inflammatory disease, ectopic pregnancy, infertility, premature birth, co-infection, reproductive tumors, etc.), as well as its potential relationship with reproductive tumors and clinical treatment.
Collapse
Affiliation(s)
- Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Zhou
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Tian Gan
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongliang Deng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
9
|
Qin L, Liu L, Wu Y, Chen Y, Wu Y, Luo H, Xi Y, Xiu F, Hu J, Chen L, Wu N, He J, Zeng Y, Zhu C, You X. Mycoplasma pneumoniae downregulates RECK to promote matrix metalloproteinase-9 secretion by bronchial epithelial cells. Virulence 2022; 13:1270-1284. [PMID: 35892136 PMCID: PMC9336473 DOI: 10.1080/21505594.2022.2101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Airway epithelial cells function as both a physical barrier against harmful substances and pathogenic microorganisms and as an important participant in the innate immune system. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in modulating inflammatory responses during respiratory infections. However, the signalling cascade that induces MMP-9 secretion from epithelial cells infected with Mycoplasma pneumoniae remains poorly understood. In this study, we investigated the mechanism of MMP-9 secretion in airway epithelial cells infected with M. pneumoniae. Our data clearly showed that M. pneumoniae induced the secretion of MMP-9 from bronchial epithelial cells and upregulated its enzymatic activity in a time- and dose-dependent manner. Using specific inhibitors and chromatin co-precipitation experiments, we confirmed that the expression of MMP-9 is reliant on the activation of the Toll-like receptor 2 (TLR2) and TLR6-dependent mitogen-activated protein kinase/nuclear factor- κB/activator protein-1 (MAPK/NF-κB/AP-1) pathways. Additionally, epigenetic modifications such as histone acetylation and the nuclear transcription factor Sp1 also regulate MMP-9 expression. M. pneumoniae infection also decreased the expression of the tumour suppressor reversion-inducing cysteine-rich protein with Kazal motifs (RECK) by inducing Sp1 phosphorylation. Overexpression of RECK significantly impaired the M. pneumoniae-triggered increase in MMP-9 enzymatic activity, although the level of MMP-9 protein remained constant. The study demonstrated that M. pneumoniae-triggered MMP-9 expression is modulated by TLR2 and 6, the MAPK/NF-κB/AP-1 signalling cascade, and histone acetylation, and M. pneumoniae downregulated the expression of RECK, thereby increasing MMP-9 activity to modulate the inflammatory response, which could play a role in airway remodelling.
Collapse
Affiliation(s)
- Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yueping Wu
- Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yixuan Xi
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jun Hu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liesong Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Ning Wu
- Department of Clinical Laboratory, Hengyang No.1 People's Hospital, Hengyang, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
10
|
Yueyue W, Feichen X, Yixuan X, Lu L, Yiwen C, Xiaoxing Y. Pathogenicity and virulence of Mycoplasma genitalium: Unraveling Ariadne's Thread. Virulence 2022; 13:1161-1183. [PMID: 35791283 PMCID: PMC9262362 DOI: 10.1080/21505594.2022.2095741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma genitalium, a pathogen from class Mollicutes, has been linked to sexually transmitted diseases and sparked widespread concern. To adapt to its environment, M. genitalium has evolved specific adhesins and motility mechanisms that allow it to adhere to and invade various eukaryotic cells, thereby causing severe damage to the cells. Even though traditional exotoxins have not been identified, secreted nucleases or membrane lipoproteins have been shown to cause cell death and inflammatory injury in M. genitalium infection. However, as both innate and adaptive immune responses are important for controlling infection, the immune responses that develop upon infection do not necessarily eliminate the organism completely. Antigenic variation, detoxifying enzymes, immunoglobulins, neutrophil extracellular trap-degrading enzymes, cell invasion, and biofilm formation are important factors that help the pathogen overcome the host defence and cause chronic infections in susceptible individuals. Furthermore, M. genitalium can increase the susceptibility to several sexually transmitted pathogens, which significantly complicates the persistence and chronicity of M. genitalium infection. This review aimed to discuss the virulence factors of M. genitalium to shed light on its complex pathogenicity and pathogenesis of the infection.
Collapse
Affiliation(s)
- Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiu Feichen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xi Yixuan
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Liu Lu
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
11
|
Barbosa MS, Marques LM, Timenetsky J, Rosengarten R, Spergser J, Chopra-Dewasthaly R. Host cell interactions of novel antigenic membrane proteins of Mycoplasma agalactiae. BMC Microbiol 2022; 22:93. [PMID: 35395771 PMCID: PMC8991494 DOI: 10.1186/s12866-022-02512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mycoplasma agalactiae is the main etiological agent of Contagious Agalactia syndrome of small ruminants notifiable to the World Organization for Animal Health. Despite serious economic losses, successful vaccines are unavailable, largely because its colonization and invasion factors are not well understood. This study evaluates the role of two recently identified antigenic proteins (MAG_1560, MAG_6130) and the cytadhesin P40 in pathogenicity related phenotypes. Results Adhesion to HeLa and sheep primary mammary stromal cells (MSC) was evaluated using ELISA, as well as in vitro adhesion assays on monolayer cell cultures. The results demonstrated MAG_6130 as a novel adhesin of M. agalactiae whose capacity to adhere to eukaryotic cells was significantly reduced by specific antiserum. Additionally, these proteins exhibited significant binding to plasminogen and extracellular matrix (ECM) proteins like lactoferrin, fibrinogen and fibronectin, a feature that could potentially support the pathogen in host colonization, tissue migration and immune evasion. Furthermore, these proteins played a detrimental role on the host cell proliferation and viability and were observed to activate pro-apoptotic genes indicating their involvement in cell death when eukaryotic cells were infected with M. agalactiae. Conclusions To summarize, the hypothetical protein corresponding to MAG_6130 has not only been assigned novel adhesion functions but together with P40 it is demonstrated for the first time to bind to lactoferrin and ECM proteins thereby playing important roles in host colonization and pathogenicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02512-2.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.,Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil. .,Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, Brazil.
| | - Jorge Timenetsky
- Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.
| |
Collapse
|
12
|
Jennings MP, Day CJ, Atack JM. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001157. [PMID: 35316172 PMCID: PMC9558349 DOI: 10.1099/mic.0.001157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.
Collapse
Affiliation(s)
- Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
13
|
Mycoplasma genitalium Protein of Adhesion Promotes the Early Proliferation of Human Urothelial Cells by Interacting with RPL35. Pathogens 2021; 10:pathogens10111449. [PMID: 34832605 PMCID: PMC8621731 DOI: 10.3390/pathogens10111449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma genitalium is a newly recognized pathogen associated with sexually transmitted diseases (STDs). MgPa, the adhesion protein of Mycoplasma genitalium, is the main adhesin and the key factor for M. genitalium interacting with host cells. Currently, the long-term survival mechanism of M. genitalium in the host is not clear. In this study, a T7 phage-displayed human urothelial cell (SV-HUC-1) cDNA library was constructed, and the interaction of MgPa was screened from this library using the recombinant MgPa (rMgPa) as a target molecule. We verified that 60S ribosomal protein L35 (RPL35) can interact with MgPa using far-Western blot and co-localization analysis. According to the results of tandem mass tag (TMT) labeling and proteome quantitative analysis, there were altogether 407 differentially expressed proteins between the pcDNA3.1(+)/MgPa-transfected cells and non-transfected cells, of which there were 6 downregulated proteins and 401 upregulated proteins. The results of qRT-PCR demonstrated that interaction between rMgPa and RPL35 could promote the expressions of EIF2, SRP68, SERBP1, RPL35A, EGF, and TGF-β. 3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide bromide (MTT) assays corroborated that the interaction between rMgPa and RPL35 could promote SV-HUC-1 cell proliferation. Therefore, our findings indicated that the interaction between rMgPa and RPL35 can enhance the expressions of transcription-initiation and translation-related proteins and thus promote cell proliferation. This study elucidates a new biological function of MgPa and can explain this new mechanism of M. genitalium in the host.
Collapse
|
14
|
Mizutani M, Sasajima Y, Miyata M. Force and Stepwise Movements of Gliding Motility in Human Pathogenic Bacterium Mycoplasma pneumoniae. Front Microbiol 2021; 12:747905. [PMID: 34630372 PMCID: PMC8498583 DOI: 10.3389/fmicb.2021.747905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma pneumoniae, a human pathogenic bacterium, binds to sialylated oligosaccharides and glides on host cell surfaces via a unique mechanism. Gliding motility is essential for initiating the infectious process. In the present study, we measured the stall force of an M. pneumoniae cell carrying a bead that was manipulated using optical tweezers on two strains. The stall forces of M129 and FH strains were averaged to be 23.7 and 19.7 pN, respectively, much weaker than those of other bacterial surface motilities. The binding activity and gliding speed of the M129 strain on sialylated oligosaccharides were eight and two times higher than those of the FH strain, respectively, showing that binding activity is not linked to gliding force. Gliding speed decreased when cell binding was reduced by addition of free sialylated oligosaccharides, indicating the existence of a drag force during gliding. We detected stepwise movements, likely caused by a single leg under 0.2-0.3 mM free sialylated oligosaccharides. A step size of 14-19 nm showed that 25-35 propulsion steps per second are required to achieve the usual gliding speed. The step size was reduced to less than half with the load applied using optical tweezers, showing that a 2.5 pN force from a cell is exerted on a leg. The work performed in this step was 16-30% of the free energy of the hydrolysis of ATP molecules, suggesting that this step is linked to the elementary process of M. pneumoniae gliding. We discuss a model to explain the gliding mechanism, based on the information currently available.
Collapse
Affiliation(s)
- Masaki Mizutani
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Yuya Sasajima
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
15
|
Shedko ED, Goloveshkina EN, Akimkin VG. Molecular epidemiology and antimicrobials resistance mechanism of Mycoplasma genitlaium. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Currently, infections caused by Mycoplasma genitalium are ones the most common sexually transmitted infections. Their prevalence is varied from 1.3% to 15.9%. Infections caused by M.genitalium may lead to urethritis in men and a wide spectrum of diseases in women. Antibiotic resistance now is one of the most emerging problems both in the scientific and in the healthcare fields. The usage of antimicrobials inhibiting cell wall synthesis for the treatment of M.genitalium is ineffective, and resistance to macrolides and fluoroquinolones is increasing rapidly. M.genitalium infections diagnostics is complicated due to specific conditions and duration of culture methods. The usage of nucleic acid amplification techniques is the most relevant for laboratory diagnostics, and is used in existing assays. This review compiles current data on the prevalence, molecular mechanisms of pathogenesis and antibiotic resistance, as well as diagnostics methods of M.genitalium.
Collapse
|
16
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
17
|
Vizarraga D, Torres-Puig S, Aparicio D, Pich OQ. The Sialoglycan Binding Adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae. Trends Microbiol 2021; 29:477-481. [PMID: 33593698 DOI: 10.1016/j.tim.2021.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
Mycoplasma genitalium (Mge) and Mycoplasma pneumoniae (Mpn) are two human pathogens associated with urogenital and respiratory tract infections, respectively. The recent elucidation of the tridimensional structure of their major cytoadhesins by X-ray crystallography and cryo-electron microscopy/tomography, has provided important insights regarding the mechanics of infection and evasion of immune surveillance.
Collapse
Affiliation(s)
- David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Sergi Torres-Puig
- Research Unit of Molecular Microbiology (RUMM), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
| | - Oscar Q Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Institut d'Investigació i Innovació Parc Taulí (I3PT), Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
18
|
Vizarraga D, Pérez-Luque R, Martín J, Fita I, Aparicio D. Alternative conformation of the C-domain of the P140 protein from Mycoplasma genitalium. Acta Crystallogr F Struct Biol Commun 2020; 76:508-516. [PMID: 33135669 PMCID: PMC7605107 DOI: 10.1107/s2053230x20012297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
The human pathogen Mycoplasma genitalium is responsible for urethritis in men, and for cervicitis and pelvic inflammatory disease in women. The adherence of M. genitalium to host target epithelial cells is mediated through an adhesion complex called Nap, which is essential for infectivity. Nap is a transmembrane dimer of heterodimers of the immunodominant proteins P110 and P140. The M. genitalium genome contains multiple copies of portions that share homology with the extracellular regions of P140 and P110 encoded by the genes mg191 and mg192, respectively. Homologous recombination between the genes and the copies allows the generation of a large diversity of P140 and P110 variants to overcome surveillance by the host immune system. Interestingly, the C-terminal domain (C-domain) of the extracellular region of P140, which is essential for the function of Nap by acting as a flexible stalk anchoring the protein to the mycoplasma membrane, presents a low degree of sequence variability. In the present work, the X-ray crystal structures of two crystal forms of a construct of the P140 C-domain are reported. In both crystal forms, the construct forms a compact octamer with D4 point-group symmetry. The structure of the C-domain determined in this work presents significant differences with respect to the structure of the C-domain found recently in intact P140. The structural plasticity of the C-domain appears to be a possible mechanism that may help in the functioning of the mycoplasma adhesion complex.
Collapse
Affiliation(s)
- David Vizarraga
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB–CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Rosa Pérez-Luque
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB–CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jesús Martín
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB–CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ignacio Fita
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB–CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - David Aparicio
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB–CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Vizarraga D, Kawamoto A, Matsumoto U, Illanes R, Pérez-Luque R, Martín J, Mazzolini R, Bierge P, Pich OQ, Espasa M, Sanfeliu I, Esperalba J, Fernández-Huerta M, Scheffer MP, Pinyol J, Frangakis AS, Lluch-Senar M, Mori S, Shibayama K, Kenri T, Kato T, Namba K, Fita I, Miyata M, Aparicio D. Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae. Nat Commun 2020; 11:5188. [PMID: 33057023 PMCID: PMC7560827 DOI: 10.1038/s41467-020-18777-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Mycoplasma pneumoniae is a bacterial human pathogen that causes primary atypical pneumonia. M. pneumoniae motility and infectivity are mediated by the immunodominant proteins P1 and P40/P90, which form a transmembrane adhesion complex. Here we report the structure of P1, determined by X-ray crystallography and cryo-electron microscopy, and the X-ray structure of P40/P90. Contrary to what had been suggested, the binding site for sialic acid was found in P40/P90 and not in P1. Genetic and clinical variability concentrates on the N-terminal domain surfaces of P1 and P40/P90. Polyclonal antibodies generated against the mostly conserved C-terminal domain of P1 inhibited adhesion of M. pneumoniae, and serology assays with sera from infected patients were positive when tested against this C-terminal domain. P40/P90 also showed strong reactivity against human infected sera. The architectural elements determined for P1 and P40/P90 open new possibilities in vaccine development against M. pneumoniae infections.
Collapse
Affiliation(s)
- David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - U Matsumoto
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Ramiro Illanes
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Rosa Pérez-Luque
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Jesús Martín
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Rocco Mazzolini
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Institut d'Investigació i Innovació Parc Taulí (I3PT), Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Oscar Q Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Institut d'Investigació i Innovació Parc Taulí (I3PT), Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain.,Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Mateu Espasa
- Departament de Microbiologia, Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Isabel Sanfeliu
- Departament de Microbiologia, Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Juliana Esperalba
- Departament de Microbiologia, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Miguel Fernández-Huerta
- Departament de Microbiologia, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Jaume Pinyol
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan. .,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, 558-8585, Japan.
| | - David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
20
|
Wood GE, Iverson-Cabral SL, Gillespie CW, Lowens MS, Manhart LE, Totten PA. Sequence variation and immunogenicity of the Mycoplasma genitalium MgpB and MgpC adherence proteins during persistent infection of men with non-gonococcal urethritis. PLoS One 2020; 15:e0240626. [PMID: 33045031 PMCID: PMC7549776 DOI: 10.1371/journal.pone.0240626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma genitalium is a sexually transmitted bacterial pathogen that infects men and women. Antigenic variation of MgpB and MgpC, the immunodominant adherence proteins of M. genitalium, is thought to contribute to immune evasion and chronic infection. We investigated the evolution of mgpB and mgpC sequences in men with non-gonococcal urethritis persistently infected with M. genitalium, including two men with anti-M. genitalium antibodies at enrollment and two that developed antibodies during follow-up. Each of the four patients was persistently infected with a different strain type and each patient produced antibodies targeting MgpB and MgpC. Amino acid sequence evolution in the variable regions of MgpB and MgpC occurred in all four patients with changes observed in single and multiple variable regions over time. Using the available crystal structure of MgpC of the G37 type strain we found that predicted conformational B cell epitopes localize predominantly to the variable region of MgpC, amino acids that changed during patient infection lie in these epitopes, and variant amino acids are in close proximity to the conserved sialic acid binding pocket. These findings support the hypothesis that sequence variation functions to avoid specific antibodies thereby contributing to persistence in the genital tract.
Collapse
Affiliation(s)
- Gwendolyn E. Wood
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Stefanie L. Iverson-Cabral
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Catherine W. Gillespie
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - M. Sylvan Lowens
- Public Health - Seattle & King County Sexual Health Clinic, Seattle, Washington, United States of America
| | - Lisa E. Manhart
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Patricia A. Totten
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, Pathobiology Interdisciplinary Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
21
|
Clonal spread of macrolide-resistant Mycoplasma pneumoniae sequence type-3 and type-17 with recombination on non-P1 adhesin among children in Taiwan. Clin Microbiol Infect 2020; 27:1169.e1-1169.e6. [PMID: 33010445 DOI: 10.1016/j.cmi.2020.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Mycoplasma pneumoniae is currently the most commonly detected bacterial cause of childhood community-acquired pneumonia in several countries. Of note, clonal expansion of macrolide-resistant ST3 occurred in Japan and South Korea. An alarming surge in macrolide resistance complicates the treatment of pneumonia. We aimed to evaluate the clinical manifestation and clonal relatedness of M. pneumoniae circulating among children in Taiwan. METHODS We prospectively enrolled 626 children with radiologically confirmed pneumonia between 2017 and 2019. An M. pneumoniae infection was suspected on clinical grounds, and tested by real-time PCR and oropharyngeal swab cultures. We used multilocus sequence typing and whole-genome sequencing to characterize the genetic features of M. pneumoniae. RESULTS A total of 226 children with M. pneumoniae pneumonia were enrolled. Macrolide resistance was found in 77% (174/226) of patients. Multi-locus sequence typing revealed that ST3 (n = 93) and its single-locus variant ST17 (n = 84) were the predominant clones among macrolide-resistant strains. ST17 presented clinical characteristics comparable to its ancestor ST3. On multivariate analysis, macrolide resistance (OR 3.5; 95% CI 1.4-8.5; p 0.007) was independently associated with fever >72 hours after macrolide treatment. By whole-genome sequencing, prediction analysis of recombination sites revealed one recombination site in ST3 and ST17 compared with M29 (a macrolide-sensitive ST3 strain isolated from China in 2005) containing cytadhesin MgpC-like protein, RepMP4 and RepMP5. ST17 had another recombination site containing an adhesin and RepMP2/3. CONCLUSIONS In addition to macrolide resistance, ST3 and its ST17 variant might evolve through recombination between repetitive sequences and non-P1 cytadhesins for persistent circulation in Taiwan.
Collapse
|
22
|
Hakim MS, Annisa L, Jariah ROA, Vink C. The mechanisms underlying antigenic variation and maintenance of genomic integrity in Mycoplasma pneumoniae and Mycoplasma genitalium. Arch Microbiol 2020; 203:413-429. [PMID: 32970220 DOI: 10.1007/s00203-020-02041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/02/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Mycoplasma pneumoniae and Mycoplasma genitalium are important causative agents of infections in humans. Like all other mycoplasmas, these species possess genomes that are significantly smaller than that of other prokaryotes. Moreover, both organisms possess an exceptionally compact set of DNA recombination and repair-associated genes. These genes, however, are sufficient to generate antigenic variation by means of homologous recombination between specific repetitive genomic elements. At the same time, these mycoplasmas have likely evolved strategies to maintain the stability and integrity of their 'minimal' genomes. Previous studies have indicated that there are considerable differences between mycoplasmas and other bacteria in the composition of their DNA recombination and repair machinery. However, the complete repertoire of activities executed by the putative recombination and repair enzymes encoded by Mycoplasma species is not yet fully understood. In this paper, we review the current knowledge on the proteins that likely form part of the DNA repair and recombination pathways of two of the most clinically relevant Mycoplasma species, M. pneumoniae and M. genitalium. The characterization of these proteins will help to define the minimal enzymatic requirements for creating bacterial genetic diversity (antigenic variation) on the one hand, while maintaining genomic integrity on the other.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia. .,Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia
| | - Rizka O A Jariah
- Department of Health Science, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Cornelis Vink
- Department of Life Sciences, Erasmus University College, Erasmus University, 3011 HP, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Aparicio D, Scheffer MP, Marcos-Silva M, Vizarraga D, Sprankel L, Ratera M, Weber MS, Seybert A, Torres-Puig S, Gonzalez-Gonzalez L, Reitz J, Querol E, Piñol J, Pich OQ, Fita I, Frangakis AS. Structure and mechanism of the Nap adhesion complex from the human pathogen Mycoplasma genitalium. Nat Commun 2020; 11:2877. [PMID: 32513917 PMCID: PMC7280502 DOI: 10.1038/s41467-020-16511-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma genitalium is a human pathogen adhering to host target epithelial cells and causing urethritis, cervicitis and pelvic inflammatory disease. Essential for infectivity is a transmembrane adhesion complex called Nap comprising proteins P110 and P140. Here we report the crystal structure of P140 both alone and in complex with the N-terminal domain of P110. By cryo-electron microscopy (cryo-EM) and tomography (cryo-ET) we find closed and open Nap conformations, determined at 9.8 and 15 Å, respectively. Both crystal structures and the cryo-EM structure are found in a closed conformation, where the sialic acid binding site in P110 is occluded. By contrast, the cryo-ET structure shows an open conformation, where the binding site is accessible. Structural information, in combination with functional studies, suggests a mechanism for attachment and release of M. genitalium to and from the host cell receptor, in which Nap conformations alternate to sustain motility and guarantee infectivity.
Collapse
Affiliation(s)
- David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Marina Marcos-Silva
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Lasse Sprankel
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Mercè Ratera
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Miriam S Weber
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Anja Seybert
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Sergi Torres-Puig
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Luis Gonzalez-Gonzalez
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Julian Reitz
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Oscar Q Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain.
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany.
| |
Collapse
|
24
|
Widjaja M, Berry IJ, Jarocki VM, Padula MP, Dumke R, Djordjevic SP. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules. Sci Rep 2020; 10:6384. [PMID: 32286369 PMCID: PMC7156367 DOI: 10.1038/s41598-020-63136-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma pneumoniae is a genome reduced pathogen and causative agent of community acquired pneumonia. The major cellular adhesin, P1, localises to the tip of the attachment organelle forming a complex with P40 and P90, two cleavage fragments derived by processing Mpn142, and other molecules with adhesive and mobility functions. LC-MS/MS analysis of M. pneumoniae M129 proteins derived from whole cell lysates and eluents from affinity matrices coupled with chemically diverse host molecules identified 22 proteoforms of P1. Terminomics was used to characterise 17 cleavage events many of which were independently verified by the identification of semi-tryptic peptides in our proteome studies and by immunoblotting. One cleavage event released 1597TSAAKPGAPRPPVPPKPGAPKPPVQPPKKPA1627 from the C-terminus of P1 and this peptide was shown to bind to a range of host molecules. A smaller synthetic peptide comprising the C-terminal 15 amino acids, 1613PGAPKPPVQPPKKPA1627, selectively bound cytoskeletal intermediate filament proteins cytokeratin 7, cytokeratin 8, cytokeratin 18, and vimentin from a native A549 cell lysate. Collectively, our data suggests that ectodomain shedding occurs on the surface of M. pneumoniae where it may alter the functional diversity of P1, Mpn142 and other surface proteins such as elongation factor Tu via a mechanism similar to that described in Mycoplasma hyopneumoniae.
Collapse
Affiliation(s)
- Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Iain James Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica Maria Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Roger Dumke
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Medizinische Mikrobiologie und Hygiene, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Steven Philip Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
25
|
Zhu X, Dong Y, Baranowski E, Li X, Zhao G, Hao Z, Zhang H, Chen Y, Hu C, Chen H, Citti C, Guo A. Mbov_0503 Encodes a Novel Cytoadhesin that Facilitates Mycoplasma bovis Interaction with Tight Junctions. Microorganisms 2020; 8:microorganisms8020164. [PMID: 31979335 PMCID: PMC7074692 DOI: 10.3390/microorganisms8020164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023] Open
Abstract
Molecules contributing to microbial cytoadhesion are important virulence factors. In Mycoplasma bovis, a minimal bacterium but an important cattle pathogen, binding to host cells is emerging as a complex process involving a broad range of surface-exposed structures. Here, a new cytoadhesin of M. bovis was identified by producing a collection of individual knock-out mutants and evaluating their binding to embryonic bovine lung cells. The cytoadhesive-properties of this surface-exposed protein, which is encoded by Mbov_0503 in strain HB0801, were demonstrated at both the mycoplasma cell and protein levels using confocal microscopy and ELISA. Although Mbov_0503 disruption was only associated in M. bovis with a partial reduction of its binding capacity, this moderate effect was sufficient to affect M. bovis interaction with the host-cell tight junctions, and to reduce the translocation of this mycoplasma across epithelial cell monolayers. Besides demonstrating the capacity of M. bovis to disrupt tight junctions, these results identified novel properties associated with cytoadhesin that might contribute to virulence and host colonization. These findings provide new insights into the complex interplay taking place between wall-less mycoplasmas and the host-cell surface.
Collapse
Affiliation(s)
- Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Yaqi Dong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Eric Baranowski
- IHAP, ENVT, INRAE, Université de Toulouse, Toulouse 31300, France; (E.B.); (C.C.)
| | - Xixi Li
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Christine Citti
- IHAP, ENVT, INRAE, Université de Toulouse, Toulouse 31300, France; (E.B.); (C.C.)
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: ; Tel.: 86-131-0071-2906
| |
Collapse
|
26
|
Behaviors and Energy Source of Mycoplasma gallisepticum Gliding. J Bacteriol 2019; 201:JB.00397-19. [PMID: 31308069 DOI: 10.1128/jb.00397-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023] Open
Abstract
Mycoplasma gallisepticum, an avian-pathogenic bacterium, glides on host tissue surfaces by using a common motility system with Mycoplasma pneumoniae In the present study, we observed and analyzed the gliding behaviors of M. gallisepticum in detail by using optical microscopes. M. gallisepticum glided at a speed of 0.27 ± 0.09 μm/s with directional changes relative to the cell axis of 0.6 degree ± 44.6 degrees/5 s without the rolling of the cell body. To examine the effects of viscosity on gliding, we analyzed the gliding behaviors under viscous environments. The gliding speed was constant in various concentrations of methylcellulose but was affected by Ficoll. To investigate the relationship between binding and gliding, we analyzed the inhibitory effects of sialyllactose on binding and gliding. The binding and gliding speed sigmoidally decreased with sialyllactose concentration, indicating the cooperative binding of the cell. To determine the direct energy source of gliding, we used a membrane-permeabilized ghost model. We permeabilized M. gallisepticum cells with Triton X-100 or Triton X-100 containing ATP and analyzed the gliding of permeabilized cells. The cells permeabilized with Triton X-100 did not show gliding; in contrast, the cells permeabilized with Triton X-100 containing ATP showed gliding at a speed of 0.014 ± 0.007 μm/s. These results indicate that the direct energy source for the gliding motility of M. gallisepticum is ATP.IMPORTANCE Mycoplasmas, the smallest bacteria, are parasitic and occasionally commensal. Mycoplasma gallisepticum is related to human-pathogenic mycoplasmas-Mycoplasma pneumoniae and Mycoplasma genitalium-which cause so-called "walking pneumonia" and nongonococcal urethritis, respectively. These mycoplasmas trap sialylated oligosaccharides, which are common targets among influenza viruses, on host trachea or urinary tract surfaces and glide to enlarge the infected areas. Interestingly, this gliding motility is not related to other bacterial motilities or eukaryotic motilities. Here, we quantitatively analyze cell behaviors in gliding and clarify the direct energy source. The results provide clues for elucidating this unique motility mechanism.
Collapse
|
27
|
Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol 2019; 27:982-996. [PMID: 31451347 DOI: 10.1016/j.tim.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Dysbiosis in the female genital tract (FGT) is characterized by the overgrowth of pathogenic bacterial, fungal, or protozoan members of the microbiota, leading to symptomatic or asymptomatic infections. In this review, we discuss recent advances in studies dealing with molecular mechanisms of pathogenicity factors of Gardnerella vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Streptococcus agalactiae, Chlamydia trachomatis, Trichomonas vaginalis, and Candida spp., as well as their interactions with the host and microbiota in the various niches of the FGT. Taking a holistic approach to identifying fundamental commonalities and differences during these infections could help us to better understand reproductive tract health and improve current prevention and treatment strategies.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany. @leibniz-hki.de
| |
Collapse
|
28
|
Qin L, Chen Y, You X. Subversion of the Immune Response by Human Pathogenic Mycoplasmas. Front Microbiol 2019; 10:1934. [PMID: 31497004 PMCID: PMC6712165 DOI: 10.3389/fmicb.2019.01934] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Mycoplasmas are a large group of prokaryotes which is believed to be originated from Gram-positive bacteria via degenerative evolution, and mainly capable of causing a wide range of human and animal infections. Although innate immunity and adaptive immunity play crucial roles in preventing mycoplasma infection, immune response that develops after infection fails to completely eliminate this bacterium under certain circumstances. Thus, it is reasonable to speculate that mycoplasmas employ some mechanisms to deal with coercion of host defense system. In this review, we will highlight and provide a comprehensive overview of immune evasion strategies that have emerged in mycoplasma infection, which can be divided into four aspects: (i) Molecular mimicry and antigenic variation on the surface of the bacteria to evade the immune surveillance; (ii) Overcoming the immune effector molecules assaults: Induction of detoxified enzymes to degradation of reactive oxygen species; Expression of nucleases to degrade the neutrophil extracellular traps to avoid killing by Neutrophil; Capture and cleavage of immunoglobulins to evade humoral immune response; (iii) Persistent survival: Invading into the host cell to escape the immune damage; Formation of a biofilm to establish a persistent infection; (iv) Modulation of the immune system to down-regulate the intensity of immune response. All of these features increase the probability of mycoplasma survival in the host and lead to a persistent, chronic infections. A profound understanding on the mycoplasma to subvert the immune system will help us to better understand why mycoplasma is so difficult to eradicate and ultimately provide new insights on the development of therapeutic regimens against this bacterium in future.
Collapse
Affiliation(s)
- Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|